1
|
Walker J, Zhang J, Liu Y, Xu S, Yu Y, Vickers M, Ouyang W, Tálas J, Dolan L, Nakajima K, Feng X. Extensive N4 cytosine methylation is essential for Marchantia sperm function. Cell 2025:S0092-8674(25)00287-9. [PMID: 40209706 DOI: 10.1016/j.cell.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/30/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
N4-methylcytosine (4mC) is an important DNA modification in prokaryotes, but its relevance and even its presence in eukaryotes have been mysterious. Here we show that spermatogenesis in the liverwort Marchantia polymorpha involves two waves of extensive DNA methylation reprogramming. First, 5-methylcytosine (5mC) expands from transposons to the entire genome. Notably, the second wave installs 4mC throughout genic regions, covering over 50% of CG sites in sperm. 4mC requires a methyltransferase (MpDN4MT1a) that is specifically expressed during late spermiogenesis. Deletion of MpDN4MT1a alters the sperm transcriptome, causes sperm swimming and fertility defects, and impairs post-fertilization development. Our results reveal extensive 4mC in a eukaryote, identify a family of eukaryotic methyltransferases, and elucidate the biological functions of 4mC in reproductive development, thereby expanding the repertoire of functional eukaryotic DNA modifications.
Collapse
Affiliation(s)
- James Walker
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shujuan Xu
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Yiming Yu
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Weizhi Ouyang
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Judit Tálas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
| |
Collapse
|
2
|
Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nat Commun 2022; 13:1072. [PMID: 35228526 PMCID: PMC8885841 DOI: 10.1038/s41467-022-28471-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
DNA modifications are used to regulate gene expression and defend against invading genetic elements. In eukaryotes, modifications predominantly involve C5-methylcytosine (5mC) and occasionally N6-methyladenine (6mA), while bacteria frequently use N4-methylcytosine (4mC) in addition to 5mC and 6mA. Here we report that 4mC can serve as an epigenetic mark in eukaryotes. Bdelloid rotifers, tiny freshwater invertebrates with transposon-poor genomes rich in foreign genes, lack canonical eukaryotic C5-methyltransferases for 5mC addition, but encode an amino-methyltransferase, N4CMT, captured from bacteria >60 Mya. N4CMT deposits 4mC at active transposons and certain tandem repeats, and fusion to a chromodomain shapes its “histone-read-DNA-write” architecture recognizing silent chromatin marks. Furthermore, amplification of SETDB1 H3K9me3 histone methyltransferases yields variants preferentially binding 4mC-DNA, suggesting “DNA-read-histone-write” partnership to maintain chromatin-based silencing. Our results show how non-native DNA methyl groups can reshape epigenetic systems to silence transposons and demonstrate the potential of horizontal gene transfer to drive regulatory innovation in eukaryotes. Eukaryotic DNA can be methylated as 5-methylcytosine and N6-methyladenine, but whether other forms of DNA methylation occur has been controversial. Here the authors show that a bacterial DNA methyltransferase was acquired >60 Mya in bdelloid rotifers that catalyzes N4-methylcytosine addition and is involved in suppression of transposon proliferation.
Collapse
|
3
|
Ma P, He LL, Pironti A, Laibinis HH, Ernst CM, Manson AL, Bhattacharyya RP, Earl AM, Livny J, Hung DT. Genetic determinants facilitating the evolution of resistance to carbapenem antibiotics. eLife 2021; 10:e67310. [PMID: 33871353 PMCID: PMC8079144 DOI: 10.7554/elife.67310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
In this era of rising antibiotic resistance, in contrast to our increasing understanding of mechanisms that cause resistance, our understanding of mechanisms that influence the propensity to evolve resistance remains limited. Here, we identified genetic factors that facilitate the evolution of resistance to carbapenems, the antibiotic of 'last resort', in Klebsiella pneumoniae, the major carbapenem-resistant species. In clinical isolates, we found that high-level transposon insertional mutagenesis plays an important role in contributing to high-level resistance frequencies in several major and emerging carbapenem-resistant lineages. A broader spectrum of resistance-conferring mutations for select carbapenems such as ertapenem also enables higher resistance frequencies and, importantly, creates stepping-stones to achieve high-level resistance to all carbapenems. These mutational mechanisms can contribute to the evolution of resistance, in conjunction with the loss of systems that restrict horizontal resistance gene uptake, such as the CRISPR-Cas system. Given the need for greater antibiotic stewardship, these findings argue that in addition to considering the current efficacy of an antibiotic for a clinical isolate in antibiotic selection, considerations of future efficacy are also important. The genetic background of a clinical isolate and the exact antibiotic identity can and should also be considered as they are determinants of a strain's propensity to become resistant. Together, these findings thus provide a molecular framework for understanding acquisition of carbapenem resistance in K. pneumoniae with important implications for diagnosing and treating this important class of pathogens.
Collapse
Affiliation(s)
- Peijun Ma
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | - Lorrie L He
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | | | | | - Christoph M Ernst
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | | | - Roby P Bhattacharyya
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Ashlee M Earl
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jonathan Livny
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Deborah T Hung
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
4
|
Woodcock CB, Horton JR, Zhang X, Blumenthal RM, Cheng X. Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Res 2020; 48:10034-10044. [PMID: 32453412 PMCID: PMC7544214 DOI: 10.1093/nar/gkaa446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).
Collapse
Affiliation(s)
- Clayton B Woodcock
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Li S, Cai J, Lu H, Mao S, Dai S, Hu J, Wang L, Hua X, Xu H, Tian B, Zhao Y, Hua Y. N 4-Cytosine DNA Methylation Is Involved in the Maintenance of Genomic Stability in Deinococcus radiodurans. Front Microbiol 2019; 10:1905. [PMID: 31497001 PMCID: PMC6712171 DOI: 10.3389/fmicb.2019.01905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
DNA methylation serves as a vital component of restriction-modification (R-M) systems in bacteria, where it plays a crucial role in defense against foreign DNA. Recent studies revealed that DNA methylation has a global impact on gene expression. Deinococcus radiodurans, an ideal model organism for studying DNA repair and genomic stability, possesses unparalleled resistance to DNA-damaging agents such as irradiation and strong oxidation. However, details on the methylome of this bacterium remain unclear. Here, we demonstrate that N 4-cytosine is the major methylated form (4mC) in D. radiodurans. A novel methylated motif, "C4mCGCGG" was identified that was fully attributed to M.DraR1 methyltransferase. M.DraR1 can specifically bind and methylate the second cytosine at N 4 atom of "CCGCGG" motif, preventing its digestion by a cognate restriction endonuclease. Cells deficient in 4mC modification displayed higher spontaneous rifampin mutation frequency and enhanced DNA recombination and transformation efficiency. And genes involved in the maintenance of genomic stability were differentially expressed in conjunction with the loss of M.DraR1. This study provides evidence that N 4-cytosine DNA methylation contributes to genomic stability of D. radiodurans and lays the foundation for further research on the mechanisms of epigenetic regulation by R-M systems in bacteria.
Collapse
Affiliation(s)
- Shengjie Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Jianling Cai
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Huizhi Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Shuyu Mao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Shang Dai
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Jing Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Bing Tian
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zakharova MV, Beletskaya IV, Ibryashkina EM, Solonin AS. An alternative approach to study the enzymatic specificities of the CfrBI restriction-modification system. Heliyon 2019; 5:e01846. [PMID: 31198872 PMCID: PMC6556831 DOI: 10.1016/j.heliyon.2019.e01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/18/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Restriction–modification systems (RMS) are the main gene-engineering tools and a suitable model to study the molecular mechanisms of catalysis and DNA–protein interactions. Research into the catalytic properties of these enzymes, determination of hydrolysis and DNA-methylation sites remain topical. In our previous work we have cloned and sequenced the CfrBI restriction–modification system (strain Citrobacter freundii), which recognizes the nucleotide sequence 5′-CCWWGG-3′. In this article we describe the cloning of the methyltransferase and restriction endonuclease genes (gene encoding CfrBI DNA methyltransferase (cfrBIM) and gene encoding CfrBI restriction endonuclease (cfrBIR)) separately to obtain strains overproducing the enzymes of this system. His6-CfrBI, which had been purified to homogeneity, was used to establish the DNA-hydrolysis point in its recognition site. CfrBI was shown to cleave DNA after just the first 5′C within the recognition site and then to generate 4-nt 3′ cohesive ends (5′-C/CWWGG-3′). To map the site of methylation by M.CfrBI, we exploited the fact that the CfrBI site partially overlaps with the recognition sites of the well-documented enzymes KpnI and ApaI. The M.CfrBI- induced hemimethylation of the internal C residue of the ApaI recognition sequence (GGGCN4mCC) was observed to block cleavage by ApaI. In contrast, KpnI was able to digest its M.CfrBI-hemimethylated site (GGTAN4mCC). KpnI was used to restrict a fragment of DNA harbouring the CfrBI and KpnI sites, in which the CfrBI site was methylated in vitro by His6-M.CfrBI using [3H]-SAM. The subsequent separation of hydrolysis products by electrophoresis and the enumeration of incorporated [H3]-methyl groups in each of the fragments made it possible to determine that external cytosine undergoes modification in the recognition site.
Collapse
|
7
|
The Patchy Distribution of Restriction⁻Modification System Genes and the Conservation of Orphan Methyltransferases in Halobacteria. Genes (Basel) 2019; 10:genes10030233. [PMID: 30893937 PMCID: PMC6471742 DOI: 10.3390/genes10030233] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
Restriction⁻modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the presence of RM system genes and related genes, including orphan DNA methylases, in the halophilic archaeal class Halobacteria. Our results reveal that some orphan DNA methyltransferase genes were highly conserved among lineages indicating an important functional constraint, whereas RM systems demonstrated patchy patterns of presence and absence. This irregular distribution is due to frequent horizontal gene transfer and gene loss, a finding suggesting that the evolution and life cycle of RM systems may be best described as that of a selfish genetic element. A putative target motif (CTAG) of one of the orphan methylases was underrepresented in all of the analyzed genomes, whereas another motif (GATC) was overrepresented in most of the haloarchaeal genomes, particularly in those that encoded the cognate orphan methylase.
Collapse
|
8
|
Ouellette M, Gogarten JP, Lajoie J, Makkay AM, Papke RT. Characterizing the DNA Methyltransferases of Haloferax volcanii via Bioinformatics, Gene Deletion, and SMRT Sequencing. Genes (Basel) 2018; 9:genes9030129. [PMID: 29495512 PMCID: PMC5867850 DOI: 10.3390/genes9030129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeon Haloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase genes in H. volcanii and sequenced the methylomes of the resulting deletion mutants via SMRT sequencing to characterize the genes responsible for DNA methylation. The results indicate that deletion of putative RM genes HVO_0794, HVO_A0006, and HVO_A0237 in a single strain abolished methylation of the sole cytosine motif in the genome (Cm4TAG). Amino acid alignments demonstrated that HVO_0794 shares homology with characterized cytosine CTAG MTases in other organisms, indicating that this MTase is responsible for Cm4TAG methylation in H. volcanii. The CTAG motif has high density at only one of the origins of replication, and there is no relative increase in CTAG motif frequency in the genome of H. volcanii, indicating that CTAG methylation might not have effectively taken over the role of regulating DNA replication and mismatch repair in the organism as previously predicted. Deletion of the putative Type I RM operon rmeRMS (HVO_2269-2271) resulted in abolished methylation of the adenine motif in the genome (GCAm6BN₆VTGC). Alignments of the MTase (HVO_2270) and site specificity subunit (HVO_2271) demonstrate homology with other characterized Type I MTases and site specificity subunits, indicating that the rmeRMS operon is responsible for adenine methylation in H. volcanii. Together with HVO_0794, these genes appear to be responsible for all detected methylation in H. volcanii, even though other putative MTases (HVO_C0040, HVO_A0079) share homology with characterized MTases in other organisms. We also report the construction of a multi-RM deletion mutant (ΔRM), with multiple RM genes deleted and with no methylation detected via SMRT sequencing, which we anticipate will be useful for future studies on DNA methylation in H. volcanii.
Collapse
Affiliation(s)
- Matthew Ouellette
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA.
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA.
| | - Jessica Lajoie
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA.
| | - Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA.
| |
Collapse
|
9
|
Ma B, Ma J, Liu D, Guo L, Chen H, Ding J, Liu W, Zhang H. Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori. Oncotarget 2018; 7:40965-40977. [PMID: 27259995 PMCID: PMC5173035 DOI: 10.18632/oncotarget.9692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022] Open
Abstract
DNA N6-methyladenine modification plays an important role in regulating a variety of biological functions in bacteria. However, the mechanism of sequence-specific recognition in N6-methyladenine modification remains elusive. M1.HpyAVI, a DNA N6-adenine methyltransferase from Helicobacter pylori, shows more promiscuous substrate specificity than other enzymes. Here, we present the crystal structures of cofactor-free and AdoMet-bound structures of this enzyme, which were determined at resolutions of 3.0 Å and 3.1 Å, respectively. The core structure of M1.HpyAVI resembles the canonical AdoMet-dependent MTase fold, while the putative DNA binding regions considerably differ from those of the other MTases, which may account for the substrate promiscuity of this enzyme. Site-directed mutagenesis experiments identified residues D29 and E216 as crucial amino acids for cofactor binding and the methyl transfer activity of the enzyme, while P41, located in a highly flexible loop, playing a determinant role for substrate specificity. Taken together, our data revealed the structural basis underlying DNA N6-adenine methyltransferase substrate promiscuity.
Collapse
Affiliation(s)
- Bo Ma
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Ji Ma
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Dong Liu
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Ling Guo
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Huiling Chen
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Jingjin Ding
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Morgan RD, Luyten YA, Johnson SA, Clough EM, Clark TA, Roberts RJ. Novel m4C modification in type I restriction-modification systems. Nucleic Acids Res 2016; 44:9413-9425. [PMID: 27580720 PMCID: PMC5100572 DOI: 10.1093/nar/gkw743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/12/2016] [Indexed: 11/12/2022] Open
Abstract
We identify a new subgroup of Type I Restriction-Modification enzymes that modify cytosine in one DNA strand and adenine in the opposite strand for host protection. Recognition specificity has been determined for ten systems using SMRT sequencing and each recognizes a novel DNA sequence motif. Previously characterized Type I systems use two identical copies of a single methyltransferase (MTase) subunit, with one bound at each half site of the specificity (S) subunit to form the MTase. The new m4C-producing Type I systems we describe have two separate yet highly similar MTase subunits that form a heterodimeric M1M2S MTase. The MTase subunits from these systems group into two families, one of which has NPPF in the highly conserved catalytic motif IV and modifies adenine to m6A, and one having an NPPY catalytic motif IV and modifying cytosine to m4C. The high degree of similarity among their cytosine-recognizing components (MTase and S) suggest they have recently evolved, most likely from the far more common m6A Type I systems. Type I enzymes that modify cytosine exclusively were formed by replacing the adenine target recognition domain (TRD) with a cytosine-recognizing TRD. These are the first examples of m4C modification in Type I RM systems.
Collapse
Affiliation(s)
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Emily M Clough
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Tyson A Clark
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | | |
Collapse
|
11
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
12
|
Liang J, Blumenthal RM. Naturally-occurring, dually-functional fusions between restriction endonucleases and regulatory proteins. BMC Evol Biol 2013; 13:218. [PMID: 24083337 PMCID: PMC3850674 DOI: 10.1186/1471-2148-13-218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/01/2013] [Indexed: 01/03/2023] Open
Abstract
Background Restriction-modification (RM) systems appear to play key roles in modulating gene flow among bacteria and archaea. Because the restriction endonuclease (REase) is potentially lethal to unmethylated new host cells, regulation to ensure pre-expression of the protective DNA methyltransferase (MTase) is essential to the spread of RM genes. This is particularly true for Type IIP RM systems, in which the REase and MTase are separate, independently-active proteins. A substantial subset of Type IIP RM systems are controlled by an activator-repressor called C protein. In these systems, C controls the promoter for its own gene, and for the downstream REase gene that lacks its own promoter. Thus MTase is expressed immediately after the RM genes enter a new cell, while expression of REase is delayed until sufficient C protein accumulates. To study the variation in and evolution of this regulatory mechanism, we searched for RM systems closely related to the well-studied C protein-dependent PvuII RM system. Unexpectedly, among those found were several in which the C protein and REase genes were fused. Results The gene for CR.NsoJS138I fusion protein (nsoJS138ICR, from the bacterium Niabella soli) was cloned, and the fusion protein produced and partially purified. Western blots provided no evidence that, under the conditions tested, anything other than full-length fusion protein is produced. This protein had REase activity in vitro and, as expected from the sequence similarity, its specificity was indistinguishable from that for PvuII REase, though the optimal reaction conditions were different. Furthermore, the fusion was active as a C protein, as revealed by in vivo activation of a lacZ reporter fusion to the promoter region for the nsoJS138ICR gene. Conclusions Fusions between C proteins and REases have not previously been characterized, though other fusions have (such as between REases and MTases). These results reinforce the evidence for impressive modularity among RM system proteins, and raise important questions about the implications of the C-REase fusions on expression kinetics of these RM systems.
Collapse
Affiliation(s)
- Jixiao Liang
- Department of Medical Microbiology & Immunology, College of Medicine and Life Sciences, University of Toledo, 3100 Transverse Drive, Toledo, OH 43614, USA.
| | | |
Collapse
|
13
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
14
|
Abstract
In prokaryotes, alteration in gene expression was observed with the modification of DNA, especially DNA methylation. Such changes are inherited from generation to generation with no alterations in the DNA sequence and represent the epigenetic signal in prokaryotes. DNA methyltransferases are enzymes involved in DNA modification and thus in epigenetic regulation of gene expression. DNA methylation not only affects the thermodynamic stability of DNA, but also changes its curvature. Methylation of specific residues on DNA can affect the protein-DNA interactions. DNA methylation in prokaryotes regulates a number of physiological processes in the bacterial cell including transcription, DNA mismatch repair and replication initiation. Significantly, many reports have suggested a role of DNA methylation in regulating the expression of a number of genes in virulence and pathogenesis thus, making DNA methlytransferases novel targets for the designing of therapeutics. Here, we summarize the current knowledge about the influence of DNA methylation on gene regulation in different bacteria, and on bacterial virulence.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India,
| | | |
Collapse
|
15
|
Jurkowski TP, Jeltsch A. On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2. PLoS One 2011; 6:e28104. [PMID: 22140515 PMCID: PMC3227630 DOI: 10.1371/journal.pone.0028104] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/01/2011] [Indexed: 12/19/2022] Open
Abstract
The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to investigate if this hypothesis could be supported by evidence from sequence alignments. We present phylogenetic analyses based on sequence alignments of the methyltransferase catalytic domains of more than 2300 eukaryotic and prokaryotic DNA-(cytosine C5)-methyltransferases and analyzed the distribution of DNA methyltransferases in eukaryotic species. The Dnmt2 homologues were reliably identified by an additional conserved CFT motif next to motif IX. All DNA methyltransferases and Dnmt2 enzymes were clearly separated from other RNA-(cytosine-C5)-methyltransferases. Our sequence alignments and phylogenetic analyses indicate that the last universal eukaryotic ancestor contained at least one member of the Dnmt1, Dnmt2 and Dnmt3 families of enzymes and additional RNA methyltransferases. The similarity of Dnmt2 enzymes with DNA methyltransferases and absence of similarity with RNA methyltransferases combined with their strong RNA methylation activity suggest that the ancestor of Dnmt2 was a DNA methyltransferase and an early Dnmt2 enzyme changed its substrate preference to tRNA. There is no phylogenetic evidence that Dnmt2 was the precursor of eukaryotic Dnmts. Most likely, the eukaryotic Dnmt1 and Dnmt3 families of DNA methyltransferases had an independent origin in the prokaryotic DNA methyltransferase sequence space.
Collapse
Affiliation(s)
- Tomasz P. Jurkowski
- School of Engineering and Science, Jacobs University Bremen, Campus Ring Bremen, Germany
| | - Albert Jeltsch
- School of Engineering and Science, Jacobs University Bremen, Campus Ring Bremen, Germany
| |
Collapse
|
16
|
Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I. Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 2011; 39:5489-98. [PMID: 21441537 PMCID: PMC3141261 DOI: 10.1093/nar/gkr153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
17
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
18
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
19
|
Furmanek-Blaszk B, Boratynski R, Zolcinska N, Sektas M. M1.MboII and M2.MboII type IIS methyltransferases: different specificities, the same target. MICROBIOLOGY-SGM 2009; 155:1111-1121. [PMID: 19332813 DOI: 10.1099/mic.0.025023-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methylation of a base in a specific DNA sequence protects the DNA from nucleolytic cleavage by restriction enzymes recognizing the same sequence. The MboII restriction-modification (R-M) system of Moraxella bovis ATCC 10900 consists of a restriction endonuclease gene and two methyltransferase genes. The enzymes encoded by this system recognize an asymmetrical sequence 5'-GAAGA-3'/3'-CTTCT-5'. M1.MboII modifies the last adenine in the recognition sequence 5'-GAAGA-3' to N(6)-methyladenine. A second methylase, M2.MboII, was cloned and purified to electrophoretic homogeneity using a four-step chromatographic procedure. It was demonstrated that M2.MboII modifies the internal cytosine in the recognition sequence 3'-CTTCT-5', yielding N(4)-methylcytosine, and moreover is able to methylate single-stranded DNA. The protein exists in solution as a monomer of molecular mass 30 000+/-1000 Da under denaturing conditions. Divalent cations (Ca(2+), Mg(2+), Mn(2+) and Zn(2+)) inhibit M2.MboII methylation activity. It was found that the isomethylomer M2.NcuI from Neisseria cuniculi ATCC 14688 behaves in the same manner. Functional analysis showed that the complete MboII R-M system, consisting of two methyltransferases genes and the mboIIR gene, is the most stable and the least harmful to bacterial cells.
Collapse
Affiliation(s)
| | - Robert Boratynski
- Department of Microbiology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | - Natalia Zolcinska
- Department of Microbiology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | - Marian Sektas
- Department of Microbiology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| |
Collapse
|
20
|
Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM. Functional analysis of MmeI from methanol utilizer Methylophilus methylotrophus, a subtype IIC restriction-modification enzyme related to type I enzymes. Appl Environ Microbiol 2009; 75:212-23. [PMID: 18997032 PMCID: PMC2612229 DOI: 10.1128/aem.01322-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022] Open
Abstract
MmeI from Methylophilus methylotrophus belongs to the type II restriction-modification enzymes. It recognizes an asymmetric DNA sequence, 5'-TCCRAC-3' (R indicates G or A), and cuts both strands at fixed positions downstream of the specific site. This particular feature has been exploited in transcript profiling of complex genomes (using serial analysis of gene expression technology). We have shown previously that the endonucleolytic activity of MmeI is strongly dependent on the presence of S-adenosyl-l-methionine (J. Nakonieczna, J. W. Zmijewski, B. Banecki, and A. J. Podhajska, Mol. Biotechnol. 37:127-135, 2007), which puts MmeI in subtype IIG. The same cofactor is used by MmeI as a methyl group donor for modification of an adenine in the upper strand of the recognition site to N(6)-methyladenine. Both enzymatic activities reside in a single polypeptide (919 amino acids [aa]), which puts MmeI also in subtype IIC of the restriction-modification systems. Based on a molecular model, generated with the use of bioinformatic tools and validated by site-directed mutagenesis, we were able to localize three functional domains in the structure of the MmeI enzyme: (i) the N-terminal portion containing the endonucleolytic domain with the catalytic Mg2+-binding motif D(70)-X(9)-EXK(82), characteristic for the PD-(D/E)XK superfamily of nucleases; (ii) a central portion (aa 310 to 610) containing nine sequence motifs conserved among N(6)-adenine gamma-class DNA methyltransferases; (iii) the C-terminal portion (aa 610 to 919) containing a putative target recognition domain. Interestingly, all three domains showed highest similarity to the corresponding elements of type I enzymes rather than to classical type II enzymes. We have found that MmeI variants deficient in restriction activity (D70A, E80A, and K82A) can bind and methylate specific nucleotide sequence. This suggests that domains of MmeI responsible for DNA restriction and modification can act independently. Moreover, we have shown that a single amino acid residue substitution within the putative target recognition domain (S807A) resulted in a MmeI variant with a higher endonucleolytic activity than the wild-type enzyme.
Collapse
Affiliation(s)
- Joanna Nakonieczna
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
21
|
Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 2008; 9:R163. [PMID: 19025584 PMCID: PMC2614495 DOI: 10.1186/gb-2008-9-11-r163] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage. RESULTS McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association. CONCLUSIONS Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
Collapse
|
22
|
Bheemanaik S, Reddy Y, Rao D. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 2006; 399:177-90. [PMID: 16987108 PMCID: PMC1609917 DOI: 10.1042/bj20060854] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
Collapse
Affiliation(s)
| | - Yeturu V. R. Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Bheemanaik S, Bujnicki JM, Nagaraja V, Rao DN. Functional analysis of amino acid residues at the dimerisation interface of KpnI DNA methyltransferase. Biol Chem 2006; 387:515-23. [PMID: 16740122 DOI: 10.1515/bc.2006.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
KpnI DNA-(N6-adenine) methyltransferase (M.KpnI) recognises the sequence 5'-GGTACC-3' and transfers the methyl group from S-adenosyl-L-methionine (AdoMet) to the N6 position of the adenine residue in each strand. Earlier studies have shown that M.KpnI exists as a dimer in solution, unlike most other MTases. To address the importance of dimerisation for enzyme function, a three-dimensional model of M.KpnI was obtained based on protein fold-recognition analysis, using the crystal structures of M.RsrI and M.MboIIA as templates. Residues I146, I161 and Y167, the side chains of which are present in the putative dimerisation interface in the model, were targeted for site-directed mutagenesis. Methylation and in vitro restriction assays showed that the mutant MTases are catalytically inactive. Mutation at the I146 position resulted in complete disruption of the dimer. The replacement of I146 led to drastically reduced DNA and cofactor binding. Substitution of I161 resulted in weakening of the interaction between monomers, leading to both monomeric and dimeric species. Steady-state fluorescence measurements showed that the wild-type KpnI MTase induces structural distortion in bound DNA, while the mutant MTases do not. The results establish that monomeric MTase is catalytically inactive and that dimerisation is an essential event for M.KpnI to catalyse the methyl transfer reaction.
Collapse
|
24
|
Mruk I, Cichowicz M, Kaczorowski T. Characterization of the LlaCI methyltransferase from Lactococcus lactis subsp. cremoris W15 provides new insights into the biology of type II restriction-modification systems. MICROBIOLOGY-SGM 2004; 149:3331-3341. [PMID: 14600245 DOI: 10.1099/mic.0.26562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding the LlaCI methyltransferase (M.LlaCI) from Lactococcus lactis subsp. cremoris W15 was overexpressed in Escherichia coli. The enzyme was purified to apparent homogeneity using three consecutive steps of chromatography on phosphocellulose, blue-agarose and Superose 12HR, yielding a protein of M(r) 31 300+/-1000 under denaturing conditions. The exact position of the start codon AUG was determined by protein microsequencing. This enzyme recognizes the specific palindromic sequence 5'-AAGCTT-3'. Purified M.LlaCI was characterized. Unlike many other methyltransferases, M.LlaCI exists in solution predominantly as a dimer. It modifies the first adenine residue at the 5' end of the specific sequence to N(6)-methyladenine and thus is functionally identical to the corresponding methyltransferases of the HindIII (Haemophilus influenzae Rd) and EcoVIII (Escherichia coli E1585-68) restriction-modification systems. This is reflected in the identity of M.LlaCI with M.HindIII and M.EcoVIII noted at the amino acid sequence level (50 % and 62 %, respectively) and in the presence of nine sequence motifs conserved among N(6)-adenine beta-class methyltransferases. However, polyclonal antibodies raised against M.EcoVIII cross-reacted with M.LlaCI but not with M.HindIII. Restriction endonucleases require Mg(2+) for phosphodiester bond cleavage. Mg(2+) was shown to be a strong inhibitor of the M.LlaCI enzyme and its isospecific homologues. This observation suggests that sensitivity of the M.LlaCI to Mg(2+) may strengthen the restriction activity of the cognate endonuclease in the bacterial cell. Other biological implications of this finding are also discussed.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Cichowicz
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
25
|
Mruk I, Kaczorowski T. Genetic organization and molecular analysis of the EcoVIII restriction-modification system of Escherichia coli E1585-68 and its comparison with isospecific homologs. Appl Environ Microbiol 2003; 69:2638-50. [PMID: 12732532 PMCID: PMC154532 DOI: 10.1128/aem.69.5.2638-2650.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 02/20/2003] [Indexed: 11/20/2022] Open
Abstract
The EcoVIII restriction-modification (R-M) system is carried by the Escherichia coli E1585-68 natural plasmid pEC156 (4,312 bp). The two genes were cloned and characterized. The G+C content of the EcoVIII R-M system is 36.1%, which is significantly lower than the average G+C content of either plasmid pEC156 (43.6%) or E. coli genomic DNA (50.8%). The difference suggests that there is a possibility that the EcoVIII R-M system was recently acquired by the genome. The 921-bp EcoVIII endonuclease (R. EcoVIII) gene (ecoVIIIR) encodes a 307-amino-acid protein with an M(r) of 35,554. The convergently oriented EcoVIII methyltransferase (M. EcoVIII) gene (ecoVIIIM) consists of 912 bp that code for a 304-amino-acid protein with an M(r) of 33,930. The exact positions of the start codon AUG were determined by protein microsequencing. Both enzymes recognize the specific palindromic sequence 5'-AAGCTT-3'. Preparations of EcoVIII R-M enzymes purified to homogeneity were characterized. R. EcoVIII acts as a dimer and cleaves a specific sequence between two adenine residues, leaving 4-nucleotide 5' protruding ends. M. EcoVIII functions as a monomer and modifies the first adenine residue at the 5' end of the specific sequence to N(6)-methyladenine. These enzymes are thus functionally identical to the corresponding enzymes of the HindIII (Haemophilus influenzae Rd) and LlaCI (Lactococcus lactis subsp. cremoris W15) R-M systems. This finding is reflected by the levels of homology of M. EcoVIII with M. HindIII and M. LlaCI at the amino acid sequence level (50 and 62%, respectively) and by the presence of nine sequence motifs conserved among m(6) N-adenine beta-class methyltransferases. The deduced amino acid sequence of R. EcoVIII shows weak homology with its two isoschizomers, R. HindIII (26%) and R. LlaCI (17%). A catalytic sequence motif characteristic of restriction endonucleases was found in the primary structure of R. EcoVIII (D(108)X(12)DXK(123)), as well as in the primary structures of R. LlaCI and R. HindIII. Polyclonal antibodies raised against R. EcoVIII did not react with R. HindIII, while anti-M. EcoVIII antibodies cross-reacted with M. LlaCI but not with M. HindIII. R. EcoVIII requires Mg(II) ions for phosphodiester bond cleavage. We found that the same ions are strong inhibitors of the M. EcoVIII enzyme. The biological implications of this finding are discussed.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdańsk, Kladki 24, 80-822 Gdańsk, Poland
| | | |
Collapse
|
26
|
Lindstrom WM, Malygin EG, Ovechkina LG, Zinoviev VV, Reich NO. Functional analysis of BamHI DNA cytosine-N4 methyltransferase. J Mol Biol 2003; 325:711-20. [PMID: 12507474 DOI: 10.1016/s0022-2836(02)01282-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We show that the kinetic mechanism of the DNA (cytosine-N(4)-)-methyltransferase M.BamHI, which modifies the underlined cytosine (GGATCC), differs from cytosine C(5) methyltransferases, and is similar to that observed with adenine N(6) methyltransferases. This suggests that the obligate order of ternary complex assembly and disassembly depends on the type of methylation reaction. In contrast, the single-turnover rate of catalysis for M.BamHI (0.10s(-1)) is closer to the DNA (cytosine-C(5)-)-methyltransferases (0.14s(-1)) than the DNA (adenine-N(6)-)-methyltransferases (>200s(-1)). The nucleotide flipping transition dominates the single-turnover constant for adenine N(6) methyltransferases, and, since the disruption of the guanine-cytosine base-pair is essential for both types of cytosine DNA methyltransferases, this transition may be a common, rate-limiting step for methylation for these two enzyme subclasses. The similar overall rate of catalysis by M.BamHI and other DNA methyltransferases is consistent with a common rate-limiting catalytic step of product dissociation. Our analyses of M.BamHI provide functional insights into the relationship between the three different classes of DNA methyltransferases that complement both prior structural and evolutionary insights.
Collapse
Affiliation(s)
- William M Lindstrom
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
28
|
Naderer M, Brust JR, Knowle D, Blumenthal RM. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 2002; 184:2411-9. [PMID: 11948154 PMCID: PMC135005 DOI: 10.1128/jb.184.9.2411-2419.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The flow of genes among prokaryotes plays a fundamental role in shaping bacterial evolution, and restriction-modification systems can modulate this flow. However, relatively little is known about the distribution and movement of restriction-modification systems themselves. We have isolated and characterized the genes for restriction-modification systems from two species of Salmonella, S. enterica serovar Paratyphi A and S. enterica serovar Bareilly. Both systems are closely related to the PvuII restriction-modification system and share its target specificity. In the case of S. enterica serovar Paratyphi A, the restriction endonuclease is inactive, apparently due to a mutation in the subunit interface region. Unlike the chromosomally located Salmonella systems, the PvuII system is plasmid borne. We have completed the sequence characterization of the PvuII plasmid pPvu1, originally from Proteus vulgaris, making this the first completely sequenced plasmid from the genus Proteus. Despite the pronounced similarity of the three restriction-modification systems, the flanking sequences in Proteus and Salmonella are completely different. The SptAI and SbaI genes lie between an equivalent pair of bacteriophage P4-related open reading frames, one of which is a putative integrase gene, while the PvuII genes are adjacent to a mob operon and a XerCD recombination (cer) site.
Collapse
Affiliation(s)
- Marc Naderer
- Department of Microbiology & Immunology and Program in Bioinformatics & Proteomics/Genomics, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
29
|
Abstract
DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.
Collapse
Affiliation(s)
- Albert Jeltsch
- Institut für Biochemie, FB 8, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
| |
Collapse
|
30
|
Bujnicki JM. Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol 2002; 2:3. [PMID: 11914127 PMCID: PMC102321 DOI: 10.1186/1471-2148-2-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 03/12/2002] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND DNA methyltransferases (MTases), unlike MTases acting on other substrates, exhibit sequence permutation. Based on the sequential order of the cofactor-binding subdomain, the catalytic subdomain, and the target recognition domain (TRD), several classes of permutants have been proposed. The majority of known DNA MTases fall into the alpha, beta, and gamma classes. There is only one member of the zeta class known and no members of the delta and epsilon classes have been identified to date. Two mechanisms of permutation have been proposed: one involving gene duplication and in-frame fusion, and the other involving inter- and intragenic shuffling of gene segments. RESULTS Two novel cases of sequence permutation in DNA MTases implicated in restriction-modification systems have been identified, which suggest that members of the delta and zeta classes (M.MwoI and M.TvoORF1413P, respectively) evolved from beta-class MTases. This is the first identification of the delta-class MTase and the second known zeta-class MTase (the first zeta-class member among DNA:m4C and m6A-MTases). CONCLUSIONS Fragmentation of a DNA MTase gene may result from attack of nucleases, for instance when the RM system invades a new cell. Its reassembly into a functional form, the order of motifs notwithstanding, may be strongly selected for, if the cognate ENase gene remains active and poses a threat to the host's chromosome. The "cut-and-paste" mechanism is proposed for beta-delta permutation, which is non-circular and involves relocation of one segment of a gene. The circular beta-zeta permutation may be explained both by gene duplication or shuffling of gene fragments. These two mechanisms are not mutually exclusive and probably both played a role in the evolution of permuted DNA MTases.
Collapse
Affiliation(s)
- Janusz M Bujnicki
- Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
31
|
Nakahigashi K, Kubo N, Narita SI, Shimaoka T, Goto S, Oshima T, Mori H, Maeda M, Wada C, Inokuchi H. HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc Natl Acad Sci U S A 2002; 99:1473-8. [PMID: 11805295 PMCID: PMC122215 DOI: 10.1073/pnas.032488499] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HemK, a universally conserved protein of unknown function, has high amino acid similarity with DNA-(adenine-N6) methyl transferases (MTases). A certain mutation in hemK gene rescues the photosensitive phenotype of a ferrochelatase-deficient (hemH) mutant in Escherichia coli. A hemK knockout strain of E. coli not only suffered severe growth defects, but also showed a global shift in gene expression to anaerobic respiration, as determined by microarray analysis, and this shift may lead to the abrogation of photosensitivity by reducing the oxidative stress. Suppressor mutations that abrogated the growth defects of the hemK knockout strain were isolated and shown to be caused by a threonine to alanine change at codon 246 of polypeptide chain release factor (RF) 2, indicating that hemK plays a role in translational termination. Consistent with such a role, the hemK knockout strain showed an enhanced rate of read-through of nonsense codons and induction of transfer-mRNA-mediated tagging of proteins within the cell. By analysis of the methylation of RF1 and RF2 in vivo and in vitro, we showed that HemK methylates RF1 and RF2 in vitro within the tryptic fragment containing the conserved GGQ motif, and that hemK is required for the methylation within the same fragment of, at least, RF1 in vivo. This is an example of a protein MTase containing the DNA MTase motif and also a protein-(glutamine-N5) MTase.
Collapse
Affiliation(s)
- Kenji Nakahigashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Matveyev AV, Young KT, Meng A, Elhai J. DNA methyltransferases of the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res 2001; 29:1491-506. [PMID: 11266551 PMCID: PMC31280 DOI: 10.1093/nar/29.7.1491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2000] [Revised: 02/08/2001] [Accepted: 02/08/2001] [Indexed: 12/13/2022] Open
Abstract
From the characterization of enzyme activities and the analysis of genomic sequences, the complement of DNA methyltransferases (MTases) possessed by the cyanobacterium ANABAENA PCC 7120 has been deduced. ANABAENA has nine DNA MTases. Four are associated with Type II restriction enzymes (AVAI, AVAII, AVAIII and the newly recognized inactive AVAIV), and five are not. Of the latter, four may be classified as solitary MTases, those whose function lies outside of a restriction/modification system. The group is defined here based on biochemical and genetic characteristics. The four solitary MTases, DmtA/M.AVAVI, DmtB/M.AVAVII, DmtC/M. AVAVIII and DmtD/M.AVAIX, methylate at GATC, GGCC, CGATCG and rCCGGy, respectively. DmtB methylates cytosines at the N4 position, but its sequence is more similar to N6-adenine MTases than to cytosine-specific enzymes, indicating that it may have evolved from the former. The solitary MTases, appear to be of ancient origin within cyanobacteria, while the restriction MTases appear to have arrived by recent horizontal transfer as did five now inactive Type I restriction systems. One Mtase, M.AVAV, cannot reliably be classified as either a solitary or restriction MTase. It is structurally unusual and along with a few proteins of prokaryotic and eukaryotic origin defines a structural class of MTases distinct from all previously described.
Collapse
Affiliation(s)
- A V Matveyev
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | | | | | | |
Collapse
|
33
|
Eberhard J, Oza J, Reich NO. Cloning, sequence analysis and heterologous expression of the DNA adenine-(N(6)) methyltransferase from the human pathogen Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 2001; 195:223-9. [PMID: 11179656 DOI: 10.1111/j.1574-6968.2001.tb10525.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We cloned and sequenced the DNA adenine-N(6) methyltransferase gene of the human pathogen Actinobacillus actinomycetemcomitans (M.AacDAM). Restriction digestion shows that the enzyme methylates adenine in the sequence GATC. Expression of the enzyme in a DAM(-) background shows in vivo activity. A PSI-BLAST search revealed that M.AacDAM is most related to M.HindIV, M.EcoDAM, M.StyDAM, and M.SmaII. The ClustalW alignment shows highly conserved regions in the enzyme characteristic for type a MTases. Phylogenetic tree analysis shows a cluster of enzymes recognizing the sequence GATC, within a branch of orphan MTases harboring M.AacDAM. The cloning and sequencing of this first methyltransferase gene described for A. actinomycetemcomitans open the path for studies on the potential regulatory impact of DNA methylation on gene regulation and virulence in this organism.
Collapse
Affiliation(s)
- J Eberhard
- Department of Operative Dentistry and Periodontology, University of Kiel, Germany
| | | | | |
Collapse
|
34
|
Bujnicki JM. Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. FASEB J 2000; 14:2365-8. [PMID: 11053259 DOI: 10.1096/fj.00-0076com] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The sequences of known Escherichia coli 16S rRNA:m2G1207 methyltransferase (MTase) RsmC and hypothetical 16S rRNA:m2G966 MTase encoded by the ygjo open reading frame were used to carry out a database search of other putative m2G-generating enzymes in finished and unfinished genomic sequences. Sequence comparison and phylogenetic analysis of 21 close homologs of RsmC and YgjO revealed the presence of the third paralogous lineage in E. coli and other gamma-Proteobacteria, which might correspond to the subfamily of MTases specific for G1516 in 16S rRNA. In addition, the comparative sequence analysis supported by sequence/structure threading suggests that rRNA:m2G MTases are very closely related to RNA and DNA:m6A MTases and that these two enzyme families share common architecture of the active site and presumably a similar mechanism of methyl group transfer onto the exocyclic amino group of their target bases.
Collapse
Affiliation(s)
- J M Bujnicki
- Bioinformatics Unit, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
35
|
Chinen A, Naito Y, Handa N, Kobayashi I. Evolution of sequence recognition by restriction-modification enzymes: selective pressure for specificity decrease. Mol Biol Evol 2000; 17:1610-9. [PMID: 11070049 DOI: 10.1093/oxfordjournals.molbev.a026260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several type II restriction-modification (RM) gene complexes kill host bacterial cells that have lost them, through attack on the chromosomal recognition sites of these cells. Two RM gene complexes recognizing the same sequence cannot simultaneously enjoy such stabilization through postsegregational host killing, because one will defend chromosomal sites from attack by the other. In the present work, we analyzed intrahost competition between two RM gene complexes when the recognition sequence of one was included in that of the other. When the EcoRII gene complex, recognizing 5'-CCWGG (W = A, T), is lost from the host, the SsoII gene complex, which recognizes 5'-CCNGG (N = A, T, G, C), will prevent host death by protecting CCWGG sites on the chromosome. However, when the SsoII (CCNGG) gene complex is lost, the EcoRII (CCWGG) gene complex will be unable to prevent host death through attack by SsoII on 5'-CCSGG (S = C, G) sites. These predictions were verified in our experiments, in which we analyzed plasmid maintenance, cell growth, cell shape, and chromosomal DNA. Our results demonstrate the presence of selective pressure for decrease in the specificity of recognition sequence of RM systems in the absence of invading DNA.
Collapse
Affiliation(s)
- A Chinen
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Szegedi SS, Gumport RI. DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases. Nucleic Acids Res 2000; 28:3972-81. [PMID: 11024177 PMCID: PMC110778 DOI: 10.1093/nar/28.20.3972] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2000] [Revised: 07/10/2000] [Accepted: 08/04/2000] [Indexed: 12/16/2022] Open
Abstract
A genetic selection method, the P22 challenge-phage assay, was used to characterize DNA binding in vivo by the prokaryotic beta class [N:6-adenine] DNA methyltransferase M.RSR:I. M.RSR:I mutants with altered binding affinities in vivo were isolated. Unlike the wild-type enzyme, a catalytically compromised mutant, M.RSR:I (L72P), demonstrated site-specific DNA binding in vivo. The L72P mutation is located near the highly conserved catalytic motif IV, DPPY (residues 65-68). A double mutant, M.RSR:I (L72P/D173A), showed less binding in vivo than did M.RSR:I (L72P). Thus, introduction of the D173A mutation deleteriously affected DNA binding. D173 is located in the putative target recognition domain (TRD) of the enzyme. Sequence alignment analyses of several beta class MTases revealed a TRD sequence element that contains the D173 residue. Phylogenetic analysis suggested that divergence in the amino acid sequences of these methyltransferases correlated with differences in their DNA target recognition sequences. Furthermore, MTases of other classes (alpha and gamma) having the same DNA recognition sequence as the beta class MTases share related regions of amino acid sequences in their TRDs.
Collapse
Affiliation(s)
- S S Szegedi
- Department of Biochemistry and College of Medicine, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
37
|
Gritsenko OM, Mikhailov SN, Efimtseva EV, Van Aerschot A, Herdewijn P, Gromova ES. Probing the MVAI methyltransferase region that interacts with DNA: affinity labeling with the dialdehyde-containing DNA duplexes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1805-20. [PMID: 11200275 DOI: 10.1080/15257770008045462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Affinity labeling of methyltransferase MvaI by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine or 1-beta-D-galactopyranosyl)thymine residues was performed. Partial chemical hydrolysis of the covalently bound methylase in the conjugates with the dialdehyde-containing DNA allowed us to determine the amino acid region in the C terminus of methylase MvaI that interacts with DNA.
Collapse
Affiliation(s)
- O M Gritsenko
- Department of Chemistry, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|