1
|
Wardoyo EH, Sugawara Y, Nakano S, Zuo H, Elahi S, Arai C, Kondo K, Kuntaman K, Sugai M. Genomic characterization of extended-spectrum β-lactamase-producing Escherichia coli spread among chickens and healthy residents in Lombok, Indonesia. Appl Environ Microbiol 2025; 91:e0236424. [PMID: 40214227 DOI: 10.1128/aem.02364-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/09/2025] [Indexed: 05/22/2025] Open
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) poses a substantial public health challenge, particularly in developing countries where antimicrobial resistance is a growing concern. Although extensive research has documented the prevalence and impact of ESBL-Ec in clinical settings and farm animals, the intricate relationship between poultry farming practices and human health remains unclear. To elucidate the genomic relationships between isolates from chickens and humans, we conducted a whole-genome sequencing analysis of 200 E. coli isolates derived from chickens, chicken farmers, and non-farmer volunteers in Lombok, Indonesia. The isolates exhibited considerable diversity, with 78 distinct sequence types (STs) identified by multilocus sequence typing. Of these, 35% (n = 70) and 6% (n = 12) were positive for ESBL and AmpC-type β-lactamase genes, respectively, with blaCTX-M-55 being the most prevalent (n = 41). The most prevalent STs among those carrying ESBL or AmpC genes were ST48, ST1485, ST1727, and ST2690. Phylogenetic analysis of publicly available data indicated that ST1485, ST1727, and ST2690 strains had an indigenous spread in this region, whereas the ST48 isolates originated from different sources. The blaCTX-M-55 gene was identified in 22 different STs, predominantly carried by an IncHI1A-type plasmid, suggesting horizontal transmission of the plasmid over the clonal barrier. Long-read sequencing analysis of representative isolates revealed the presence of additional resistance genes against different classes of antibiotics, suggesting that the acquisition of the IncHI1A-type plasmid contributes to multidrug resistance in recipient clones. Our analysis provides unique insights into the dissemination of multidrug-resistant ESBL-Ec strains in Lombok, where humans and chickens are in close proximity.IMPORTANCEWe performed a genomic comparison of ESBL-producing E. coli (ESBL-Ec) isolated from chickens, chicken farmers, and non-farmers on Lombok Island, where indigenous chicken farming, which involves close proximity of humans and chickens, is a major industry. The detection of the same ESBL-Ec clones in both chickens and farmers indicated the potential of a zoonotic transmission pathway for antibiotic-resistant bacteria. Moreover, the presence of a common plasmid carrying an ESBL gene along with other antimicrobial resistance genes in various E. coli clonal groups highlights the dissemination of resistance determinants within both poultry and human populations. This cross-species amplification of antimicrobial resistance poses a substantial risk to public health, as it can lead to the proliferation of multidrug-resistant bacterial infections, complicating treatment options and increasing the burden on healthcare systems. Addressing these issues is crucial for implementing effective antimicrobial stewardship and improving biosecurity practices in poultry farming.
Collapse
Affiliation(s)
- Eustachius Hagni Wardoyo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Microbiology Department, Faculty of Medicine and Health Sciences, University of Mataram, Lombok, Indonesia
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Nakano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shaheem Elahi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chika Arai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kuntaman Kuntaman
- Department of Microbiology, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Ishimoto N, Wong JLC, He S, Shirran S, Wright-Paramio O, Seddon C, Singh N, Balsalobre C, Sonani RR, Clements A, Egelmane EH, Frankel G, Beis K. Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin. Proc Natl Acad Sci U S A 2025; 122:e2427228122. [PMID: 40244678 PMCID: PMC12037004 DOI: 10.1073/pnas.2427228122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals. The reference IncHI1 plasmid R27, isolated from Salmonella enterica serovar Typhi, encodes the conjugative H-pilus subunit TrhA containing 74 residues after cleavage of the signal sequence. Here, we show that the H-pilus forms long filamentous structures that mediate MPF and describe its cryoelectron-microscopic (cryo-EM) structure at 2.2 Å resolution. Like the F pilus, the H-pilin subunits form helical assemblies with phospholipid molecules at a stoichiometric ratio of 1:1. While there were previous reports that the T-pilus from Agrobacterium tumefaciens was composed of cyclic subunits, three recent cryo-EM structures of the T-pilus found no such cyclization. Here, we report that the H-pilin is cyclic, with a covalent bond connecting the peptide backbone between the N and C termini. Both the cryo-EM map and mass spectrometry revealed cleavage of the last five residues of the pilin, followed by cyclization via condensation of the amine and carboxyl residues. Mutagenesis experiments revealed that loss of cyclization abolished pilus biogenesis and efficient plasmid transfer. The cyclic nature of the pilin could stabilize the pilus and may explain the high incidence of IncH plasmid dissemination.
Collapse
Affiliation(s)
- Naito Ishimoto
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Joshua L. C. Wong
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Shan He
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Sally Shirran
- Biomedical Sciences Research Complex Mass Spectrometry & Proteomics Facility, University of St Andrews, St AndrewsKY16 9ST, United Kingdom
| | | | - Chloe Seddon
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Nanki Singh
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Carlos Balsalobre
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona08028, Spain
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908
| | - Abigail Clements
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
| | - Edward H. Egelmane
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Konstantinos Beis
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Woodford L, Messer LF, Ormsby MJ, White HL, Fellows R, Quilliam RS. Exploiting microplastics and the plastisphere for the surveillance of human pathogenic bacteria discharged into surface waters in wastewater effluent. WATER RESEARCH 2025; 281:123563. [PMID: 40184703 DOI: 10.1016/j.watres.2025.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Discharge from wastewater treatment plants (WWTPs) is a well-characterised source of human pathogens and antimicrobial resistance genes entering the environment. However, determining whether pathogens released from effluent into surface waters are viable, and consequently pose a risk to human health, is hindered by the use of transient grab-sampling monitoring approaches. Here we present a novel surveillance system using low-cost microparticles (polyethylene, cork and rubber) deployed upstream and downstream of a WWTP effluent pipe, that exploits the ability of bacterial pathogens to form biofilms. Using quantitative culture-based and molecular methods, viable E. coli, Klebsiella spp., Citrobacter spp., and Enterococcus spp. were identified after only 24-hour of deployment. Moreover, these pathogens were continually present at each timepoint (2, 4, 6, 8, 10, 14 and 23 days) as biofilm communities matured, with all pathogens detected at higher concentrations downstream of the WWTP effluent pipe. Long-read whole genome sequencing revealed a suite of plasmids, virulence genes and antimicrobial resistance genes in bacterial pathogens isolated from biofilms formed downstream of the effluent pipe. Furthermore, recognising that pathogens are typically present at proportionally low concentrations within mixed biofilm communities, total biofilm pathogenicity was confirmed using a Galleria mellonella infection model. Full-length 16S rRNA gene sequencing revealed that human pathogens present in microplastic biofilms (the 'plastisphere') dominated the microbial community of infected G. mellonella larvae within 24 hr, suggesting these bacteria remained highly virulent. Overall, this study demonstrated the efficacy of an easy-to-deploy system for the surveillance and rapid detection of pathogenic bacteria being discharged from point-source pollution. We envisage that if used as part of an integrated environmental management approach, this approach could help to reduce the public and environmental health risks of human pathogens and antimicrobial resistance genes, by monitoring viable human pathogens entering surface waters.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Lauren F Messer
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
4
|
Fournes F, Campos M, Cury J, Schiavon C, Pagès C, Touchon M, Rocha EC, Rousseau P, Cornet F. The pathway to resolve dimeric forms distinguishes plasmids from megaplasmids in Enterobacteriaceae. Nucleic Acids Res 2025; 53:gkae1300. [PMID: 39797729 PMCID: PMC11724359 DOI: 10.1093/nar/gkae1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases. Among these, the XerCD recombinase resolves dimers of chromosomes and certain plasmids, using different modes of regulation. We have analyzed the dimer resolution functions in enterobacterial secondary replicons and show that, in addition to the main chromosomes, XerCD is preferentially used by small plasmids and by the largest secondary replicons, megaplasmids and secondary chromosomes. Indeed, all replicons longer than 250 kb host an active XerCD recombination site. These sites, in contrast to those of small plasmids, use the same control as chromosomes, coupled to cell division by the FtsK protein. We conclude that a chromosome-like mode of dimer resolution is mandatory for the faithful inheritance of large plasmids and chromids, its acquisition being a prerequisite for the genesis of secondary chromosomes from plasmids.
Collapse
Affiliation(s)
- Florian Fournes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Manuel Campos
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Caroline Schiavon
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Carine Pagès
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, 25-28 Rue du Dr Roux, 75015 Paris Cedex, Paris, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| | - François Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France
| |
Collapse
|
5
|
Maugeri G, Calvo M, Bongiorno D, Bivona D, Migliorisi G, Privitera GF, Scalia G, Stefani S. Sequencing Analysis of Invasive Carbapenem-Resistant Klebsiella pneumoniae Isolates Secondary to Gastrointestinal Colonization. Microorganisms 2025; 13:89. [PMID: 39858857 PMCID: PMC11767272 DOI: 10.3390/microorganisms13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Klebsiella pneumoniae represent a common invasive infection etiological agent, whose potential carbapenem-resistance and hypermucoviscosity complicate the patient's management. Infection development often derives from gastrointestinal colonization; thus, it is fundamental to monitor asymptomatic K. pneumoniae colonization through surveillance protocols, especially for intensive care and immunocompromised patients. We described a six-month routine screening protocol from the Policlinico of Catania (Italy), while blood samples were collected from the same patients only in cases of a systemic infection suspicion. All the patients who had dissemination episodes were furtherly investigated through next-generation sequencing, analyzing both colonizing and disseminating strains. This study documents emerging invasive sequence types such as ST101, ST307, and ST395, mainly revealing blaNDM or blaKPC genes, along with siderophores and hyperproduction capsule markers as virulence factors. Most of the detected factors are presumably related to a specific plasmid content, which are extremely varied and rich. In conclusion, active surveillance through sequencing is essential to enhance awareness of local epidemiology within high-risk multi-drug resistance areas. A random sequencing analysis on the most warning microorganisms could enhance sequence typing (ST) awareness within specific settings, allowing for better prevention control strategies on their eventual persistence or diffusion.
Collapse
Affiliation(s)
- Gaetano Maugeri
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Dafne Bongiorno
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Dalida Bivona
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. “G.F. Ingrassia”, Corso Calatafimi 1002, 90131 Palermo, Italy;
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Guido Scalia
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| | - Stefania Stefani
- Microbiology Section, Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.B.); (D.B.); (G.S.); (S.S.)
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy
| |
Collapse
|
6
|
Ishimoto N, Wong JL, Singh N, Shirran S, He S, Seddon C, Wright-Paramio O, Balsalobre C, Sonani RR, Clements A, Egelman EH, Frankel G, Beis K. Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630807. [PMID: 39803431 PMCID: PMC11722321 DOI: 10.1101/2024.12.30.630807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals. The reference IncHI1 plasmid R27, isolated from Salmonella enterica serovar Typhi, encodes the conjugative H-pilus subunit TrhA containing 74 residues after cleavage of the signal sequence. Here, we show that the H-pilus forms long filamentous structures that mediate MPF, and describe its cryo electron-microscopic (cryo-EM) structure at 2.2 Å resolution. Like the F pilus, the H-pilin subunits form helical assemblies with phospholipid molecules at a stochiometric ratio of 1:1. While there were previous reports that the T-pilus from Agrobacterium tumefaciens was composed of cyclic subunits, three recent cryo-EM structures of the T-pilus found no such cyclization. Here, we report that the H-pilin is cyclic, with a covalent bond connecting the peptide backbone between the N- and C-termini. Both the cryo-EM map and mass spectrometry revealed cleavage of the last five residues of the pilin, followed by cyclization via condensation of the amine and carboxylate residues. The cyclic nature of the pilin could stabilize the pilus and may explain the high incidence of IncH plasmid dissemination.
Collapse
Affiliation(s)
- Naito Ishimoto
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Joshua L.C. Wong
- Department of Life Sciences, Imperial College London, London, UK
| | - Nanki Singh
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Sally Shirran
- BSRC Mass Spectrometry & Proteomics Facility, University of St Andrews, St Andrews, UK
| | - Shan He
- Department of Life Sciences, Imperial College London, London, UK
| | - Chloe Seddon
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Carlos Balsalobre
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia. Universitat de Barcelona, Barcelona, Spain
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Abigail Clements
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, London, UK
| | - Konstantinos Beis
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
7
|
Zuza A, Wailan AM, Anscombe C, Feasey NA, Heinz E. An exploration of unusual antimicrobial resistance phenotypes in Salmonella Typhi from Blantyre, Malawi reveals the ongoing role of IncHI1 plasmids. Gates Open Res 2024; 8:143. [PMID: 39839218 PMCID: PMC11750072 DOI: 10.12688/gatesopenres.16311.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Typhoid fever is a significant public health problem endemic in Southeast Asia and Sub-Saharan Africa. Antimicrobial treatment of typhoid is however threatened by the increasing prevalence of antimicrobial resistant (AMR) S. Typhi, especially in the globally successful lineage (4.3.1) which has rapidly spread in East and Southern Africa. AMR elements can be found either on plasmids or in one of the three chromosomal integration sites, and there is variability of this across the lineage. Several previous studies with Malawian isolates indicated a clonal, locally spreading lineage with chromosomally integrated resistance genes. In a recent study however we noted three isolates with predicted resistance genes unusual for the region, and we here present the resolved genomes of these isolates using long- and short-read sequencing. Our work shows that these isolates are potentially imported cases, most closely related to the recently described sub-lineage 4.3.1.EA1, although they encode IncHI1 plasmids with reduced resistance gene repertoire compared to the main IncHI1 plasmids spreading in East Africa. Similar reduced plasmids were reported in a recent large-scale study in five isolates from Tanzania, highlighting the urgency for better coverage of the African continent in genome studies to better understand the dynamics of these potentially co-circulating plasmids.
Collapse
Affiliation(s)
- Allan Zuza
- Malawi Liverpool Clinical Research Program, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alexander M. Wailan
- Malawi Liverpool Clinical Research Program, Kamuzu University of Health Sciences, Blantyre, Malawi
- Wellcome Sanger Institute, Hinxton, England, UK
| | - Catherine Anscombe
- Malawi Liverpool Clinical Research Program, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas A. Feasey
- Malawi Liverpool Clinical Research Program, Kamuzu University of Health Sciences, Blantyre, Malawi
- University of St Andrews, St Andrews, Scotland, UK
- Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, England, UK
- University of Strathclyde, Glasgow, Scotland, UK
- Liverpool School of Tropical Medicine, Liverpool, England, UK
| |
Collapse
|
8
|
Fang L, Chen R, Li C, Sun J, Liu R, Shen Y, Guo X. The association between the genetic structures of commonly incompatible plasmids in Gram-negative bacteria, their distribution and the resistance genes. Front Cell Infect Microbiol 2024; 14:1472876. [PMID: 39660283 PMCID: PMC11628540 DOI: 10.3389/fcimb.2024.1472876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Incompatible plasmids play a crucial role in the horizontal transfer of antibiotic resistance in bacteria, particularly in Gram-negative bacteria, and have thus attracted considerable attention in the field of microbiological research. In the 1970s, these plasmids, housing an array of resistance genes and genetic elements, were predominantly discovered. They exhibit a broad presence in diverse host bacteria, showcasing diversity in geographic distribution and the spectrum of antibiotic resistance genes. The complex genetic structure of plasmids further accelerates the accumulation of resistance genes in Gram-negative bacteria. This article offers a comprehensive review encompassing the discovery process, host distribution, geographic prevalence, carried resistance genes, and the genetic structure of different types incompatible plasmids, including IncA, IncC, IncF, IncL, IncM, IncH, and IncP. It serves as a valuable reference for enhancing our understanding of the role of these different types of plasmids in bacterial evolution and the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhao Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Prieto A, Miró L, Margolles Y, Bernabeu M, Salguero D, Merino S, Tomas J, Corbera JA, Perez-Bosque A, Huttener M, Fernández LÁ, Juarez A. Targeting plasmid-encoded proteins that contain immunoglobulin-like domains to combat antimicrobial resistance. eLife 2024; 13:RP95328. [PMID: 39046772 PMCID: PMC11268884 DOI: 10.7554/elife.95328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luïsa Miró
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - David Salguero
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Joan Tomas
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de ArucasLas PalmasSpain
| | - Anna Perez-Bosque
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Mario Huttener
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Antonio Juarez
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
10
|
Li G, Jia L, Wan L, Xia L, Gao A, Yang R, Sun R, Wang M, Du J, Lian X, Zhang R, Fang L, Liao X, Liu Y, Liu B, Sun J. Acquisition of a novel conjugative multidrug-resistant hypervirulent plasmid leads to hypervirulence in clinical carbapenem-resistant Klebsiella pneumoniae strains. MLIFE 2023; 2:317-327. [PMID: 38817808 PMCID: PMC10989919 DOI: 10.1002/mlf2.12086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 06/01/2024]
Abstract
The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue. In this study, an ST23 carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) strain VH1-2 was identified from cucumber in China and harbored a novel hybrid plasmid pVH1-2-VIR. The plasmid pVH1-2-VIR carrying both virulence and multidrug-resistance (MDR) genes was likely generated through the recombination of a virulence plasmid and an IncFIIK conjugative MDR plasmid in clinical ST23 18622 isolated from a sputum sample. The plasmid pVH1-2-VIR exhibited the capacity for transfer to the clinical ST11 carbapenem-resistant K. pneumoniae (CRKP) strain via conjugation assay. Acquisition of pVH1-2-VIR plasmid directly converted a CRKP into CR-HvKP strain characterized by hypermucoviscosity, heightened virulence for Galleria mellonella larvae, and increased colonization ability in the mouse intestine. The emergence of such a hybrid plasmid may expedite the spread of CR-HvKP strains, posing a significant risk to human health.
Collapse
Affiliation(s)
- Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Ling Jia
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Lijuan Xia
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Ang Gao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Runshi Yang
- Department of Pathogen Biology and MicrobiologyZhejiang University School of MedicineHangzhouChina
| | - Ruanyang Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Minge Wang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Juan Du
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Rongmin Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Liangxing Fang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Bao‐Tao Liu
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
11
|
Dinh MTN, Nguyen VT, Nguyen LTH. The potential application of carbazole-degrading bacteria for dioxin bioremediation. BIORESOUR BIOPROCESS 2023; 10:56. [PMID: 38647625 PMCID: PMC10992316 DOI: 10.1186/s40643-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
Extensive research has been conducted over the years on the bacterial degradation of dioxins and their related compounds including carbazole, because these chemicals are highly toxic and has been widely distributed in the environment. There is a pressing need to explore and develop more bacterial strains with unique catabolic features to effectively remediate dioxin-polluted sites. Carbazole has a chemical structure similar to dioxins, and the degradation pathways of these two chemicals are highly homologous. Some carbazole-degrading bacterial strains have been demonstrated to have the ability to degrade dioxins, such as Pseudomonas sp. strain CA10 và Sphingomonas sp. KA1. The introduction of strain KA1 into dioxin-contaminated model soil resulted in the degradation of 96% and 70% of 2-chlorodibenzo-p-dioxin (2-CDD) and 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD), respectively, after 7-day incubation period. These degradation rates were similar to those achieved with strain CA10, which removed 96% of 2-CDD and 80% of 2,3-DCDD from the same model soil. Therefore, carbazole-degrading bacteria hold significant promise as potential candidates for dioxin bioremediation. This paper overviews the connection between the bacterial degradation of dioxins and carbazole, highlighting the potential for dioxin biodegradation by carbazole-degrading bacterial strains.
Collapse
Affiliation(s)
- Mai Thi Ngoc Dinh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, A9 Building, Nguyen Van Trac Street, Ha Dong District, Hanoi, Vietnam.
- Bioresource Research Center, Phenikaa University, Hanoi, Vietnam.
| | - Van Thi Nguyen
- VNU Institute of Microbiology and Biotechnology, Vietnam National University, E2 Building, 144 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
12
|
Izdebski R, Biedrzycka M, Urbanowicz P, Żabicka D, Gniadkowski M. Genome-Based Epidemiologic Analysis of VIM/IMP Carbapenemase-Producing Enterobacter spp., Poland. Emerg Infect Dis 2023; 29:1618-1626. [PMID: 37486192 PMCID: PMC10370858 DOI: 10.3201/eid2908.230199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
We sequenced all nonduplicate 934 VIM/IMP carbapenemase-producing Enterobacterales (CPE) reported in Poland during 2006-2019 and found ≈40% of the isolates (n = 375) were Enterobacter spp. During the study period, incidence of those bacteria gradually grew in nearly the entire country. The major factor affecting the increase was clonal spread of several E. hormaechei lineages responsible for multiregional and interregional outbreaks (≈64% of all isolates), representing mainly the pandemic sequence type (ST) 90 or the internationally rare ST89 and ST121 clones. Three main VIM-encoding integron types efficiently disseminated across the clone variants (subclones) with various molecular platforms. Those variants were predominantly Pseudomonas aeruginosa-derived In238-like elements, present with IncHI2+HI2A, IncFII+FIA, IncFIB, or IncN3 plasmids, or chromosomal genomic islands in 30 Enterobacter STs. Another prevalent type, found in 34 STs, were In916-like elements, spreading in Europe recently with a lineage of IncA-like plasmids.
Collapse
|
13
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
14
|
Vilela FP, Rodrigues DDP, Ferreira JC, Darini ALDC, Allard MW, Falcão JP. Genomic characterization of Salmonella enterica serovar Choleraesuis from Brazil reveals a swine gallbladder isolate harboring colistin resistance gene mcr-1.1. Braz J Microbiol 2022; 53:1799-1806. [PMID: 35984599 PMCID: PMC9679059 DOI: 10.1007/s42770-022-00812-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) is a swine-adapted serovar associated to invasive infections in humans. In Brazil, data of strains of this serovar are scarce. In the present study, six S. Choleraesuis strains of animal (n = 5) and human (n = 1) origin from Brazil were screened for phenotypic antimicrobial resistance using disk-diffusion assay and using whole-genome sequencing data to search for antimicrobial resistance genes, plasmids, prophages, and Salmonella pathogenicity islands (SPIs). Its genetic relatedness was evaluated by MLST and SNP analysis. A single isolate from swine gallbladder harbored the colistin resistance gene mcr-1.1 into a IncX4 plasmid. In the six strains analyzed, resistance was found to tetracycline, nalidixic acid, ciprofloxacin, ampicillin, piperacillin, streptomycin, cefazoline, gentamycin, sulfamethoxazole-trimethoprim, and choloramphenicol, along with resistance genes aac(6')-Iaa, aac(3)-IV, aph(3'')-Ib, aph(6)-Id, aph(4)-Ia, aadA1, aph(3')-IIa, blaTEM-1A, floR, sul1, sul2, tet(B), drfA1, erm(B), mph(B), lnu(G), qacE, and gyrA point mutation Serine83 → Tyrosine and parC Threonine57 → Serine. Furthermore, IncF and IncH plasmids, ten SPIs, and seven prophage types were detected. All strains were assigned to ST145 and five belonged to a common SNP cluster of S. Choleraesuis strains from Brazil. The presence of S. Choleraesuis isolated from animals harboring relevant antimicrobial resistance profiles and virulence determinants reinforced the urge for enhanced surveillance to avoid its transmission to humans through food items.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Joseane Cristina Ferreira
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ana Lúcia da Costa Darini
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
15
|
Wang D, Wang L, Bi D, Song J, Wang G, Gao Y, Tang KFJ, Meng F, Xie J, Zhang F, Huang J, Li J, Dong X. Conjugative Transfer of Acute Hepatopancreatic Necrosis Disease-Causing pVA1-Type Plasmid Is Mediated by a Novel Self-Encoded Type IV Secretion System. Microbiol Spectr 2022; 10:e0170222. [PMID: 36121241 PMCID: PMC9602635 DOI: 10.1128/spectrum.01702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenic pVA1-type plasmids that carry pirAB toxin genes are the genetic basis for Vibrio to cause acute hepatopancreatic necrosis disease (AHPND), a lethal shrimp disease posing an urgent threat to shrimp aquaculture. Emerging evidence also demonstrate the rapid spread of pVA1-type plasmids across Vibrio species. The pVA1-type plasmids have been predicted to encode a self-encoded type IV secretion system (T4SS). Here, phylogenetic analysis indicated that the T4SS is a novel member of Trb-type. We further confirmed that the T4SS was able to mediate the conjugation of pVA1-type plasmids. A trbE gene encoding an ATPase and a traG gene annotated as a type IV coupling protein (T4CP) were characterized as key components of the T4SS. Deleting either of these 2 genes abolished the conjugative transfer of a pVA1-type plasmid from AHPND-causing Vibrio parahaemolyticus to Vibrio campbellii, which was restored by complementation of the corresponding gene. Moreover, we found that bacterial density, temperature, and nutrient levels are factors that can regulate conjugation efficiency. In conclusion, we proved that the conjugation of pVA1-type plasmids across Vibrio spp. is mediated by a novel T4SS and regulated by environmental factors. IMPORTANCE AHPND is a global shrimp bacteriosis and was listed as a notifiable disease by the World Organization for Animal Health (WOAH) in 2016, causing losses of more than USD 7 billion each year. Several Vibrio species such as V. parahaemolyticus, V. harveyi, V. campbellii, and V. owensii harboring the virulence plasmid (designated as the pVA1-type plasmid) can cause AHPND. The increasing number of Vibrio species makes prevention and control more difficult, threatening the sustainable development of the aquaculture industry. In this study, we found that the horizontal transfer of pVA1-type plasmid is mediated by a novel type IV secretion system (T4SS). Our study explained the formation mechanism of pathogen diversity in AHPND. Moreover, bacterial density, temperature, and nutrient levels can regulate horizontal efficiency. We explore new ideas for controlling the spread of virulence plasmid and form the basis of management strategies leading to the prevention and control of AHPND.
Collapse
Affiliation(s)
- Dehao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Agricultural University, College of Animal Science and Veterinary Medicine, Tai’an, China
| | - Liying Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shanghai Ocean University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jipeng Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Guohao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Ye Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Kathy F. J. Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Fanzeng Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shanghai Ocean University, Shanghai, China
| | - Jingmei Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Tianjin Agricultural University, Tianjin, China
| | - Fan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Jianliang Li
- Shandong Agricultural University, College of Animal Science and Veterinary Medicine, Tai’an, China
| | - Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
16
|
Wu L, Xu T, Ji Y, Song J, Wang F, Huang J, Zhou K. Occurrence and Characteristics of Mcrs among Gram-Negative Bacteria Causing Bloodstream Infections of Infant Inpatients between 2006 and 2019 in China. Microbiol Spectr 2022; 10:e0193821. [PMID: 35138190 PMCID: PMC8826862 DOI: 10.1128/spectrum.01938-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine the occurrence of mobilized colistin resistance (mcr) genes in Gram-negative bacteria causing bloodstream infections of child inpatients in China. Bacteria were collected between 2006 and 2019 in a maternal and child health hospital, and mcr genes were screened by PCR. Five of 252 isolates were mcr-positive, including one mcr-1-positive colistin-resistant Escherichia coli isolate, two mcr-9-positive colistin-susceptible Salmonella enterica isolates, and two mcr-9-positive colistin-susceptible Enterobacter hormaechei isolates. These were obtained from two neonate and three infant patients admitted between 2009 and 2018. The E. coli isolate was obtained from a neonate aged 20 min, suggestive of a possible mother-to-neonate transmission. The five mcr-positive isolates were multidrug resistant, and two S. enterica and one E. hormaechei isolate showed a hypervirulent phenotype compared to a hypervirulent Klebsiella pneumoniae type strain in a Galleria mellonella infection model. The mcr-1 gene was carried by an IncX4-type pA1-like epidemic plasmid, and the mcr-9 gene was detected on IncHI2/2A-type novel plasmids co-carrying multiple resistance genes. The four IncHI2/2A-type plasmids shared a backbone and a high similarity (≥77% coverage and ≥ 90% nucleotide identity), suggesting that they were derived from a common ancestor with cross-species transmission and have circulated locally over a long period. The conjugation assay showed that the mcr-1-encoding plasmid and one mcr-9-encoding plasmid were self-transmissible to E. coli with high conjugation frequencies. Our findings demonstrate that mcr genes have disseminated in the community and/or hospitals, mediated by epidemic/endemic plasmids over a long period. The study shows that continuous monitoring of mcr genes is imperative for understanding and tackling their dissemination. IMPORTANCE Antimicrobial resistance, especially the spread of carbapenemase-producing Enterobacteriaceae (CPE), represents one of the largest challenges to One Health coverage of environmental, animal, and human sectors. Colistin is one of the last-line antibiotics for clinical treatment of CPE. However, the emergence of the mobilized colistin resistance (mcr) gene largely threatens the usage of colistin in the clinical setting. In this study, we investigated the existence of mcr genes in 252 Gram-negative bacteria collected between 2006 and 2019 which caused bloodstream infections of child inpatients in China. We found a high prevalence of mcr carriage among children inpatients in the absence of professional exposure, and mcr might have widely disseminated in the community via different routes. This study emphasizes the importance of rational use of colistin in the One Health frame, and highlights both the urgent need for understanding the prevalence and dissemination of mcr genes in different populations and the importance of effective measures to control their spread.
Collapse
Affiliation(s)
- Lijuan Wu
- Clinical Laboratory, Shenzhen Bao'an Women and Children's Hospital, Shenzhen, Guangdong, China
- Maternal-Fetal Medicine Institute, Shenzhen Bao'an Women and Children's Hospital, Shenzhen, Guangdong, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Ji
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Feiling Wang
- Clinical Laboratory, Shenzhen Bao'an Women and Children's Hospital, Shenzhen, Guangdong, China
| | - Junxi Huang
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Turumtay H, Allam M, Sandalli A, Turumtay EA, Genç H, Sandalli C. Characteristics in the whole-genome sequence of Klebsiella pneumoniae ST147 from Turkey. Acta Microbiol Immunol Hung 2022. [PMID: 35195536 DOI: 10.1556/030.2022.01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
Abstract
The study aimed to analyze antibiotic resistance determinants in a carbapenem-resistant Klebsiella pneumoniae by whole-genome sequencing (WGS). K. pneumoniae was isolated from a urine sample and it was characterized by 16S rDNA sequencing in Turkey. This strain was named as Kpn Rize-53-TR. Antimicrobial susceptibility testing was performed for seventeen antibiotics by VITEK-2 and the result was confirmed by MIC. The whole genome of isolate was sequenced by Illumina and was analysed by bioinformatic tools for MLST, replicon types, and antimicrobial resistance genes. The whole genome data was submitted to NCBI. The isolate was found to be resistant to all tested β-lactam antibiotics and the highest MIC values were found for piperacillin, piperacillin/tazobactam (≥128). No resistance to colistin and moderate susceptibility to amikacin and tetracycline was observed. The isolate carried 12 resistance genes belonging to 10 resistance classes; ere(A), fosA, oqxB, cmlA1, aac(a)-IIa, bla KPC-2, bla TEM-1A, bla SHV-67, bla CTX-M-15, bla OXA-1-2-9. Mutations were detected in gyrA (83Y) and parC (80I) genes. Clonal subtype of the isolate was ST147, and it had wzi420 and wzc38 alleles. Its serotype was O3/O3a. The bla KPC-2 was firstly found in both ST147 clonal group in Turkey and in serotype O3/O3a in the world. By plasmid replicon typing, five plasmids IncFII(K), Col(BS512), IncR, IncFIA(HI1) and IncFIB(pQil) were determined in Kpn Rize-53-TR and bla KPC-2 was located on IncFII(K) plasmid. The presence of bla KPC-2 on the plasmid with other resistance genes accelerates its own spread together with other resistance genes.
Collapse
Affiliation(s)
- Halbay Turumtay
- 1 Karadeniz Technical University, Department of Energy System Engineering, 61830, Trabzon, Turkey
- 2 Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | - Mushal Allam
- 3 Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aytül Sandalli
- 4 Recep Tayyip Erdoğan University, Department of Biology, 53020, Rize, Turkey
| | | | - Hacer Genç
- 6 Rize Tea Research and Application Center (ÇAYMER), 53100, Rize, Turkey
| | - Cemal Sandalli
- 4 Recep Tayyip Erdoğan University, Department of Biology, 53020, Rize, Turkey
- 7 Firtina Research Group, Fener Mahallesi, VillaKent Konutları, 53020 Rize, Turkey
| |
Collapse
|
18
|
Olesen AK, Pinilla-Redondo R, Hansen MF, Russel J, Dechesne A, Smets BF, Madsen JS, Nesme J, Sørensen SJ. IncHI1A plasmids potentially facilitate a horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage. Mol Ecol 2022; 31:1595-1608. [PMID: 35014098 DOI: 10.1111/mec.16346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, that R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer to other families, even other phyla. Indicating, that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of especially Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range as R27. In contrast to R27, pB10 had a high host divergence. By culture enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.
Collapse
Affiliation(s)
- Asmus K Olesen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Mads F Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jakob Russel
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Jonas S Madsen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
19
|
Abstract
Horizontal transfer of bacterial plasmids generates genetic variability and contributes to the dissemination of the genes that enable bacterial cells to develop antimicrobial resistance (AMR). Several aspects of the conjugative process have long been known, namely, those related to the proteins that participate in the establishment of cell-to-cell contact and to the enzymatic processes associated with the processing of plasmid DNA and its transfer to the recipient cell. In this work, we describe the roles of newly identified proteins that influence the conjugation of several plasmids. Genes encoding high-molecular-weight bacterial proteins that contain one or several immunoglobulin-like domains (Big) are located in the transfer regions of several plasmids that usually harbor AMR determinants. These Big proteins are exported to the external medium and target two extracellular organelles: the flagella and conjugative pili. The plasmid gene-encoded Big proteins facilitate conjugation by reducing cell motility and facilitating cell-to-cell contact by binding both to the flagella and to the conjugative pilus. They use the same export machinery as that used by the conjugative pilus components. In the examples characterized in this paper, these proteins influence conjugation at environmental temperatures (i.e., 25°C). This suggests that they may play relevant roles in the dissemination of plasmids in natural environments. Taking into account that they interact with outer surface organelles, they could be targeted to control the dissemination of different bacterial plasmids carrying AMR determinants. IMPORTANCE Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid. Our paper identifies novel plasmid gene-encoded high-molecular-weight proteins that contain an immunoglobulin-like domain and are required for plasmid transmission. They are encoded by genes on different groups of plasmids. These proteins are exported outside the cell. They bind to extracellular cell appendages such as the flagella and conjugative pili. Expression of these proteins reduces cell motility and increases the ability of the bacterial cells to transfer the plasmid. These proteins could be targeted with specific antibodies to combat infections caused by AMR microorganisms that harbor these plasmids.
Collapse
|
20
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. Corrigendum: First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:741628. [PMID: 34650541 PMCID: PMC8507845 DOI: 10.3389/fmicb.2021.741628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2021.676113.].
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Hooton SPT, Pritchard ACW, Asiani K, Gray-Hammerton CJ, Stekel DJ, Crossman LC, Millard AD, Hobman JL. Laboratory Stock Variants of the Archetype Silver Resistance Plasmid pMG101 Demonstrate Plasmid Fusion, Loss of Transmissibility, and Transposition of Tn 7/ pco/ sil Into the Host Chromosome. Front Microbiol 2021; 12:723322. [PMID: 34489913 PMCID: PMC8417528 DOI: 10.3389/fmicb.2021.723322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella Typhimurium carrying the multidrug resistance (MDR) plasmid pMG101 was isolated from three burns patients in Boston United States in 1973. pMG101 was transferrable into other Salmonella spp. and Escherichia coli hosts and carried what was a novel and unusual combination of AMR genes and silver resistance. Previously published short-read DNA sequence of pMG101 showed that it was a 183.5Kb IncHI plasmid, where a Tn7-mediated transposition of pco/sil resistance genes into the chromosome of the E. coli K-12 J53 host strain had occurred. We noticed differences in streptomycin resistance and plasmid size between two stocks of E. coli K-12 J53 pMG101 we possessed, which had been obtained from two different laboratories (pMG101-A and pMG101-B). Long-read sequencing (PacBio) of the two strains unexpectedly revealed plasmid and chromosomal rearrangements in both. pMG101-A is a non-transmissible 383Kb closed-circular plasmid consisting of an IncHI2 plasmid sequence fused to an IncFI/FIIA plasmid. pMG101-B is a mobile closed-circular 154 Kb IncFI/FIIA plasmid. Sequence identity of pMG101-B with the fused IncFI/IncFIIA region of pMG101-A was >99%. Assembled host sequence reads of pMG101-B showed Tn7-mediated transposition of pco/sil into the E. coli J53 chromosome between yhiM and yhiN. Long read sequence data in combination with laboratory experiments have demonstrated large scale changes in pMG101. Loss of conjugation function and movement of resistance genes into the chromosome suggest that even under long-term laboratory storage, mobile genetic elements such as transposons and insertion sequences can drive the evolution of plasmids and host. This study emphasises the importance of utilising long read sequencing technologies of plasmids and host strains at the earliest opportunity.
Collapse
Affiliation(s)
- Steven P T Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexander C W Pritchard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Karishma Asiani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Charlotte J Gray-Hammerton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Lisa C Crossman
- Sequenceanalysis.Co.uk, Innovation Centre, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| |
Collapse
|
22
|
Harmer CJ. HI1 and I1 Resistance Plasmids from Salmonella enterica Serovar Typhimurium Strain SRC27 Are Epidemic. Microb Drug Resist 2021; 27:1495-1504. [PMID: 34242087 DOI: 10.1089/mdr.2020.0579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugative plasmids are a major contributor to the global spread of antibiotic resistance determinants, but the tracking of their evolutionary history is often neglected. Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SRC27 was isolated from an equine infection in Australia in 1999. SRC27 was known to carry conjugative HI1 and I1 resistance plasmids. In this study, SRC27 was sequenced to determine the relationship between these HI1 and I1 resistance plasmids it was known to carry and HI1 and I1 resistance plasmids circulating worldwide. The resistance genes in the HI1 plasmid, pSRC27-H, are all located in a single complex 34.7 kb resistance region. The backbone sequence and location of the pSRC27-H resistance island were used to identify the most closely related HI1 plasmids among the >90 that have been sequenced since 2011. This defined a sublineage of 20 type 2 HI1 plasmids that have been circulating in Europe, Asia, North America, and Australia since at least 1993. The overall resistance gene content of these HI1 plasmids differs, indicating extensive evolution in situ through the acquisition of additional transposons and deletion or replacement of ancestral regions. The I1 plasmid contains a complete copy of Tn5393a, containing the strAB genes that confer resistance to streptomycin. The precise location of Tn5393a in the backbone also defined a globally disseminated sublineage of I1 plasmids, many of which have also acquired additional resistance determinants. The sequence revealed that SRC27 also carried two additional plasmids, the pSLT-type FIB(S):FII(S) virulence plasmid and a small cryptic theta-replicating Col156 plasmid.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Ai W, Zhou Y, Wang B, Zhan Q, Hu L, Xu Y, Guo Y, Wang L, Yu F, Li X. First Report of Coexistence of bla SFO-1 and bla NDM-1 β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Front Microbiol 2021; 12:676113. [PMID: 34220761 PMCID: PMC8252965 DOI: 10.3389/fmicb.2021.676113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (blaSFO–1, blaNDM–1, and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of blaSFO–1, blaNDM–1, and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the blaSFO–1, blaNDM–1, and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of blaSFO–1, blaNDM–1, and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes.
Collapse
Affiliation(s)
- Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Hu
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021; 12:652863. [PMID: 33936010 PMCID: PMC8085274 DOI: 10.3389/fmicb.2021.652863] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics combined with a lack of newly developed ones is the main contributors to the current antibiotic resistance crisis. There is a dire need for new and alternative antibacterial options and nanotechnology could be a solution. Metal-based nanoparticles, particularly silver nanoparticles (NAg), have garnered widespread popularity due to their unique physicochemical properties and broad-spectrum antibacterial activity. Consequently, NAg has seen extensive incorporation in many types of products across the healthcare and consumer market. Despite clear evidence of the strong antibacterial efficacy of NAg, studies have raised concerns over the development of silver-resistant bacteria. Resistance to cationic silver (Ag+) has been recognised for many years, but it has recently been found that bacterial resistance to NAg is also possible. It is also understood that exposure of bacteria to toxic heavy metals like silver can induce the emergence of antibiotic resistance through the process of co-selection. Acinetobacter baumannii is a Gram-negative coccobacillus and opportunistic nosocomial bacterial pathogen. It was recently listed as the "number one" critical level priority pathogen because of the significant rise of antibiotic resistance in this species. NAg has proven bactericidal activity towards A. baumannii, even against strains that display multi-drug resistance. However, despite ample evidence of heavy metal (including silver; Ag+) resistance in this bacterium, combined with reports of heavy metal-driven co-selection of antibiotic resistance, little research has been dedicated to assessing the potential for NAg resistance development in A. baumannii. This is worrisome, as the increasingly indiscriminate use of NAg could promote the development of silver resistance in this species, like what has occurred with antibiotics.
Collapse
Affiliation(s)
- Oliver McNeilly
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Hamidian
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Kamathewatta K, Bushell R, Rafa F, Browning G, Billman-Jacobe H, Marenda M. Colonization of a hand washing sink in a veterinary hospital by an Enterobacter hormaechei strain carrying multiple resistances to high importance antimicrobials. Antimicrob Resist Infect Control 2020; 9:163. [PMID: 33087168 PMCID: PMC7580002 DOI: 10.1186/s13756-020-00828-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Background Hospital intensive care units (ICUs) are known reservoirs of multidrug resistant nosocomial bacteria. Targeted environmental monitoring of these organisms in health care facilities can strengthen infection control procedures. A routine surveillance of extended spectrum beta-lactamase (ESBL) producers in a large Australian veterinary teaching hospital detected the opportunistic pathogen Enterobacter hormaechei in a hand washing sink of the ICU. The organism persisted for several weeks, despite two disinfection attempts. Four isolates were characterized in this study. Methods Brilliance-ESBL selective plates were inoculated from environmental swabs collected throughout the hospital. Presumptive identification was done by conventional biochemistry. Genomes of multidrug resistant Enterobacter were entirely sequenced with Illumina and Nanopore platforms. Phylogenetic markers, mobile genetic elements and antimicrobial resistance genes were identified in silico. Antibiograms of isolates and transconjugants were established with Sensititre microdilution plates. Results The isolates possessed a chromosomal Tn7-associated silver/copper resistance locus and a large IncH12 conjugative plasmid encoding resistance against tellurium, arsenic, mercury and nine classes of antimicrobials. Clusters of antimicrobial resistance genes were associated with class 1 integrons and IS26, IS903 and ISCR transposable elements. The blaSHV-12, qnrB2 and mcr-9.1 genes, respectively conferring resistance to cephalosporins, quinolones and colistin, were present in a locus flanked by two IS903 copies. ESBL production and enrofloxacin resistance were confirmed phenotypically. The isolates appeared susceptible to colistin, possibly reflecting the inducible nature of mcr-9.1. Conclusions The persistence of this strain in the veterinary hospital represented a risk of further accumulation and dissemination of antimicrobial resistance, prompting a thorough disinfection of the ICU. The organism was not recovered from subsequent environmental swabs, and nosocomial Enterobacter infections were not observed in the hospital during that period. This study shows that targeted routine environmental surveillance programs to track organisms with major resistance phenotypes, coupled with disinfection procedures and follow-up microbiological cultures are useful to control these risks in sensitive areas of large veterinary hospitals.
Collapse
Affiliation(s)
- Kanishka Kamathewatta
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Rhys Bushell
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Fannana Rafa
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Glenn Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Marc Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia.
| |
Collapse
|
26
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
27
|
Gibert M, Paytubi S, Madrid C, Balsalobre C. Temperature Dependent Control of the R27 Conjugative Plasmid Genes. Front Mol Biosci 2020; 7:124. [PMID: 32754612 PMCID: PMC7366339 DOI: 10.3389/fmolb.2020.00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
Conjugation of R27 plasmid is thermoregulated, being promoted at 25°C and repressed at 37°C. Previous studies identified plasmid-encoded regulators, HtdA, TrhR and TrhY, that control expression of conjugation-related genes (tra). Moreover, the nucleoid-associated protein H-NS represses conjugation at non-permissive temperature. A transcriptomic approach has been used to characterize the effect of temperature on the expression of the 205 R27 genes. Many of the 35 tra genes, directly involved in plasmid-conjugation, were upregulated at 25°C. However, the majority of the non-tra R27 genes—many of them with unknown function—were more actively expressed at 37°C. The role of HtdA, a regulator that causes repression of the R27 conjugation by counteracting TrhR/TrhY mediated activation of tra genes, has been investigated. Most of the R27 genes are severely derepressed at 25°C in an htdA mutant, suggesting that HtdA is involved also in the repression of R27 genes other than the tra genes. Interestingly, the effect of htdA mutation was abolished at non-permissive temperature, indicating that the HtdA-TrhR/TrhY regulatory circuit mediates the environmental regulation of R27 gene expression. The role of H-NS in the proposed model is discussed.
Collapse
Affiliation(s)
- Marta Gibert
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Sonia Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Shigemura H, Sakatsume E, Sekizuka T, Yokoyama H, Hamada K, Etoh Y, Carle Y, Mizumoto S, Hirai S, Matsui M, Kimura H, Suzuki M, Onozuka D, Kuroda M, Inoshima Y, Murakami K. Food Workers as a Reservoir of Extended-Spectrum-Cephalosporin-Resistant Salmonella Strains in Japan. Appl Environ Microbiol 2020; 86:e00072-20. [PMID: 32276982 PMCID: PMC7301857 DOI: 10.1128/aem.00072-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022] Open
Abstract
Dissemination of extended-spectrum-cephalosporin (ESC)-resistant Salmonella, especially extended-spectrum-β-lactamase (ESBL)-producing Salmonella, is a concern worldwide. Here, we assessed Salmonella carriage by food workers in Japan to clarify the prevalence of ESC-resistant Salmonella harboring blaCTX-M We then characterized the genetic features, such as transposable elements, of blaCTX-M-harboring plasmids using whole-genome sequencing. A total of 145,220 stool samples were collected from food workers, including cooks and servers from several restaurants, as well as food factory workers, from January to October 2017. Isolated salmonellae were subjected to antimicrobial susceptibility testing (disk diffusion method), and whole-genome sequencing was performed for Salmonella strains harboring blaCTX-M Overall, 164 Salmonella isolates (0.113%) were recovered from 164 samples, from which we estimated that at least 0.113% (95% confidence interval [CI]: 0.096 to 0.132%) of food workers may carry Salmonella Based on this estimation, 3,473 (95% CI = 2,962 to 4,047) individuals among the 3,075,330 Japanese food workers are likely to carry Salmonella Of the 158 culturable isolates, seven showed resistance to ESCs: three isolates harbored blaCMY-2 and produced AmpC β-lactamase, while four ESBL-producing isolates harbored blaCTX-M-14 (n = 1, Salmonella enterica serovar Senftenberg) or blaCTX-M-15 (n = 3, S. enterica serovar Haardt). blaCTX-M-15 was chromosomally located in the S Haardt isolates, which also contained ISEcp1, while the S Senftenberg isolate contained an IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid plasmid carrying blaCTX-M-14 along with ISEcp1 This study indicates that food workers may be a reservoir of ESBL-producing Salmonella and associated genes. Thus, these workers may contribute to the spread of blaCTX-M via plasmids or mobile genetic elements such as ISEcp1IMPORTANCE Antimicrobial-resistant Salmonella bacteria arise in farm environments through imprudent use of antimicrobials. Subsequently, these antimicrobial-resistant strains, such as extended-spectrum-β-lactamase (ESBL)-producing Salmonella, may be transmitted to humans via food animal-derived products. Here, we examined Salmonella carriage among food handlers in Japan. Overall, 164 of 145,220 fecal samples (0.113%) were positive for Salmonella Among the 158 tested isolates, four were identified as ESBL-producing isolates carrying ESBL determinants blaCTX-M-15 or blaCTX-M-14 In all cases, the genes coexisted with ISEcp1, regardless of whether they were located on the chromosome or on a plasmid. Our findings suggest that food workers may be a reservoir of ESBL-producing strains and could contribute to the spread of resistance genes from farm-derived Salmonella to other bacterial species present in the human gut.
Collapse
Affiliation(s)
- Hiroaki Shigemura
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Eri Sakatsume
- Kotobiken Medical Laboratories, Inc., Fukushima, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Yoshiki Etoh
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Yuki Carle
- Division of Pathology and Microbiology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Shiro Mizumoto
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, Gunma, Japan
| | - Motoi Suzuki
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Onozuka
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuo Inoshima
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
29
|
Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands. Genes (Basel) 2020; 11:genes11020142. [PMID: 32013150 PMCID: PMC7074111 DOI: 10.3390/genes11020142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acquisition of mobile elements by horizontal gene transfer can play a major role in bacterial adaptation and genome evolution by providing traits that contribute to bacterial fitness. However, gaining foreign DNA can also impose significant fitness costs to the host bacteria and can even produce detrimental effects. The efficiency of horizontal acquisition of DNA is thought to be improved by the activity of xenogeneic silencers. These molecules are a functionally related group of proteins that possess affinity for the acquired DNA. Binding of xenogeneic silencers suppresses the otherwise uncontrolled expression of genes from the newly acquired nucleic acid, facilitating their integration to the bacterial regulatory networks. Even when the genes encoding for xenogeneic silencers are part of the core genome, homologs encoded by horizontally acquired elements have also been identified and studied. In this article, we discuss the current knowledge about horizontally acquired xenogeneic silencer homologs, focusing on those encoded by genomic islands, highlighting their distribution and the major traits that allow these proteins to become part of the host regulatory networks.
Collapse
|
30
|
Mukherjee SK, Mukherjee M. Characterization and Bio-Typing of Multidrug Resistance Plasmids From Uropathogenic Escherichia coli Isolated From Clinical Setting. Front Microbiol 2019; 10:2913. [PMID: 31921080 PMCID: PMC6930805 DOI: 10.3389/fmicb.2019.02913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Urinary tract infection is primarily caused by Escherichia coli. Multidrug resistance and their rapid dissemination in this pathogenic microbe complicate therapeutic strategies and threaten public health. Conjugation systems responsible for interbacterial transmission of antibiotic resistance are plasmid-encoded and can be classified as the P, F, and I types. Specific pili types and pili associated proteins were related to the transfer among this gram-negative organism and were thought to depend on contacts created by these structures at the time of DNA transport. In this study, conjugation system types of the plasmids that harbor multidrug resistant genes (aac-1b-cr, oqxAB, qnrB, qnrS, bla TEM, bla OXA) amongst 19 E. coli uropathogenic isolates were characterized under ciprofloxacin/ceftazidime selection individually by pili and pili associated gene types. Investigations indicated incidence of single plasmid of multiple replicon type amongst the transconjugants. bla TEM, bla CTX-M, bla OXA, aac-1b-cr, oqxAB, qnrB, qnrS genes in varied combination were observed to be successfully co-transmitted against ceftazidme/ciprofloxacin selection. Seven primer pair sets were selected that encodes pili and pili associated genes (traF, trwJ, traE, trhE, traG, pilM, pilx4) by nucleotide database search tools using annotated plasmids of different incompatibility types to assign the conjugation system type of the transmissible resistant plasmids by PCR. traF was predominant irrespective of drug selection that indicated F-type conjugation system was responsible for transmission of resistant plasmids which results in the rapid dissemination of antibiotic resistance in the isolates screened. Therefore this is a first report of its kind that investigated pili and pili associated genes to bio-type multidrug resistant plasmids and their transmission in clinical settings amongst uropathogenic E. coli circulated in the eastern part of India.
Collapse
Affiliation(s)
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| |
Collapse
|
31
|
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 2019; 47:8136-8153. [PMID: 31276596 PMCID: PMC6736028 DOI: 10.1093/nar/gkz577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site.
Collapse
Affiliation(s)
- Jan-Hendrik Heilers
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Jens Reiners
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Annika Golzer
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Sander H J Smits
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Chris van der Does
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Luque A, Paytubi S, Sánchez-Montejo J, Gibert M, Balsalobre C, Madrid C. Crosstalk between bacterial conjugation and motility is mediated by plasmid-borne regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:708-717. [PMID: 31309702 DOI: 10.1111/1758-2229.12784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Plasmid conjugation is a major horizontal gene transfer mechanism. The acquisition of a plasmid may cause a perturbation of the cell functions in addition to provide advantageous properties for the recipient cell, such as the gaining of antibiotic resistances. The interplay between plasmid and chromosomal functions has been studied using the IncHI1 plasmid R27. Plasmids of the incompatibility group HI1, isolated from several Gram-negative pathogens, are associated with the spread of multidrug resistance. Their conjugation is tightly regulated by temperature, being repressed at temperatures within the host (37°C). In this report, we described that at permissive temperature, when conjugation of plasmid R27 is prompted, a reduction in the motility of the cells is observed. This reduction is mediated by the plasmid-encoded regulators TrhR/TrhY, which together with HtdA form a plasmid-borne regulatory circuit controlling R27 conjugation. TrhR/TrhY, required to induce R27 conjugation, is responsible for the downregulation of the flagella synthesis and the consequent decrease in motility. TrhR/TrhY repress, direct or indirectly, the expression of the specific flagellar sigma subunit FliA and, consequently, the expression of all genes located bellow in the flagellar expression cascade.
Collapse
Affiliation(s)
- Ainara Luque
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Sonia Paytubi
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Javier Sánchez-Montejo
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Marta Gibert
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Carlos Balsalobre
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Cristina Madrid
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
33
|
Hüttener M, Prieto A, Aznar S, Bernabeu M, Glaría E, Valledor AF, Paytubi S, Merino S, Tomás J, Juárez A. Expression of a novel class of bacterial Ig-like proteins is required for IncHI plasmid conjugation. PLoS Genet 2019; 15:e1008399. [PMID: 31527905 PMCID: PMC6764697 DOI: 10.1371/journal.pgen.1008399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR) is currently one of the most important challenges to the treatment of bacterial infections. A critical issue to combat AMR is to restrict its spread. In several instances, bacterial plasmids are involved in the global spread of AMR. Plasmids belonging to the incompatibility group (Inc)HI are widespread in Enterobacteriaceae and most of them express multiple antibiotic resistance determinants. They play a relevant role in the recent spread of colistin resistance. We present in this report novel findings regarding IncHI plasmid conjugation. Conjugative transfer in liquid medium of an IncHI plasmid requires expression of a plasmid-encoded, large-molecular-mass protein that contains an Ig-like domain. The protein, termed RSP, is encoded by a gene (ORF R0009) that maps in the Tra2 region of the IncHI1 R27 plasmid. The RSP protein is exported outside the cell by using the plasmid-encoded type IV secretion system that is also used for its transmission to new cells. Expression of the protein reduces cell motility and enables plasmid conjugation. Flagella are one of the cellular targets of the RSP protein. The RSP protein is required for a high rate of plasmid transfer in both flagellated and nonflagellated Salmonella cells. This effect suggests that RSP interacts with other cellular structures as well as with flagella. These unidentified interactions must facilitate mating pair formation and, hence, facilitate IncHI plasmid conjugation. Due to its location on the outer surfaces of the bacterial cell, targeting the RSP protein could be a means of controlling IncHI plasmid conjugation in natural environments or of combatting infections caused by AMR enterobacteria that harbor IncHI plasmids. Dissemination of antimicrobial resistance (AMR) among different bacterial populations occurs due to mainly the presence of plasmids that encode AMR determinants. IncHI plasmids are one of the groups of bacterial plasmids that confer AMR to several enterobacteria. Recently, resistance to one of the last-resort antibiotics (colistin) for some multidrug-resistant infections has spread very rapidly. IncHI plasmids represent 20% of all plasmids transmitting colistin resistance worldwide and 40% in Europe. When analyzing the interactions of the IncHI1 plasmid R27 with Salmonella, we identified a large-molecular-mass protein that is encoded by this plasmid and is exported to the external medium. The R27 plasmid gene coding for that protein (R0009) is widespread among IncHI plasmids. In this report, we characterize the protein, termed RSP. The presented data show that RSP plays a relevant role in IncHI plasmid conjugation and suggest that the protein is retained on the outer surface of the bacterial cells and facilitates cell-to-cell contact before plasmid DNA transfer. Considering that IncHI plasmids significantly contribute to AMR dissemination within enterobacteria, the findings reported in this paper suggest that the identified protein can be a target to control both IncHI-mediated AMR dissemination and infections caused by AMR enterobacteria that harbor these plasmids.
Collapse
Affiliation(s)
- Mário Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Sonia Aznar
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Estibaliz Glaría
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Annabel F. Valledor
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Sonia Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Joan Tomás
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Leekitcharoenphon P, Sørensen G, Löfström C, Battisti A, Szabo I, Wasyl D, Slowey R, Zhao S, Brisabois A, Kornschober C, Kärssin A, Szilárd J, Černý T, Svendsen CA, Pedersen K, Aarestrup FM, Hendriksen RS. Cross-Border Transmission of Salmonella Choleraesuis var. Kunzendorf in European Pigs and Wild Boar: Infection, Genetics, and Evolution. Front Microbiol 2019; 10:179. [PMID: 30787923 PMCID: PMC6373457 DOI: 10.3389/fmicb.2019.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica subspecies enterica serotype Choleraesuis is a swine adapted serovar. S. Choleraesuis variant Kunzendorf is responsible for the majority of outbreaks among pigs. S. Choleraesuis is rare in Europe, although there have been serious outbreaks in pigs including two outbreaks in Denmark in 1999–2000 and 2012–2013. Here, we elucidate the epidemiology, possible transmission routes and sources, and clonality of European S. Choleraesuis isolates including the Danish outbreak isolates. A total of 102 S. Choleraesuis isolates from different European countries and the United States, covering available isolates from the last two decades were selected for whole genome sequencing. We applied a temporally structured sequence analysis within a Bayesian framework to reconstruct a temporal and spatial phylogenetic tree. MLST type, resistance genes, plasmid replicons, and accessory genes were identified using bioinformatics tools. Fifty-eight isolates including 11 out of 12 strains from wild boars were pan-susceptible. The remaining isolates carried multiple resistance genes. Eleven different plasmid replicons in eight plasmids were determined among the isolates. Accessory genes were associated to the identified resistance genes and plasmids. The European S. Choleraesuis was estimated to have emerged in ∼1837 (95% credible interval, 1733–1983) with the mutation rate of 1.02 SNPs/genome/year. The isolates were clustered according to countries and neighbor countries. There were transmission events between strains from the United States and European countries. Wild boar and pig isolates were genetically linked suggesting cross-border transmission and transmission due to a wildlife reservoir. The phylogenetic tree shows that multiple introductions were responsible for the outbreak of 2012–2013 in Denmark, and suggests that poorly disinfected vehicles crossing the border into Denmark were potentially the source of the outbreak. Low levels of single nucleotide polymorphisms (SNPs) differences (0–4 SNPs) can be observed between clonal strains isolated from different organs of the same animal. Proper disinfection of livestock vehicles and improved quality control of livestock feed could help to prevent future spread of S. Choleraesuis or other more serious infectious diseases such as African swine fever (ASF) in the European pig production system.
Collapse
Affiliation(s)
- Pimlapas Leekitcharoenphon
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Gitte Sørensen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | | | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, National Reference Laboratory for Antimicrobial Resistance, Rome, Italy
| | - Istvan Szabo
- National Salmonella Reference Laboratory, Unit Molecular Microbiology and Genome Analysis, Federal Institute for Risk Assessment, Berlin, Germany
| | - Dariusz Wasyl
- National Veterinary Research Institute Department of Microbiology, National Reference Laboratory for Salmonellosis and Antimicrobial Resistance, Puławy, Poland
| | - Rosemarie Slowey
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD, United States
| | - Anne Brisabois
- French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | | | - Age Kärssin
- Veterinaar- ja Toidulaboratoorium, Tartu, Estonia
| | - Jánosi Szilárd
- Bakteriológiai Laboratórium, Állategészségügyi Diagnosztikai Igazgatóság, Nemzeti Élelmiszerlánc-biztonsági Hivatal, Budapest, Hungary
| | - Tomáš Černý
- Státní Veterinární Ústav Praha, Prague, Czechia
| | - Christina Aaby Svendsen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Karl Pedersen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| | - Rene S Hendriksen
- European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics, Research Group for Genomic Epidemiology, National Food Institute, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Liang Q, Jiang X, Hu L, Yin Z, Gao B, Zhao Y, Yang W, Yang H, Tong Y, Li W, Jiang L, Zhou D. Sequencing and Genomic Diversity Analysis of IncHI5 Plasmids. Front Microbiol 2019; 9:3318. [PMID: 30692976 PMCID: PMC6339943 DOI: 10.3389/fmicb.2018.03318] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/20/2018] [Indexed: 12/05/2022] Open
Abstract
IncHI plasmids could be divided into five different subgroups IncHI1–5. In this study, the complete nucleotide sequences of seven blaIMP- or blaVIM-carrying IncHI5 plasmids from Klebsiella pneumoniae, K. quasipneumoniae, and K. variicola were determined and compared in detail with all the other four available sequenced IncHI5 plasmids. These plasmids carried conserved IncHI5 backbones composed of repHI5B and a repFIB-like gene (replication), parABC (partition), and tra1 (conjugal transfer). Integration of a number of accessory modules, through horizontal gene transfer, at various sites of IncHI5 backbones resulted in various deletions of surrounding backbone regions and thus considerable diversification of IncHI5 backbones. Among the accessory modules were three kinds of resistance accessory modules, namely Tn10 and two antibiotic resistance islands designated ARI-A and ARI-B. These two islands, inserted at two different fixed sites (one island was at one site and the other was at a different site) of IncHI5 backbones, were derived from the prototype Tn3-family transposons Tn1696 and Tn6535, respectively, and could be further discriminated as various intact transposons and transposon-like structures. The ARI-A or ARI-B islands from different IncHI5 plasmids carried distinct profiles of antimicrobial resistance markers and associated mobile elements, and complex events of transposition and homologous recombination accounted for assembly of these islands. The carbapenemase genes blaIMP-4, blaIMP-38 and blaVIM-1 were identified within various class 1 integrons from ARI-A or ARI-B of the seven plasmids sequenced in this study. Data presented here would provide a deeper insight into diversification and evolution history of IncHI5 plasmids.
Collapse
Affiliation(s)
- Quanhui Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weixuan Li
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
| | - Lingxiao Jiang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
36
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
37
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1357] [Impact Index Per Article: 193.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Shala-Lawrence A, Bragagnolo N, Nowroozi-Dayeni R, Kheyson S, Audette GF. The interaction of TraW and TrbC is required to facilitate conjugation in F-like plasmids. Biochem Biophys Res Commun 2018; 503:2386-2392. [PMID: 29966652 DOI: 10.1016/j.bbrc.2018.06.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Bacterial conjugation, such as that mediated by the E. coli F plasmid, is a main mechanism driving bacterial evolution. Two important proteins required for F-pilus assembly and DNA transfer proficiency are TraW and TrbC. As members of a larger complex, these proteins assemble into a type IV secretion system and are essential components of pore formation and mating pair stabilization between the donor and the recipient cells. In the current report, we demonstrate the physical interaction of TraW and TrbC, show that TraW preferentially interacts with the N-terminal domain of TrbC, and that this interaction is important in restoring conjugation in traW/trbC knockouts.
Collapse
Affiliation(s)
- Agnesa Shala-Lawrence
- Department of Chemistry & Centre for Research on Biomolecular Interactions, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Nicholas Bragagnolo
- Department of Chemistry & Centre for Research on Biomolecular Interactions, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Roksana Nowroozi-Dayeni
- Department of Chemistry & Centre for Research on Biomolecular Interactions, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Sasha Kheyson
- Department of Chemistry & Centre for Research on Biomolecular Interactions, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
| | - Gerald F Audette
- Department of Chemistry & Centre for Research on Biomolecular Interactions, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
39
|
Characterization of a novel multidrug resistance plasmid pSGB23 isolated from Salmonella enterica subspecies enterica serovar Saintpaul. Gut Pathog 2018; 10:20. [PMID: 29881467 PMCID: PMC5985583 DOI: 10.1186/s13099-018-0249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background Salmonella enterica subspecies enterica serovar Saintpaul (S. Saintpaul) is an important gut pathogen which causes salmonellosis worldwide. Although intestinal salmonellosis is usually self-limiting, it can be life-threatening in children, the elderlies and immunocompromised patients. Appropriate antibiotic treatment is therefore required for these patients. However, the efficacy of many antibiotics on S. enterica infections has been greatly compromised due to spreading of multidrug resistance (MDR) plasmids, which poses serious threats on public health and needs to be closely monitored. In this study, we sequenced and fully characterized an S. enterica MDR plasmid pSGB23 isolated from chicken. Results Complete genome sequence analysis revealed that S. Saintpaul strain SGB23 harbored a 254 kb megaplasmid pSGB23, which carries 11 antibiotic resistance genes responsible for resistance to 9 classes of antibiotics and quaternary ammonium compounds that are commonly used to disinfect food processing facilities. Furthermore, we found that pSGB23 carries multiple conjugative systems, which allow it to spread into other Enterobacteriaceae spp. by self-conjugation. It also harbors multiple types of replicons and plasmid maintenance and addictive systems, which explains its broad host range and stable inheritance. Conclusions We report here a novel MDR plasmid pSGB23 harboured by S. enterica. To our knowledge, it carried the greatest number of antibiotic resistance genes with the broadest range of resistance spectrum among S. enterica MDR plasmids identified so far. The isolation of pSGB23 from food sources is worrisome, while surveillance on its further spreading will be carried out based on the findings reported in this study.
Collapse
|
40
|
Hüttener M, Prieto A, Aznar S, Dietrich M, Paytubi S, Juárez A. Tetracycline alters gene expression in Salmonella strains that harbor the Tn10 transposon. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:202-209. [PMID: 29393572 DOI: 10.1111/1758-2229.12621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report, we show that bacterial plasmids that harbor the Tn10 transposon (i.e., the IncHI1 plasmid R27) modify expression of different Salmonella regulons responding to the presence of tetracycline (Tc) in the medium. By using as a model the Tc-dependent upregulation of the ibpAB operon (which belongs to the heat shock regulon), we have identified Tn10-tetA (coding for a Tc efflux pump) and adjacent tetC sequences as required for ibpAB upregulation. Characterization of transcripts in the tetAC region showed that tetA transcription can continue into tetC sequences, generating a long 3'UTR sequence, which can protect transcripts from RNA processing, thus increasing the expression of TetA protein. In the presence of Tc, the DnaK and IbpA chaperones are overexpressed and translocated to the periplasm and to the membrane fraction respectively. DnaK targeting unfolded proteins is known to induce heat shock by avoiding RpoH proteolysis. We correlate expression levels of Tn10-encoded TetA protein with heat shock induction in Salmonella, likely because TetA activity compromises protein secretion.
Collapse
Affiliation(s)
- M Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - S Aznar
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - M Dietrich
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - S Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and technology, Barcelona, Spain
| |
Collapse
|
41
|
Niu C, Wang D, Liu X, Liu H, Liu X, Feng E, Pan C, Wang R, Xiao W, Liu X, Liu X, Zhu L, Wang H. An H-NS Family Protein, Sfh, Regulates Acid Resistance by Inhibition of Glutamate Decarboxylase Expression in Shigella flexneri 2457T. Front Microbiol 2017; 8:1923. [PMID: 29051753 PMCID: PMC5633597 DOI: 10.3389/fmicb.2017.01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
The glutamate-dependent acid-resistance system is the most effective acid tolerance pathway in Shigella, allowing survival in extremely acidic environments. However, the regulation of this system in Shigella remains elusive. In the current study, we identified significant differences in the levels of glutamate decarboxylase between three Shigella flexneri strains with different levels of acid resistance using blue native-polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF)/sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results showed that the degree of acid resistance and the levels of GadA/B were significantly lower in strain 2457T compared with two other S. flexneri strains. It has been reported that plasmid pSf-R27 is expressed in strain 2457T but not in the other 142 sequenced S. flexneri isolates. pSf-R27 encodes protein Sfh, which belongs to a family of histone-like nucleoid-structuring (H-NS) proteins that participate in the transcriptional control of glutamate-dependent acid resistance, implicating pSf-R27 in the lower acid resistance of strain 2457T. Transformation of pSf-R27 or sfh alone into strain 301 resulted in decreased expression of GadA/B in the recombinant strains. Thus, we confirmed that H-NS family protein Sfh, bound to the gadA/B regulatory region and regulates the expression of glutamate decarboxylase at the transcriptional level. We also examined the acid tolerance of the wild-type and recombinant strains using flow cytometry and determined that the acid tolerance of S. flexneri is closely related to the expression of GadA/B. These findings further our understanding of the acid tolerance of S. flexneri, especially via the glutamate-dependent pathway.
Collapse
Affiliation(s)
- Chang Niu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoqing Liu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Hongsheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ruifeng Wang
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingming Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinrui Liu
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
42
|
Liang Q, Yin Z, Zhao Y, Liang L, Feng J, Zhan Z, Wang H, Song Y, Tong Y, Wu W, Chen W, Wang J, Jiang L, Zhou D. Sequencing and comparative genomics analysis of the IncHI2 plasmids pT5282-mphA and p112298-catA and the IncHI5 plasmid pYNKP001-dfrA. Int J Antimicrob Agents 2017; 49:709-718. [DOI: 10.1016/j.ijantimicag.2017.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 01/22/2017] [Indexed: 01/16/2023]
|
43
|
Role of the virulence plasmid in acid resistance of Shigella flexneri. Sci Rep 2017; 7:46465. [PMID: 28440329 PMCID: PMC5404508 DOI: 10.1038/srep46465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Virulence plasmid (VP) acquisition was a key step in the evolution of Shigella from a non-pathogenic Escherichia coli ancestor to a pathogenic genus. In addition, the co-evolution and co-ordination of chromosomes and VPs was also a very important step in the evolutionary process. To investigate the cross-talk between VPs and bacterial chromosomes, we analyzed the expression profiles of protein complexes and protein monomers in three wild-type Shigella flexneri strains and their corresponding VP deletion mutants. A non-pathogenic wild-type E. coli strain and mutant E. coli strains harboring three Shigella VPs were also analyzed. Comparisons showed that the expression of chromosome-encoded proteins GadA/B and AtpA/D, which are associated with intracellular proton flow and pH tuning of bacterial cells, was significantly altered following acquisition or deletion of the VP. The acid tolerance of the above strains was also compared, and the results confirmed that the presence of the VP reduced the bacterial survival rate in extremely acidic environments, such as that in the host stomach. These results further our understanding of the evolution from non-pathogenic E. coli to Shigella, and highlight the importance of co-ordination between heterologous genes and the host chromosome in the evolution of bacterial species.
Collapse
|
44
|
Carloni E, Andreoni F, Omiccioli E, Villa L, Magnani M, Carattoli A. Comparative analysis of the standard PCR-Based Replicon Typing (PBRT) with the commercial PBRT-KIT. Plasmid 2017; 90:10-14. [PMID: 28137396 DOI: 10.1016/j.plasmid.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Plasmids are the main vectors of resistance and virulence genes in Enterobacteriaceae and plasmid typing is essential for the analysis of evolution, epidemiology and spread of antibacterial resistance. The PCR-Based Replicon Typing (PBRT), developed by Carattoli et al. in 2005, was an efficient method for plasmid identification and typing in Enterobacteriaceae. The 2005 PBRT scheme detected 18 replicons in 8 PCR reactions. Recently, the identification of novel replicons and plasmid types requested an update of the PBRT scheme. A commercial PBRT-KIT was devised for the identification of 28 different replicons in 8 multiplex PCRs. Here we report sensitivity and specificity of the PBRT-KIT carried out in comparison with the 2005 PBRT. The analysis of plasmid content was performed on forty-two enterobacterial strains from different sources, containing different replicon content. The 2005 PBRT identified replicons in 76.2% of the strains. The PBRT-KIT detected replicons in 100% of the analyzed strains, demonstrating increasing sensitivity and specificity of the commercial test with respect to the former 2005 PBRT scheme.
Collapse
Affiliation(s)
- Elisa Carloni
- Department of Biomolecular Science, University of Urbino "Carlo Bo", via Arco d'Augusto, 2, 61032 Fano, Italy
| | - Francesca Andreoni
- Department of Biomolecular Science, University of Urbino "Carlo Bo", via Arco d'Augusto, 2, 61032 Fano, Italy.
| | | | - Laura Villa
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, viale Regina Elena, 299, 00161 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino "Carlo Bo", via Arco d'Augusto, 2, 61032 Fano, Italy
| | - Alessandra Carattoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
45
|
Kubasova T, Cejkova D, Matiasovicova J, Sekelova Z, Polansky O, Medvecky M, Rychlik I, Juricova H. Antibiotic Resistance, Core-Genome and Protein Expression in IncHI1 Plasmids in Salmonella Typhimurium. Genome Biol Evol 2016; 8:1661-71. [PMID: 27189997 PMCID: PMC5390554 DOI: 10.1093/gbe/evw105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Conjugative plasmids from the IncHI1 incompatibility group play an important role in transferring antibiotic resistance in Salmonella Typhimurium. However, knowledge of their genome structure or gene expression is limited. In this study, we determined the complete nucleotide sequences of four IncHI1 plasmids transferring resistance to antibiotics by two different next generation sequencing protocols and protein expression by mass spectrometry. Sequence data including additional 11 IncHI1 plasmids from GenBank were used for the definition of the IncHI1 plasmid core-genome and pan-genome. The core-genome consisted of approximately 123 kbp and 122 genes while the total pan-genome represented approximately 600 kbp. When the core-genome sequences were used for multiple alignments, the 15 tested IncHI1 plasmids were separated into two main lineages. GC content in core-genome genes was around 46% and 50% in accessory genome genes. A multidrug resistance region present in all 4 sequenced plasmids extended over 20 kbp and, except for tet(B), the genes responsible for antibiotic resistance were those with the highest GC content. IncHI1 plasmids therefore represent replicons that evolved in low GC content bacteria. From their original host, they spread to Salmonella and during this spread these plasmids acquired multiple accessory genes including those coding for antibiotic resistance. Antibiotic-resistance genes belonged to genes with the highest level of expression and were constitutively expressed even in the absence of antibiotics. This is the likely mechanism that facilitates host cell survival when antibiotics suddenly emerge in the environment.
Collapse
Affiliation(s)
- Tereza Kubasova
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Darina Cejkova
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | | | - Zuzana Sekelova
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Matej Medvecky
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Helena Juricova
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| |
Collapse
|
46
|
Tassinari E, Aznar S, Urcola I, Prieto A, Hüttener M, Juárez A. The incC Sequence Is Required for R27 Plasmid Stability. Front Microbiol 2016; 7:629. [PMID: 27199955 PMCID: PMC4853401 DOI: 10.3389/fmicb.2016.00629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/18/2016] [Indexed: 11/15/2022] Open
Abstract
IncHI plasmids account for multiple antimicrobial resistance in Salmonella and other enterobacterial genera. These plasmids are generally very stable in their bacterial hosts. R27 is the archetype of IncHI1 plasmids. A high percentage of the R27-encoded open reading frames (ORFs) (66.7%) do not show similarity to any known ORFs. We performed a deletion analysis of all non-essential R27 DNA sequences to search for hitherto non-identified plasmid functions that might be required for plasmid stability. We report the identification of a short DNA sequence (incC) that is essential for R27 stability. That region contains several repeats (incC repeats), belongs to one of the three-plasmid replicons (R27 FIA-like) and is targeted by the R27 E protein. Deletion of the incC sequence drastically reduces R27 stability both in Escherichia coli and in Salmonella, the effect being more pronounced in this latter species. Interfering with incC–E protein interaction must lead to a reduced IncHI1 plasmid stability, and may represent a new approach to combat antimicrobial resistance.
Collapse
Affiliation(s)
| | - Sonia Aznar
- Institut de Bioenginyeria de Catalunya Barcelona, Spain
| | - Imanol Urcola
- Institut de Bioenginyeria de Catalunya Barcelona, Spain
| | - Alejandro Prieto
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| | | | - Antonio Juárez
- Institut de Bioenginyeria de CatalunyaBarcelona, Spain; Departament de Microbiologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
47
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
48
|
Bae D, Cheng CM, Khan AA. Characterization of extended-spectrum β-lactamase (ESBL) producing non-typhoidal Salmonella (NTS) from imported food products. Int J Food Microbiol 2015. [PMID: 26210532 DOI: 10.1016/j.ijfoodmicro.2015.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Food contaminated with extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica has emerged as an important global issue due to the international food-product trade. Therefore, the purpose of this study was to investigate whether imported food products can serve as a reservoir for non-typhoidal Salmonella (NTS) that can transmit β-lactam-resistance to humans through ingestion of the contaminated food. NTS isolates (n=110) were collected from various imported food products (n=3480) from 2011 to 2013. The NTS isolates were analyzed by serotyping, antimicrobial susceptibility tests, and plasmid profiling. Salmonella ser. Weltevreden, Salmonella ser. Newport, Salmonella ser. Senftenberg, Salmonella ser. Virchow, Salmonella ser. Enteritidis, Salmonella ser. Typhimurium, and Salmonella ser. Bareilly were the most prevalent serovars. Nine NTS strains were resistant to ampicillin and/or one or more cephalosporins (MIC>32 μg/mL). Polymerase chain reaction (PCR) detection revealed that all nine isolates carried the bla(TEM-1) β-lactamase gene, with or without the bla(CTX-M-9) or bla(OXA-1) genes. Two isolates, PSS_913 and PSS_988, exhibited decreased susceptibility to extended-spectrum cephalosporins and ampicillin. Plasmids ranging in size from less than 8 to over 165 kbp, from all of the 9 resistant isolates, belonged to the IncHI1, IncI1, IncN, or IncX groups. Conjugation experiments and Southern hybridization, using bla(TEM-1), confirmed the plasmid-mediated transfer of ESBL genes, which resulted in increased MICs of β-lactams for Escherichia coli transconjugants. The contamination of imported food products by NTS with conjugative plasmid-borne ESBL genes may contribute to the spread of ESBL-producing NTS and compromise the therapeutic activity of extended-spectrum β-lactam antibiotics.
Collapse
Affiliation(s)
- Dongryeoul Bae
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Chorng-Ming Cheng
- Pacific Regional Laboratory-Southwest, U.S. Food and Drug Administration, Irvine, CA 92612, United States
| | - Ashraf A Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
49
|
Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function. Plasmid 2015; 80:32-44. [PMID: 25952329 DOI: 10.1016/j.plasmid.2015.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.
Collapse
Affiliation(s)
- Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
50
|
Differentiation of IncL and IncM Plasmids Associated with the Spread of Clinically Relevant Antimicrobial Resistance. PLoS One 2015; 10:e0123063. [PMID: 25933288 PMCID: PMC4416936 DOI: 10.1371/journal.pone.0123063] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/27/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction blaOXA-48, blaNDM-1 and blaCTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described blaOXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the blaSHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). Methods Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. Results Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the blaOXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. Conclusion This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.
Collapse
|