1
|
Karwowski BT. The Influence of 2'-Deoxyguanosine Lesions on the Electronic Properties of OXOG:::C Base Pairs in Ds-DNA: A Comparative Analysis of Theoretical Studies. Molecules 2024; 29:3756. [PMID: 39202837 PMCID: PMC11357419 DOI: 10.3390/molecules29163756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
DNA is continuously exposed to a variety of harmful factors, which, on the one hand, can force undesirable processes such as ageing, carcinogenesis and mutagenesis, while on the other hand, can accelerate evolutionary changes. Of all the canonical nucleosides, 2'-deoxyguanosine (dG) exhibits the lowest ionization potential, making it particularly prone to the one-electron oxidizing process. The most abundant type of nucleobase damage is constituted by 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG), with an oxidation potential that is 0.56 V lower than that of canonical dG. All this has led to OXOdG, as an isolated lesion, being perceived as a sink for radical cations in the genome. In this paper, a comparative analysis of the electronic properties of an OXOGC base pair within the context of a clustered DNA lesion (CDL) has been conducted. It is based on previous DFT studies that were carried out at the M06-2x/6-31++G** level of theory in non-equilibrated and equilibrated condensed phases. The results of the comparative analysis presented here reveal the following: (A) The ionization potentials of OXOG4C2 were largely unaffected by a second lesion. (B) The positive charge and spin were found predominantly on the OXOG4C2 moiety. (C) The electron-hole transfers A3T3→G4C2 and G4C2←A5T1 were found in the Marcus inverted region and were resistant to the presence of a second DNA lesion in close proximity. It can therefore be reasonably postulated that OXOGC becomes the sink for a radical cation migrating through the double helix, irrespective of the presence of other 2'-deoxyguanosine lesions in the CDL structure.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Endutkin AV, Yudkina AV, Zharkov TD, Kim DV, Zharkov DO. Recognition of a Clickable Abasic Site Analog by DNA Polymerases and DNA Repair Enzymes. Int J Mol Sci 2022; 23:ijms232113353. [PMID: 36362137 PMCID: PMC9655677 DOI: 10.3390/ijms232113353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Azide–alkyne cycloaddition (“click chemistry”) has found wide use in the analysis of molecular interactions in living cells. 5-ethynyl-2-(hydroxymethyl)tetrahydrofuran-3-ol (EAP) is a recently developed apurinic/apyrimidinic (AP) site analog functionalized with an ethynyl moiety, which can be introduced into cells in DNA constructs to perform labeling or cross-linking in situ. However, as a non-natural nucleoside, EAP could be subject to removal by DNA repair and misreading by DNA polymerases. Here, we investigate the interaction of this clickable AP site analog with DNA polymerases and base excision repair enzymes. Similarly to the natural AP site, EAP was non-instructive and followed the “A-rule”, directing residual but easily detectable incorporation of dAMP by E. coli DNA polymerase I Klenow fragment, bacteriophage RB69 DNA polymerase and human DNA polymerase β. On the contrary, EAP was blocking for DNA polymerases κ and λ. EAP was an excellent substrate for the major human AP endonuclease APEX1 and E. coli AP exonucleases Xth and Nfo but was resistant to the AP lyase activity of DNA glycosylases. Overall, our data indicate that EAP, once within a cell, would represent a replication block and would be removed through an AP endonuclease-initiated long-patch base excision repair pathway.
Collapse
Affiliation(s)
- Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Timofey D. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Daria V. Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Correspondence: (A.V.E.); (D.O.Z.)
| |
Collapse
|
3
|
|
4
|
Srivastava M, Su D, Zhang H, Chen Z, Tang M, Nie L, Chen J. HMCES safeguards replication from oxidative stress and ensures error-free repair. EMBO Rep 2020; 21:e49123. [PMID: 32307824 DOI: 10.15252/embr.201949123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023] Open
Abstract
Replication across oxidative DNA lesions can give rise to mutations that pose a threat to genome integrity. How such lesions, which escape base excision repair, get removed without error during replication remains unknown. Our PCNA-based screen to uncover changes in replisome composition under different replication stress conditions had revealed a previously unknown PCNA-interacting protein, HMCES/C3orf37. Here, we show that HMCES is a critical component of the replication stress response, mainly upon base misincorporation. We further demonstrate that the absence of HMCES imparts resistance to pemetrexed treatment due to error-prone bypass of oxidative damage. Furthermore, based on genetic screening, we show that homologous recombination repair proteins, such as CtIP, BRCA2, BRCA1, and PALB2, are indispensable for the survival of HMCES KO cells. Hence, HMCES, which is the sole member of the SRAP superfamily in higher eukaryotes known so far, acts as a proofreader on replication forks, facilitates resolution of oxidative base damage, and therefore ensures faithful DNA replication.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Rieux C, Goffinont S, Coste F, Tber Z, Cros J, Roy V, Guérin M, Gaudon V, Bourg S, Biela A, Aucagne V, Agrofoglio L, Garnier N, Castaing B. Thiopurine Derivative-Induced Fpg/Nei DNA Glycosylase Inhibition: Structural, Dynamic and Functional Insights. Int J Mol Sci 2020; 21:ijms21062058. [PMID: 32192183 PMCID: PMC7139703 DOI: 10.3390/ijms21062058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Rieux
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Zahira Tber
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Julien Cros
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Martine Guérin
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Artur Biela
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Correspondence: (V.R.); (N.G.); (B.C.)
| |
Collapse
|
6
|
Endutkin AV, Zharkov DO. Critical Sites of DNA Backbone Integrity for Damaged Base Removal by Formamidopyrimidine-DNA Glycosylase. Biochemistry 2019; 58:2740-2749. [PMID: 31120733 DOI: 10.1021/acs.biochem.9b00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA glycosylases, the enzymes that initiate base excision DNA repair, recognize damaged bases through a series of precisely orchestrated movements. Most glycosylases sharply kink the DNA axis at the lesion site and extrude the target base from the DNA double helix into the enzyme's active site. Little attention has been paid so far to the role of the physical continuity of the DNA backbone in allowing the required conformational distortion. Here, we analyze base excision by formamidopyrimidine-DNA glycosylase (Fpg) from substrates keeping all phosphates but containing a nick within three nucleotides of the lesion in either DNA strand. Four phosphoester linkages at the damaged nucleotide and two nucleotides 3' to it were essential for Fpg activity, while the breakage of the others, even at the same critical phosphates, had no effect or even stimulated the reaction. Reduction of the likelihood of hydrogen bonding at the nicks by using dideoxynucleotides as their 3'-terminal groups was more detrimental for the activity. All phosphoester bonds in the complementary strand were dispensable for base excision, but nicks close to the orphaned nucleotide caused early termination of damaged strand cleavage. Elastic network analysis of Fpg-DNA structures showed that the vibrational motions of the critical phosphates are strongly correlated, in part due to the presence of the protein. Overall, our results suggest that mechanical forces propagating along the DNA backbone play a critical role in the correct conformational distortion of DNA by Fpg and possibly by other target base-everting DNA glycosylases.
Collapse
Affiliation(s)
- Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine , 8 Lavrentieva Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Street , Novosibirsk 630090 , Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine , 8 Lavrentieva Avenue , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova Street , Novosibirsk 630090 , Russia
| |
Collapse
|
7
|
Endutkin AV, Koptelov SS, Popov AV, Torgasheva NA, Lomzov AA, Tsygankova AR, Skiba TV, Afonnikov DA, Zharkov DO. Residue coevolution reveals functionally important intramolecular interactions in formamidopyrimidine-DNA glycosylase. DNA Repair (Amst) 2018; 69:24-33. [DOI: 10.1016/j.dnarep.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
8
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|
9
|
Schuermann D, Scheidegger SP, Weber AR, Bjørås M, Leumann CJ, Schär P. 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair. Nucleic Acids Res 2016; 44:2187-98. [PMID: 26733580 PMCID: PMC4797279 DOI: 10.1093/nar/gkv1520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Simon P Scheidegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Rikshospitalet, PO Box 4950 Nydalen, N-0424 Oslo, Norway Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, N-7491 Trondheim, Norway
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
10
|
The nucleoid-associated protein HU enhances 8-oxoguanine base excision by the formamidopyrimidine-DNA glycosylase. Biochem J 2015; 471:13-23. [DOI: 10.1042/bj20150387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022]
Abstract
The major E. coli histone-like HU protein is identified as a strong stimulator of the DNA glycosylase Fpg by inducing enzyme product release. According to an active molecular process, HU acts as a molecular partner for an efficient DNA-repair process.
Collapse
|
11
|
Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization. Nucleic Acids Res 2014; 42:10748-61. [PMID: 25143530 PMCID: PMC4176347 DOI: 10.1093/nar/gku613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity.
Collapse
Affiliation(s)
- Artur Biela
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Martine Guerin
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| | - Karola Gasteiger
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Winczura
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Didier Gasparutto
- Laboratoire Lésions des Acides Nucléiques, SCIB/UMR E3 CEA-UJF, INAC, CEA, Grenoble, France
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU), Butenandtstr. 5-13 (Haus F), München D-81377, Germany
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45100 Orléans cedex02, France
| |
Collapse
|
12
|
Burroughs AM, Aravind L. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. RNA Biol 2014; 11:360-72. [PMID: 24646681 PMCID: PMC4075521 DOI: 10.4161/rna.28302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein–protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- 1National Center for Biotechnology Information; National Library of Medicine; National Institutes of Health; Bethesda, MD USA
| | - L Aravind
- 1National Center for Biotechnology Information; National Library of Medicine; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
13
|
Adhikary S, Cato MC, McGary KL, Rokas A, Eichman BF. Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe. DNA Repair (Amst) 2012; 12:196-204. [PMID: 23273506 DOI: 10.1016/j.dnarep.2012.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/15/2022]
Abstract
Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its ancestor. Mag1 excises N3- and N7-alkylguanines and 1,N(6)-ethenoadenine from DNA, whereas Mag2 has been reported to have no detectible alkylpurine base excision activity despite high sequence and active site similarity to Mag1. To understand this discrepancy we determined the crystal structure of Mag2 bound to abasic DNA and compared it to our previously determined Mag1-DNA structure. In contrast to Mag1, Mag2 does not flip the abasic moiety into the active site or stabilize the DNA strand 5' to the lesion, suggesting that it is incapable of forming a catalytically competent protein-DNA complex. Subtle differences in Mag1 and Mag2 interactions with the DNA duplex illustrate how Mag2 can stall at damage sites without fully engaging the lesion. We tested our structural predictions by mutational analysis of base excision and found a single amino acid responsible at least in part for Mag2's lack of activity. Substitution of Mag2 Asp56, which caps the helix at the base of the DNA intercalation loop, with the corresponding serine residue in Mag1 endows Mag2 with ɛA excision activity comparable to Mag1. This work provides novel insight into the chemical and physical determinants by which the HhH glycosylases engage DNA in a catalytically productive manner.
Collapse
Affiliation(s)
- Suraj Adhikary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
14
|
Binding of the RamR repressor to wild-type and mutated promoters of the RamA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2011; 56:942-8. [PMID: 22123696 DOI: 10.1128/aac.05444-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family. We here studied the DNA-binding activity of the RamR repressor with the ramA promoter (P(ramA)). As determined by high-resolution footprinting, the 28-bp-long RamR binding site covers essential features of P(ramA), including the -10 conserved region, the transcriptional start site of ramA, and two 7-bp inverted repeats. Based on the RamR footprint and on electrophoretic mobility shift assays (EMSAs), we propose that RamR interacts with P(ramA) as a dimer of dimers, in a fashion that is structurally similar to the QacR-DNA binding model. Surface plasmon resonance (SPR) measurements indicated that RamR has a 3-fold-lower affinity (K(D) [equilibrium dissociation constant] = 191 nM) for the 2-bp-deleted P(ramA) of an MDR S. Typhimurium clinical isolate than for the wild-type P(ramA) (K(D) = 66 nM). These results confirm the direct regulatory role of RamR in the repression of ramA transcription and precisely define how an alteration of its binding site can give rise to an MDR phenotype.
Collapse
|
15
|
Imamura K, Wallace SS, Doublié S. Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA. J Biol Chem 2009; 284:26174-83. [PMID: 19625256 DOI: 10.1074/jbc.m109.021907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Endonuclease VIII (Nei) is a DNA glycosylase of the base excision repair pathway that recognizes and excises oxidized pyrimidines. We determined the crystal structures of a NEIL1 ortholog from the giant Mimivirus (MvNei1) unliganded and bound to DNA containing tetrahydrofuran (THF), which is the first structure of any Nei with an abasic site analog. The MvNei1 structures exhibit the same overall architecture as other enzymes of the Fpg/Nei family, which consists of two globular domains joined by a linker region. MvNei1 harbors a zincless finger, first described in human NEIL1, rather than the signature zinc finger generally found in the Fpg/Nei family. In contrast to Escherichia coli Nei, where a dramatic conformational change was observed upon binding DNA, the structure of MvNei1 bound to DNA does not reveal any substantial movement compared with the unliganded enzyme. A protein segment encompassing residues 217-245 in MvNei1 corresponds to the "missing loop" in E. coli Nei and the "alphaF-beta10 loop" in E. coli Fpg, which has been reported to be involved in lesion recognition. Interestingly, the corresponding loop in MvNei1 is ordered in both the unliganded and furan-bound structures, unlike other Fpg/Nei enzymes where the loop is generally ordered in the unliganded enzyme or in complexes with a lesion, and disordered otherwise. In the MvNei1.tetrahydrofuran complex a tyrosine located at the tip of the putative lesion recognition loop stacks against the furan ring; the tyrosine is predicted to adopt a different conformation to accommodate a modified base.
Collapse
Affiliation(s)
- Kayo Imamura
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
16
|
Dobbs TA, Palmer P, Maniou Z, Lomax ME, O'Neill P. Interplay of two major repair pathways in the processing of complex double-strand DNA breaks. DNA Repair (Amst) 2008; 7:1372-83. [PMID: 18571480 DOI: 10.1016/j.dnarep.2008.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/29/2008] [Accepted: 05/07/2008] [Indexed: 10/21/2022]
Abstract
Radiation-induced complex double-strand breaks (DSBs) characterised by base lesions, abasic sites or single-strand breaks in close proximity to the break termini, are believed to be a major cause of the biological effects of ionising radiation exposure. It has been hypothesised that complex DSBs pose problems for the repair machinery of the cell. Using a biochemical approach, we have investigated the challenge to two major repair processes: base excision repair and ligation of DSB ends. Double-stranded oligonucleotides were synthesised with 8-oxo-7,8-dihydroguanine (8-oxoG) at defined positions relative to readily ligatable 3'-hydroxy or 5'-phosphate termini. The break termini interfere with removal of 8-oxoG during base excision repair as elucidated from the severely reduced efficiency of 8-oxoG removal by OGG1 with AP endonuclease-1 when in close proximity to break termini. NEIL-1, however, can partially restore processing of complex DSBs in an AP endonuclease-1 independent manner. The influence of 8-oxoG on ligation shows delayed rejoining if 8-oxoG is positioned two to three bases from the 3'-hydroxy or six bases from the 5'-phosphate termini. When two 8-oxoG lesions are positioned across the break junction ligation is severely retarded. This reduced efficiency of repair indicates that complex DSBs are likely to persist longer than simple DSBs in cells, and as a consequence are more significant in contributing to the biological effects of ionising radiation.
Collapse
Affiliation(s)
- Tracey A Dobbs
- DNA Damage Group, Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | | |
Collapse
|
17
|
Coste F, Ober M, Le Bihan YV, Izquierdo MA, Hervouet N, Mueller H, Carell T, Castaing B. Bacterial Base Excision Repair Enzyme Fpg Recognizes Bulky N7-Substituted-FapydG Lesion via Unproductive Binding Mode. ACTA ACUST UNITED AC 2008; 15:706-17. [DOI: 10.1016/j.chembiol.2008.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/14/2008] [Accepted: 05/19/2008] [Indexed: 01/18/2023]
|
18
|
Cunniffe SMT, Lomax ME, O'Neill P. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli. DNA Repair (Amst) 2007; 6:1839-49. [PMID: 17704010 DOI: 10.1016/j.dnarep.2007.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 12/27/2022]
Abstract
Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but to date, most studies have investigated the effects of bi-stranded lesions. A subset of clustered DNA damaged sites exist in which two or more lesions are present in tandem on the same DNA strand. In this study synthetic oligonucleotides containing an AP site 1, 3 or 5 bases 5' or 3' to 8-oxo-7,8-dihydroguanine (8-oxoG) on the same DNA strand were synthesized as a model of a tandem clustered damaged sites. It was found that 8-oxoG retards the incision of the AP site by exonuclease III (Xth) and formamidopyrimidine DNA glycosylase (Fpg). In addition the rejoining of the AP site by xrs5 nuclear extracts is impaired by the presence of 8-oxoG. The mutation frequency arising from 8-oxoG within a tandem clustered site was determined in both wild type and mutant E. coli backgrounds. In wild-type, nth, fpg and mutY null E. coli, the mutation frequency is slightly elevated when an AP site is in tandem to 8-oxoG, compared with when 8-oxoG is present as a single lesion. Interestingly, in the double mutant mutY/fpg null E. coli, the mutation frequency of 8-oxoG is reduced when an AP site is present in tandem compared with when 8-oxoG is present as a single lesion. This study demonstrates that tandem lesions can present a challenge to the repair machinery of the cell.
Collapse
Affiliation(s)
- Siobhan M T Cunniffe
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX11 0RD, UK
| | | | | |
Collapse
|
19
|
Krishnamurthy N, Muller JG, Burrows CJ, David SS. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Biochemistry 2007; 46:9355-65. [PMID: 17655276 PMCID: PMC2442889 DOI: 10.1021/bi602459v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidation of guanine (G) and 8-oxoguanine (OG) with a wide variety of oxidants yields the hydantoin lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). These two lesions have garnered much recent attention due to their unusual structures and high mutagenic potential. We have previously shown that duplexes containing Gh and Sp are substrates for the base excision repair glycosylase Escherichia coli Fpg (EcFpg). To evaluate the recognition features of these unusual lesions, binding and footprinting experiments were performed using a glycosylase inactive variant, E3Q EcFpg, and 30 bp duplexes containing the embedded lesions. Surprisingly, E3Q EcFpg was found to bind significantly more tightly ( approximately 1000-fold) to duplexes containing Gh or Sp over the corresponding duplexes containing OG. This may be a consequence of the helix-destabilizing nature of the hydantoin lesions that facilitates their recognition within duplex DNA. Though DNA binding affinities of E3Q EcFpg with Gh- and Sp-containing duplexes were found to be similar to each other, hydroxyl radical footprinting using methidium-propyl-EDTA (MPE)-Fe(II) revealed subtle differences between binding of E3Q EcFpg to the two lesions. Most notably, in the presence of E3Q EcFpg, the Sp nucleotide (nt) is hyperreactive toward cleavage by MPE-Fe(II)-generated hydroxyl radicals, suggestive of the formation of an intercalation site for the MPE-Fe(II) reagent at the Sp nt. Interestingly, increasing the duplex length from 18 to 30 bp enhanced the excision efficiency of Gh and Sp paired with C, G, or T by EcFpg such that these substrates are processed as efficiently as the signature substrate lesion, OG. Moreover, the base removal activity with these two lesions was more efficient than removal of OG when in a base pairing context opposite A. The high affinity and efficient activity of EcFpg toward the hydantoin lesions suggest that EcFpg mediates repair of the lesions in vivo. Notably, the facile activity of EcFpg toward Gh and Sp in base pairing contexts with G and A, which are likely to be present after DNA replication, would be detrimental and enhance mutagenesis.
Collapse
Affiliation(s)
| | | | | | - Sheila S. David
- *Corresponding Author: SSD: telephone: (530)-752-4830; fax: (530)-752-8995, Email address:
| |
Collapse
|
20
|
Rogacheva M, Ishchenko A, Saparbaev M, Kuznetsova S, Ogryzko V. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. J Biol Chem 2006; 281:32353-65. [PMID: 16928690 DOI: 10.1074/jbc.m606217200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOgg1) initiate the base excision repair pathway for 7,8-dihydro-8-oxoguanine (8-oxoG) residues present in DNA. Recent structural and biochemical studies of Fpg-DNA and hOgg1-DNA complexes point to the existence of extensive interactions between phosphate groups and amino acids. However, the role of these contacts and their physiological relevance remains unclear. In the present study, we combined chemical cross-linking and electrospray ionization mass spectrometry (ESI/MS/MS) approaches to identify interacting residues in the Fpg-DNA and hOgg1-DNA complexes. The active centers of Fpg and hOgg1 were cross-linked with a series of reactive oligonucleotide duplexes containing both a single 8-oxoG residue and an O-ethyl-substituted pyrophosphate internucleotide (SPI) group at different positions in duplex DNA. The cross-linking efficiency reached 50% for Fpg and 30% for hOgg1. We have identified seven phosphate groups on both strands of the DNA duplex specifically interacting with nucleophilic amino acids in Fpg, and eight in hOgg1. MS/MS analysis of the purified proteolytic fragments suggests that lysine 56 of Fpg and lysine 249 of hOgg1 cross-link to the phosphate located 3' to the 8-oxoG residue. Site-specific mutagenesis analysis of Fpg binding to DNA substrate confirms the conclusions of our approach. Our results are consistent with crystallographic data on the Fpg-DNA complex and provide new data on the hOgg1-DNA interaction. The approach developed in this work provides a useful tool to study pro- and eukaryotic homologues of Fpg as well as other repair enzymes.
Collapse
Affiliation(s)
- Maria Rogacheva
- Laboratory of Nucleic Acids Chemistry, Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
21
|
Davídková M, Stísová V, Goffinont S, Gillard N, Castaing B, Spotheim-Maurizot M. Modification of DNA radiolysis by DNA-binding proteins: structural aspects. RADIATION PROTECTION DOSIMETRY 2006; 122:100-5. [PMID: 17229781 DOI: 10.1093/rpd/ncl442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Formation of specific complexes between proteins and their cognate DNA modulates the yields and the location of radiation damage on both partners of the complex. The radiolysis of DNA-protein complexes is studied for: (1) the Escherichia coli lactose operator-repressor complex, (2) the complex between DNA bearing an analogue of an abasic site and the repair protein Fpg of Lactococcus lactis. Experimental patterns of DNA damages are presented and compared to predicted damage distribution obtained using an improved version of the stochastic model RADACK. The same method is used for predicting the location of damages on the proteins. At doses lower than a threshold that depends on the system, proteins protect their specific binding site on DNA while at high doses, the studied complexes are disrupted mainly through protein damage. The loss of binding ability is the functional consequence of the amino-acids modification by OH* radicals. Many of the most probably damaged amino acids are essential for the DNA-protein interaction and within a complex are protected by DNA.
Collapse
Affiliation(s)
- Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Praha 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
22
|
de Jésus KP, Serre L, Zelwer C, Castaing B. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Nucleic Acids Res 2005; 33:5936-44. [PMID: 16243784 PMCID: PMC1266061 DOI: 10.1093/nar/gki879] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside.
Collapse
Affiliation(s)
| | - Laurence Serre
- Institut de Biologie Structurale, CEA-CNRS-UJF41 rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | | | - Bertrand Castaing
- To whom correspondence should be addressed. Tel: +33 2 38 25 78 43; Fax: +33 2 38 63 15 17;
| |
Collapse
|
23
|
Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O'Connor TR. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 2005; 280:39448-59. [PMID: 16174769 DOI: 10.1074/jbc.m509881200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and Escherichia coli derivatives of AlkB enzymes remove methyl groups from 1-methyladenine and 3-methylcytosine in nucleic acids via an oxidative mechanism that releases the methyl group as formaldehyde. In this report, we demonstrate that the mouse homologues of the alpha-ketoglutarate Fe(II) oxygen-dependent enzymes mAbh2 and Abh3 have activities comparable to those of their human counterparts. The mAbh2 and mAbh3 release modified bases from both DNA and RNA. Comparison of the activities of the homogenous ABH2 and ABH3 enzymes demonstrate that these activities are shared by both sets of enzymes. An assay for the detection of alpha-ketoglutarate Fe(II) dioxygenase activity using an oligodeoxyribonucleotide with a unique modification shows activity for all four enzymes studied and a loss of activity for eight mutant proteins. Steady-state kinetics for removal of methyl groups from DNA substrates indicates that the reactions of the proteins are close to the diffusion limit. Moreover, mAbh2 or mAbh3 activity increases survival in a strain defective in alkB. The mRNAs of AHB2 and ABH3 are expressed most in testis for ABH2 and ABH3, whereas expression of the homologous mouse genes is different. The mAbh3 is strongly expressed in testis, whereas highest expression of mAbh2 is in heart. Other purified human AlkB homologue proteins ABH4, ABH6, and ABH7 do not manifest activity. The demonstration of mAbh2 and mAbh3 activities and their distributions provide data on these mammalian homologues of AlkB that can be used in animal studies.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
24
|
Buchko GW, McAteer K, Wallace SS, Kennedy MA. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. DNA Repair (Amst) 2005; 4:327-39. [PMID: 15661656 DOI: 10.1016/j.dnarep.2004.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/16/2022]
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair (BER) protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free in solution and bound to a double-stranded DNA oligomer containing 1,3-propanediol (13-PD), a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 251 (83%) free-precession 15N/1H HSQC cross peaks were observed and 180 of these were assignable, indicating that approximately 30% of the residues undergo intermediate motion on the NMR timescale, broadening the resonances beyond detection or making them intractable in backbone assignment experiments. The majority of these affected residues were in the polypeptide linker region and the interface between the N- and C-terminal domains. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate timescale motion observed for free Fpg, including those residues directly involved in DNA binding, notwithstanding a nanomolar dissociation constant for 13-PD binding. Indeed, after binding to 13-PD, at least approximately 40% of the Fpg residues undergo intermediate timescale motion even though all other residues exhibit tight DNA binding characteristic of slow exchange. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that were quenched upon binding 13-PD. In free Fpg, heteronuclear 1H-15N NOE experiments detected picosecond timescale backbone motion in the alphaF-beta9 loop, the region primarily responsible for chemically discriminating 8-oxoguanine (8-oxoG) over normal guanine, that was quenched after binding 13-PD. Collectively, these observations reveal that, in solution, Fpg is a very dynamic molecule even after binding damaged DNA. Such motion, especially at the DNA binding surface, may be key to its processive search for DNA damage and its catalytic functions once it recognizes damaged DNA.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division, Battelle, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
25
|
Faure V, Saparbaev M, Dumy P, Constant JF. Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone. Biochem Biophys Res Commun 2005; 328:1188-95. [PMID: 15708002 DOI: 10.1016/j.bbrc.2005.01.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 01/25/2023]
Abstract
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.
Collapse
Affiliation(s)
- Virginie Faure
- LEDSS-UMR 5616, ICMG-FR 2607, BP 53, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
26
|
Amara P, Serre L, Castaing B, Thomas A. Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics. Protein Sci 2005; 13:2009-21. [PMID: 15273302 PMCID: PMC2279820 DOI: 10.1110/ps.04772404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) identifies and removes 8-oxoguanine from DNA. All of the X-ray structures of Fpg complexed to an abasic site containing DNA exhibit a common disordered region present in the C-terminal domain of the enzyme. However, this region is believed to be involved in the damaged base binding site when the initial protein/DNA complex is formed. The dynamic behavior of the disordered polypeptide (named Loop) in relation to the supposed scenario for the DNA repair mechanism was investigated by molecular dynamics on different models, derived from the X-ray structure of Lactococcus lactis Fpg bound to an abasic site analog-containing DNA and of Bacillus stearothermophilus Fpg bound to 8-oxoG. This study shows that the presence of the damaged base influences the dynamics of the whole enzyme and that the Loop location is dependent on the presence and on the conformation of the 8-oxoG in its binding site. In addition, from our results, the conformation of the 8-oxoG seems to be favored in syn in the L. lactis models, in agreement with the available X-ray structure from B. stearothermophilus Fpg and with a possible catalytic role of the flexibility of the Loop region.
Collapse
Affiliation(s)
- Patricia Amara
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel Commissariat à l'énergie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, 38027 Grenoble 1, France.
| | | | | | | |
Collapse
|
27
|
|
28
|
Lomax ME, Salje H, Cunniffe S, O'Neill P. 8-OxoA Inhibits the Incision of an AP Site by the DNA Glycosylases Fpg, Nth and the AP Endonuclease HAP1. Radiat Res 2005; 163:79-84. [PMID: 15606310 DOI: 10.1667/rr3284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation induces clustered DNA damage sites, whereby two or more individual DNA lesions are formed within one or two helical turns of DNA by a single radiation track. A subset of DNA clustered damage sites exist in which the lesions are located in tandem on the same DNA strand. Recent studies have established that two closely opposed lesions impair the repair machinery of the cell, but few studies have investigated the processing of tandem lesions. In this study, synthetic double-stranded oligonucleotides were synthesized to contain 8-oxoA and an AP site in tandem, separated by up to four bases in either a 5' or 3' orientation. The influence 8-oxoA has on the incision of the AP site by the E. coli glycosylases Fpg and Nth protein and the human AP endonuclease HAP1 was assessed. 8-OxoA has little or no effect on the efficiency of incision of the AP site by Nth protein; however, the efficiency of incision of the AP site by Fpg protein is reduced in the presence of 8-oxoA even up to a four-base separation in both the 5' and 3' orientations. 8-OxoA influences the efficiency of HAP1 incision of the AP site only when it is 3' to the AP site and separated by up to two bases. This study demonstrates that the initial stages of base excision repair can be impaired by the presence of a second base lesion in proximity to an AP site on the same DNA strand. This impairment could have biological consequences, such as mutation induction, if the AP site is present at replication.
Collapse
Affiliation(s)
- Martine E Lomax
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire, OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Gillard N, Begusova M, Castaing B, Spotheim-Maurizot M. Radiation Affects Binding of Fpg Repair Protein to an Abasic Site Containing DNA. Radiat Res 2004; 162:566-71. [PMID: 15624311 DOI: 10.1667/rr3247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the base excision repair of certain DNA lesions, the formamidopyrimidine-DNA glycosylase (Fpg) binds specifically to the DNA region containing an abasic (AP) site. Is this step affected by exposure to ionizing radiation? To answer this question, we studied a complex between a DNA duplex containing an analogue of an abasic site (the 1,3-propanediol site, Pr) and a mutated Lactococcus lactis Fpg (P1G-LlFpg) lacking strand cleavage activity. Upon irradiation of the complex, the ratio of bound/free partners decreased. When the partners were irradiated separately, the irradiated DNA still bound the unirradiated protein, whereas irradiated Fpg no longer bound unirradiated DNA. Thus irradiation hinders Fpg-DNA binding because of the damage to the protein. Using our radiolytic attack simulation procedure RADACK (Begusova et al., J. Biomol. Struct. Dyn. 19, 141-157, 2001), we reveal the potential hot spots for damage in the irradiated protein. Most of them are essential for the interaction of Fpg with DNA, which explains the radiation-induced loss of binding ability of Fpg. The doses necessary to destroy the complex are higher than those inactivating Fpg irradiated separately. As confirmed by our calculations, this can be explained by the partial protection of the protein by the bound DNA.
Collapse
Affiliation(s)
- Nathalie Gillard
- Centre de Biophysique Moléculaire CNRS, F-45071 Orléans Cedex 2, France
| | | | | | | |
Collapse
|
30
|
Hanna M, Chow BL, Morey NJ, Jinks-Robertson S, Doetsch PW, Xiao W. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2004; 3:51-9. [PMID: 14697759 DOI: 10.1016/j.dnarep.2003.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.
Collapse
Affiliation(s)
- Michelle Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, SK, S7N 5E5, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Coste F, Ober M, Carell T, Boiteux S, Zelwer C, Castaing B. Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase. J Biol Chem 2004; 279:44074-83. [PMID: 15249553 DOI: 10.1074/jbc.m405928200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) from damaged DNA. Here, we report the crystal structure of the Fpg protein from Lactococcus lactis (LlFpg) bound to a carbocyclic FapydG (cFapydG)-containing DNA. The structure reveals that Fpg stabilizes the cFapydG nucleoside into an extrahelical conformation inside its substrate binding pocket. In contrast to the recognition of the 8-oxodG lesion, which is bound with the glycosidic bond in a syn conformation, the cFapydG lesion displays in the complex an anti conformation. Furthermore, Fpg establishes interactions with all the functional groups of the FapyG base lesion, which can be classified in two categories: (i) those specifying a purine-derived lesion (here a guanine) involved in the Watson-Crick face recognition of the lesion and probably contributing to an optimal orientation of the pyrimidine ring moiety in the binding pocket and (ii) those specifying the imidazole ring-opened moiety of FapyG and probably participating also in the rotameric selection of the FapydG nucleobase. These interactions involve strictly conserved Fpg residues and structural water molecules mediated interactions. The significant differences between the Fpg recognition modes of 8-oxodG and FapydG provide new insights into the Fpg substrate specificity.
Collapse
Affiliation(s)
- Franck Coste
- Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | | | | | |
Collapse
|
32
|
Muller E, Gasparutto D, Castaing B, Favier A, Cadet J. Recognition of cyclonucleoside lesions by the Lactococcus lactis FPG protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1563-5. [PMID: 14565466 DOI: 10.1081/ncn-120023034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several purine and pyrimidine cyclonucleosides were found to be not recognized by several Escherichia coli and yeast DNA N-glycosylases. Interestingly, a non covalent complex was observed between the Lactoccocus lactis formamidopyrimidine-DNA glycosylases (Fpg-Ll) and the cyclonucleosides. This may provide new information on the mechanism involved in the activity of the latter enzyme.
Collapse
Affiliation(s)
- Evelyne Muller
- Laboratoire des Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique and UMR 5046, DRFMC-CEA/Grenoble, Grenoble, France
| | | | | | | | | |
Collapse
|
33
|
Lage C, de Pádula M, de Alencar TAM, da Fonseca Gonçalves SR, da Silva Vidal L, Cabral-Neto J, Leitão AC. New insights on how nucleotide excision repair could remove DNA adducts induced by chemotherapeutic agents and psoralens plus UV-A (PUVA) in Escherichia coli cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:143-57. [PMID: 14644316 DOI: 10.1016/j.mrrev.2003.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.
Collapse
Affiliation(s)
- Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciencias da Saude, Universidade de Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Until recently, the Fpg family was the only major group of DNA glycosylases for which no structural data existed. Prototypical members of this family, found in eukaryotes as well as prokaryotes, have now been crystallized as free proteins and as complexes with DNA. In this review, we analyze the available structural information for formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei). Special emphasis is placed on mechanisms by which these enzymes recognize and selectively excise cognate lesions from oxidatively damaged DNA. The problem of lesion recognition is considered in two parts: how the enzyme efficiently locates a single lesion embedded in a vast excess of DNA; and how the lesion is accommodated in a pocket near the active site of the enzyme. Although all crystal structures reported to date for the Fpg family lack the damaged base, functionally important residues that participate in DNA binding and enzyme catalysis have been clearly identified and other residues, responsible for substrate specificity, have been inferred.
Collapse
Affiliation(s)
- Dmitry O Zharkov
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
35
|
Taranenko M, Rykhlevskaya A, Mtchedlidze M, Laval J, Kuznetsova S. Photochemical cross-linking of Escherichia coli Fpg protein to DNA duplexes containing phenyl(trifluoromethyl)diazirine groups. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2945-9. [PMID: 12846827 DOI: 10.1046/j.1432-1033.2003.03662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that excises oxidized purine bases, most notably the mutagenic 7-hydro-8-oxoguanine, from damaged DNA. In order to identify specific contacts between nucleobases of DNA and amino acids from the E. coli Fpg protein, photochemical cross-linking was employed using new reactive DNA duplexes containing 5-[4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]-2'-deoxyuridine dU* residues near the 7-hydro-8-oxoguanosine (oxoG) lesion. The Fpg protein was found to bind specifically and tightly to the modified DNA duplexes and to incise them. The nicking efficiency of the DNA duplex containing a dU* residue 5' to the oxoG was higher as compared to oxidized native DNA. The conditions for the photochemical cross-linking of the reactive DNA duplexes and the Fpg protein have been optimized to yield as high as 10% of the cross-linked product. Our results suggest that the Fpg protein forms contacts with two nucleosides, one 5' adjacent to oxoG and the other 5' adjacent to the cytidine residue pairing with oxoG in the other strand. The approaches developed may be applicable to pro- and eukaryotic homologues of the E. coli Fpg protein as well as to other repair enzymes.
Collapse
Affiliation(s)
- Maria Taranenko
- Laboratory of Nucleic Acids Chemistry, Department of Chemistry, Moscow State University, Moscow, Russia.
| | | | | | | | | |
Collapse
|
36
|
Minetti CASA, Remeta DP, Zharkov DO, Plum GE, Johnson F, Grollman AP, Breslauer KJ. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes. J Mol Biol 2003; 328:1047-60. [PMID: 12729740 DOI: 10.1016/s0022-2836(03)00365-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of an overall effort to map the energetic landscape of the base excision repair pathway, we report the first thermodynamic characterization of repair enzyme binding to lesion-containing duplexes. Isothermal titration calorimetry (ITC) in conjunction with spectroscopic measurements and protease protection assays have been employed to characterize the binding of Escherichia coli formamidopyrimidine-glycosylase (Fpg), a bifunctional repair enzyme, to a series of 13-mer DNA duplexes. To resolve energetically the binding and the catalytic events, several of these duplexes are constructed with non-hydrolyzable lesion analogs that mimic the natural 8-oxo-dG substrate and the abasic-like intermediates. Specifically, one of the duplexes contains a central, non-hydrolyzable, tetrahydrofuran (THF) abasic site analog, while another duplex contains a central, carbocyclic substrate analog (carba-8-oxo-dG). ITC-binding studies conducted between 5.0 degrees C and 15.0 degrees C reveal that Fpg association with the THF-containing duplex is characterized by binding free energies that are relatively invariant to temperature (deltaG approximately -9.5 kcalmol(-1)), in contrast to both the reaction enthalpy and entropy that are strongly temperature-dependent. Complex formation between Fpg and the THF-containing duplex at 15 degrees C exhibits an unfavorable association enthalpy (deltaH=+7.5 kcalmol(-1)) that is compensated by a favorable association entropy (TdeltaS=+17.0 kcalmol(-1)). The entropic nature of the binding interaction, coupled with the large negative heat capacity (deltaC(p)=-0.67 kcaldeg(-1)mol(-1)), is consistent with Fpg complexation to the THF-containing duplex involving significant burial of non-polar surface areas. By contrast, under the high ionic strength buffer conditions employed herein (200 mM NaCl), no appreciable Fpg affinity for the carba-8-oxo-dG substrate analog is detected. Our results suggest that initial Fpg recognition of a damaged DNA site is predominantly electrostatic in nature, and does not involve large contact interfaces. Subsequent base excision presumably facilitates accommodation of the resulting lesion site into the binding pocket, as the enzyme interaction with the THF-containing duplex is characterized by high affinity and a large negative heat capacity change. Our data are consistent with a pathway in which Fpg glycosylase activity renders the base excision product a preferred ligand relative to the natural substrate, thereby ensuring the fidelity of removing highly reactive and potentially mutagenic abasic-like intermediates through catalytic elimination reactions.
Collapse
Affiliation(s)
- Conceição A S A Minetti
- Department of Chemistry and Chemical Biology, Rutgers University, Wright Chemistry Bldg, 610 Taylor Road Rm 0156, Piscataway, NJ 08854-8087, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kuznetsova S, Rykhlevskaya A, Taranenko M, Sidorkina O, Oretskaya T, Laval J. Use of crosslinking for revealing the DNA phosphate groups forming specific contacts with the E. coli Fpg protein. Biochimie 2003; 85:511-9. [PMID: 12763310 DOI: 10.1016/s0300-9084(03)00067-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Specific contacts between DNA phosphate groups and positively charged nucleophilic amino acids from the Escherichia coli Fpg protein play a significant role in DNA-Fpg protein interaction. In order to identify these phosphate groups the chemical crosslinking procedure was carried out. The probing of the Fpg protein active center was performed using a series of reactive DNA duplexes containing both a single 7,8-dihydro-8-oxoguanosine (oxoG) residue and O-alkyl-substituted pyrophosphate internucleotide groups at the same time. Reactive internucleotide groups were introduced in dsDNA immediately 5' or 3' to the oxidative lesion and one or two nucleotides 5' or 3' away from it. We showed that the Fpg protein specifically binds to the modified DNA duplexes. The binding efficiency varied with the position of the reactive group and was higher for the duplexes containing substituted pyrophosphate groups at the ends of pentanucleotide with the oxoG in the center. The nicking efficiency of the DNA duplexes containing the reactive groups one or two nucleotides 5' away from the lesion was higher as compared to non-modified DNA duplex bearing only the oxidative damage. We found two novel non-hydrolizable substrate analogs for the Fpg protein containing pyrophosphate and substituted pyrophosphate groups 3' adjacent to the oxoG. Using crosslinking, we revealed the phosphate groups, 3' and 5' adjacent to the lesion, which have specific contacts with nucleophilic amino acids from the E. coli Fpg protein active center. The crosslinking efficiency achieved 30%. The approaches developed can be employed in the studies of pro- and eucaryotic homologs of the E. coli Fpg protein as well as other repair enzymes.
Collapse
Affiliation(s)
- Svetlana Kuznetsova
- Laboratory of Nucleic Acids Chemistry, Department of Chemistry, Moscow State University, Moscow 119899, Russia.
| | | | | | | | | | | |
Collapse
|
38
|
Serre L, Pereira de Jésus K, Boiteux S, Zelwer C, Castaing B. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBO J 2002; 21:2854-65. [PMID: 12065399 PMCID: PMC126059 DOI: 10.1093/emboj/cdf304] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The formamidopyrimidine-DNA glycosylase (Fpg, MutM) is a bifunctional base excision repair enzyme (DNA glycosylase/AP lyase) that removes a wide range of oxidized purines, such as 8-oxoguanine and imidazole ring-opened purines, from oxidatively damaged DNA. The structure of a non-covalent complex between the Lactoccocus lactis Fpg and a 1,3-propanediol (Pr) abasic site analogue-containing DNA has been solved. Through an asymmetric interaction along the damaged strand and the intercalation of the triad (M75/R109/F111), Fpg pushes out the Pr site from the DNA double helix, recognizing the cytosine opposite the lesion and inducing a 60 degrees bend of the DNA. The specific recognition of this cytosine provides some structural basis for understanding the divergence between Fpg and its structural homologue endo nuclease VIII towards their substrate specificities. In addition, the modelling of the 8-oxoguanine residue allows us to define an enzyme pocket that may accommodate the extrahelical oxidized base.
Collapse
Affiliation(s)
| | - Karine Pereira de Jésus
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Serge Boiteux
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Charles Zelwer
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Bertrand Castaing
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| |
Collapse
|
39
|
Abstract
Since the discovery in 1974 of uracil DNA glycosylase (UDG), the first member of the family of enzymes involved in base excision repair (BER), considerable progress has been made in the understanding of DNA glycosylases, the polypeptides that remove damaged or mispaired DNA bases from DNA. We also know the enzymes that act downstream of the glycosylases, in the processing of abasic sites, in gap filling and in DNA ligation. This article covers the most recent developments in our understanding of BER, with particular emphasis on the mechanistic aspects of this process, which have been made possible by the elucidation of the crystal structures of several glycosylases in complex with their respective substrates, substrate analogues and products. The biological importance of individual BER pathways is also being appreciated through the inactivation of key BER genes in knockout mouse models.
Collapse
Affiliation(s)
- O D Schärer
- Institute of Medical Radiobiology of the University of Zürich, Zürich, Switzerland.
| | | |
Collapse
|
40
|
Sugahara M, Mikawa T, Kumasaka T, Yamamoto M, Kato R, Fukuyama K, Inoue Y, Kuramitsu S. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. EMBO J 2000; 19:3857-69. [PMID: 10921868 PMCID: PMC306600 DOI: 10.1093/emboj/19.15.3857] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The MutM [formamidopyrimidine DNA glycosylase (Fpg)] protein is a trifunctional DNA base excision repair enzyme that removes a wide range of oxidatively damaged bases (N-glycosylase activity) and cleaves both the 3'- and 5'-phosphodiester bonds of the resulting apurinic/apyrimidinic site (AP lyase activity). The crystal structure of MutM from an extreme thermophile, Thermus thermophilus HB8, was determined at 1.9 A resolution with multiwavelength anomalous diffraction phasing using the intrinsic Zn(2+) ion of the zinc finger. MutM is composed of two distinct and novel domains connected by a flexible hinge. There is a large, electrostatically positive cleft lined by highly conserved residues between the domains. On the basis of the three-dimensional structure and taking account of previous biochemical experiments, we propose a DNA-binding mode and reaction mechanism for MutM. The locations of the putative catalytic residues and the two DNA-binding motifs (the zinc finger and the helix-two-turns-helix motifs) suggest that the oxidized base is flipped out from double-stranded DNA in the binding mode and excised by a catalytic mechanism similar to that of bifunctional base excision repair enzymes.
Collapse
Affiliation(s)
- M Sugahara
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
David-Cordonnier MH, Laval J, O'Neill P. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. J Biol Chem 2000; 275:11865-73. [PMID: 10766813 DOI: 10.1074/jbc.275.16.11865] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation and radiomimetic anticancer agents induce clustered DNA damage, which are thought to reflect the biological severity. Escherichia coli Nth and Fpg and nuclear extracts from XRS5, a Chinese hamster ovary Ku-deficient cell line, have been used to study the influence on their substrate recognition by the presence of a neighboring damage or an abasic site on the opposite strand, as models of clustered DNA damage. These proteins were tested for their efficiency to induce a single-strand break on a (32)P-labeled oligonucleotide containing either an abasic (AP) site, dihydrothymine (DHT), 7,8-dihydro-8-oxo-2'deoxyguanine, or 7, 8-dihydro-8-oxo-2'deoxyadenine at positions 1, 3, or 5 base pairs 5' or 3' to either an AP site or DHT on the labeled strand. DHT excision is much more affected than cleavage of an AP site by the presence of other damage. The effect on DHT excision is greatest with a neighboring AP site, with the effect being asymmetric with Nth and Fpg. Therefore, this large inhibition of the excision of DHT by the presence of an opposite AP site may minimize the formation of double-strand breaks in the processing of DNA clustered damages.
Collapse
Affiliation(s)
- M H David-Cordonnier
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, Oxon, OX11 0RD, United Kingdom
| | | | | |
Collapse
|