1
|
Hong JK, Yeom M, Hwang HY, Mun E, Woo JH, Kim Y, Shin JH, Lee Y, Kim D, Peter Guengerich F, Choi JY. Four germline POLH variants, including two found in skin tumors, impair DNA polymerase η function and cellular tolerance to UV radiation and cisplatin. Chem Biol Interact 2025; 416:111551. [PMID: 40334807 DOI: 10.1016/j.cbi.2025.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/27/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
DNA polymerase (pol) η is vital for accurately replicating DNA opposite ultraviolet light (UV)-induced cyclobutane pyrimidine dimers and cisplatin-induced intrastrand purine crosslinks. While human POLH deficiency is linked to the disease xeroderma pigmentosum variant, the functional consequences of germline and somatic POLH variants remain largely unexplored. We characterized nine nonsynonymous POLH germline variants, five of which have also been found in various tumors. Enzyme activity was first assessed using recombinant pol η (residues 1-432) proteins. Variants F17S, C227Y, and R356X displayed substantially reduced or nearly abolished polymerase activity opposite cis-syn cyclobutane thymine dimer (CTD) compared to the wild-type. Cellular effects were then evaluated in POLH-deficient human embryonic kidney (HEK) 293 cells. Unlike cells transfected with wild-type POLH, cells transfected with F17S, R81C, C227Y, or R356X variants failed to rescue UV- and cisplatin-sensitivity. Interestingly, the R81C variant protein was undetectable in transfected cells. Further steady-state kinetic analysis revealed that the F17S, C227Y, and R356X variants had 3- to 5000-fold reductions in kcat/Km values for correct dATP insertion opposite CTD, while the R81C variant exhibited kinetics comparable to the wild-type enzyme. CRISPR/Cas9-mediated knock-in of the R81C variant in HEK 293T cells was associated with significantly impaired pol η protein expression and increased cisplatin sensitivity. Notably, R81C and R356X mutations have been reported in skin cancer samples. These findings suggest that R81C, F17S, C227Y, and R356X POLH variants-underexpressed or hypoactive-may be insufficient to protect cells from UV radiation and cisplatin, highlighting their potential implications for individual susceptibility to UV and cisplatin damage.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Mina Yeom
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Eunji Mun
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Jae-Hyeon Woo
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeho Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jeong-Yun Choi
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
3
|
Yeom M, Hong JK, Shin JH, Lee Y, Guengerich FP, Choi JY. Identification of Three Human POLH Germline Variants Defective in Complementing the UV- and Cisplatin-Sensitivity of POLH-Deficient Cells. Int J Mol Sci 2023; 24:5198. [PMID: 36982269 PMCID: PMC10048814 DOI: 10.3390/ijms24065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1-432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3'-T and 5'-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants-substantially reduced in TLS activity-failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may increase the individual susceptibility to UV irradiation and cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mina Yeom
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jin-Kyung Hong
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | | | - Jeong-Yun Choi
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Tashiro R, Sugiyama H. Photoreaction of DNA Containing 5-Halouracil and its Products. Photochem Photobiol 2022; 98:532-545. [PMID: 34543451 PMCID: PMC9197447 DOI: 10.1111/php.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
5-Halouracil, which is a DNA base analog in which the methyl group at the C5 position of thymine is replaced with a halogen atom, has been used in studies of DNA damage. In DNA strands, the uracil radical generated from 5-halouracil causes DNA damage via a hydrogen-abstraction reaction. We analyzed the photoreaction of 5-halouracil in various DNA structures and revealed that the reaction is DNA structure-dependent. In this review, we summarize the results of the analysis of the reactivity of 5-halouracil in various DNA local structures. Among the 5-halouracil molecules, 5-bromouracil has been used as a probe in the analysis of photoinduced electron transfer through DNA. The analysis of groove-binder/DNA and protein/DNA complexes using a 5-bromouracil-based electron transfer system is also described.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cyo, Suzuka, Mie, 513-8670, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Pereira TDSF, Castro LP, Menck CFM, Maia MHT, Souza LLD, Fonseca FP, Pontes HAR, Pontes FSC, Gomez RS. Xeroderma pigmentosum variant: squamous cell carcinoma of the lower lip harboring exon 11 mutation of POLH. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:e97-e105. [PMID: 34030998 DOI: 10.1016/j.oooo.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare inherited disease caused by deficiencies in DNA damage repair, which mainly results from the failure of nucleotide excision repair or defects in translesion DNA synthesis. The development of multiple malignancies is one of the most prominent features of this condition, which is clinically characterized by the occurrence of hyperpigmentation and lesions associated with sunlight exposure. Lip squamous cell carcinoma in patients with XP has rarely been reported, and information regarding the genetic analysis of these patients is limited. In this report, a case of a 20-year-old patient who developed squamous cell carcinoma in the lower lip is described. Although the tumor was surgically excised, the patient presented with recurrence a few months later. Targeted sequencing using a customized panel of DNA repair genes revealed a mutation in POLH, the gene encoding DNA polymerase eta. Therefore, molecular characterization is important to further improve the understanding of possible phenotype-genotype correlations and mechanisms involved in the pathogenesis of XP.
Collapse
Affiliation(s)
| | - Ligia Pereira Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Helena Thomaz Maia
- Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Lucas Lacerda de Souza
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helder Antônio Rebelo Pontes
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Flavia Sirotheau Correa Pontes
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Bukowska B, Karwowski BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci 2018; 195:6-18. [DOI: 10.1016/j.lfs.2017.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/11/2022]
|
8
|
Akagi J, Yokoi M, Cho YM, Toyoda T, Ohmori H, Hanaoka F, Ogawa K. Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair (Amst) 2017; 61:76-85. [PMID: 29247828 DOI: 10.1016/j.dnarep.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.
Collapse
Affiliation(s)
- Junichi Akagi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo Prefecture 657-8501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture 305-8577, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
9
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1185] [Impact Index Per Article: 148.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
10
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
11
|
Kasar S, Kim J, Improgo R, Tiao G, Polak P, Haradhvala N, Lawrence MS, Kiezun A, Fernandes SM, Bahl S, Sougnez C, Gabriel S, Lander ES, Kim HT, Getz G, Brown JR. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat Commun 2015; 6:8866. [PMID: 26638776 PMCID: PMC4686820 DOI: 10.1038/ncomms9866] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022] Open
Abstract
Patients with chromosome 13q deletion or normal cytogenetics represent the majority of chronic lymphocytic leukaemia (CLL) cases, yet have relatively few driver mutations. To better understand their genomic landscape, here we perform whole-genome sequencing on a cohort of patients enriched with these cytogenetic characteristics. Mutations in known CLL drivers are seen in only 33% of this cohort, and associated with normal cytogenetics and unmutated IGHV. The most commonly mutated gene in our cohort, IGLL5, shows a mutational pattern suggestive of activation-induced cytidine deaminase (AID) activity. Unsupervised analysis of mutational signatures demonstrates the activities of canonical AID (c-AID), leading to clustered mutations near active transcriptional start sites; non-canonical AID (nc-AID), leading to genome-wide non-clustered mutations, and an ageing signature responsible for most mutations. Using mutation clonality to infer time of onset, we find that while ageing and c-AID activities are ongoing, nc-AID-associated mutations likely occur earlier in tumour evolution. The oncogenic events driving indolent chronic lymphocytic leukaemia are relatively unknown. Here, the authors perform whole genome sequencing on 30 such tumours and identify recurrent mutations in IGLL5 and two activation induced cytidine deaminase signatures that are operative at different stages of CLL evolution.
Collapse
Affiliation(s)
- S Kasar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - J Kim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - R Improgo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - G Tiao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - P Polak
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - N Haradhvala
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - M S Lawrence
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - A Kiezun
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - S M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - S Bahl
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - C Sougnez
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - S Gabriel
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - E S Lander
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - H T Kim
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - G Getz
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - J R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Cordeiro-Stone M, McNulty JJ, Sproul CD, Chastain PD, Gibbs-Flournoy E, Zhou Y, Carson C, Rao S, Mitchell DL, Simpson DA, Thomas NE, Ibrahim JG, Kaufmann WK. Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines. Pigment Cell Melanoma Res 2015; 29:68-80. [PMID: 26437005 DOI: 10.1111/pcmr.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| | - John J McNulty
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | - Paul D Chastain
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eugene Gibbs-Flournoy
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchun Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Craig Carson
- Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Shangbang Rao
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - David L Mitchell
- Science Park - Research Division, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Dennis A Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nancy E Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA.,Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Ikehata H, Chang Y, Yokoi M, Yamamoto M, Hanaoka F. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst) 2014; 22:112-22. [PMID: 25128761 DOI: 10.1016/j.dnarep.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.
Collapse
Affiliation(s)
- Hironobu Ikehata
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Yumin Chang
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Masayuki Yamamoto
- Department of Physiological Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| |
Collapse
|
14
|
Sproul CD, Mitchell DL, Rao S, Ibrahim JG, Kaufmann WK, Cordeiro-Stone M. Cyclobutane Pyrimidine Dimer Density as a Predictive Biomarker of the Biological Effects of Ultraviolet Radiation in Normal Human Fibroblast. Photochem Photobiol 2013; 90:145-54. [PMID: 24148148 DOI: 10.1111/php.12194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
This study compared biological responses of normal human fibroblasts (NHF1) to three sources of ultraviolet radiation (UVR), emitting UVC wavelengths, UVB wavelengths, or a combination of UVA and UVB (solar simulator; emission spectrum, 94.3% UVA and 5.7% UVB). The endpoints measured were cytotoxicity, intra-S checkpoint activation, inhibition of DNA replication and mutagenicity. Results show that the magnitude of each response to the indicated radiation sources was best predicted by the density of DNA cyclobutane pyrimidine dimers (CPD). The density of 6-4 pyrimidine-pyrimidone photoproducts was highest in DNA from UVC-irradiated cells (14% of CPD) as compared to those exposed to UVB (11%) or UVA-UVB (7%). The solar simulator source, under the experimental conditions described here, did not induce the formation of 8-oxo-7,8-dihydroguanine in NHF1 above background levels. Taken together, these results suggest that CPD play a dominant role in DNA damage responses and highlight the importance of using endogenous biomarkers to compare and report biological effects induced by different sources of UVR.
Collapse
Affiliation(s)
- Christopher D Sproul
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David L Mitchell
- The University of Texas MD Anderson Cancer Center, Science Park/Research Division, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shangbang Rao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William K Kaufmann
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marila Cordeiro-Stone
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
15
|
Taggart DJ, Camerlengo TL, Harrison JK, Sherrer SM, Kshetry AK, Taylor JS, Huang K, Suo Z. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis. Nucleic Acids Res 2013; 41:e96. [PMID: 23470999 PMCID: PMC3632128 DOI: 10.1093/nar/gkt141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis-syn thymidine-thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases.
Collapse
Affiliation(s)
- David J Taggart
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu X, Zhang X, Qiao J, Fang H. Identification of a novel nonsense mutation in POLH in a Chinese pedigree with xeroderma pigmentosum, variant type. Int J Med Sci 2013; 10:766-70. [PMID: 23630442 PMCID: PMC3638301 DOI: 10.7150/ijms.6095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/17/2013] [Indexed: 01/13/2023] Open
Abstract
Xeroderma pigmentosum-variant (XPV) is one type of XP, a rare autosomal recessive disorder, and caused by defects in the post replication repair machinery while nucleotide-excision repair (NER) is not impaired. In the present study, we reported a Chinese family with XPV phenotype, which was confirmed by histopathological results. Genetic variants were detected by polymerase chain reaction and exon sequencing. Furthermore, the reported molecular defects in XPV patients from previous literatures were reviewed. A homozygous c.67C>T mutation in the exon 2 of DNA polymerase eta (POLH), a novel non-sense mutation in POLH, was discovered.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Dermatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | |
Collapse
|
17
|
Ito W, Yokoi M, Sakayoshi N, Sakurai Y, Akagi JI, Mitani H, Hanaoka F. Stalled Polη at its cognate substrate initiates an alternative translesion synthesis pathway via interaction with REV1. Genes Cells 2012; 17:98-108. [DOI: 10.1111/j.1365-2443.2011.01576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
19
|
The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 2010; 187:21-35. [PMID: 20980236 DOI: 10.1534/genetics.110.124172] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A cell's ability to tolerate DNA damage is directly connected to the human development of diseases and cancer. To better understand the processes underlying mutagenesis, we studied the cell's reliance on the potentially error-prone translesion synthesis (TLS), and an error-free, template-switching pathway in Saccharomyces cerevisiae. The primary proteins mediating S. cerevisiae TLS are three DNA polymerases (Pols): Rev1, Pol ζ (Rev3/7), and Pol η (Rad30), all with human homologs. Rev1's noncatalytic role in recruiting other DNA polymerases is known to be important for TLS. However, the biological significance of Rev1's unusual conserved DNA polymerase activity, which inserts dC, is much less well understood. Here, we demonstrate that inactivating Rev1's DNA polymerase function sensitizes cells to both chronic and acute exposure to 4-nitroquinoline-1-oxide (4-NQO) but not to UV or cisplatin. Full Rev1-dependent resistance to 4-NQO, however, also requires the additional Rev1 functions. When error-free tolerance is disrupted through deletion of MMS2, Rev1's catalytic activity is more vital for 4-NQO resistance, possibly explaining why the biological significance of Rev1's catalytic activity has been elusive. In the presence or absence of Mms2-dependent error-free tolerance, the catalytic dead strain of Rev1 exhibits a lower 4-NQO-induced mutation frequency than wild type. Furthermore, Pol ζ, but not Pol η, also contributes to 4-NQO resistance. These results show that Rev1's catalytic activity is important in vivo when the cell has to cope with specific DNA lesions, such as N(2)-dG.
Collapse
|
20
|
Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010; 20:304-11. [PMID: 20934516 DOI: 10.1016/j.semcancer.2010.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular nature of the defect.
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
21
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
22
|
Poon K, Itoh S, Suzuki N, Laxmi YRS, Yoshizawa I, Shibutani S. Miscoding properties of 6alpha- and 6beta-diastereoisomers of the N(2)-(estradiol-6-yl)-2'-deoxyguanosine DNA adduct by Y-family human DNA polymerases. Biochemistry 2010; 47:6695-701. [PMID: 18512958 DOI: 10.1021/bi7022255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment with estrogen increases the risk of breast, ovary, and endometrial cancers in women. DNA damage induced by estrogen is thought to be involved in estrogen carcinogenesis. In fact, Y-family human DNA polymerases (pol) eta and kappa, which are highly expressed in the reproductive organs, miscode model estrogen-derived DNA adducts during DNA synthesis. Since the estrogen-DNA adducts are a mixture of 6alpha- and 6beta-diastereoisomers of dG-N(2)-6-estrogen or dA-N(6)-6-estrogen, the stereochemistry of each isomeric adduct on translesion synthesis catalyzed by DNA pols has not been investigated. We have recently established a phosphoramidite chemical procedure to insert 6alpha- or 6beta-isomeric N(2)-(estradiol-6-yl)-2'-deoxyguanosine (dG-N(2)-6-E(2)) into oligodeoxynucleotides. Using such site-specific modified oligomer as a template, the specificity and frequency of miscoding by dG-N(2)-6alpha-E(2) or dG-N(2)-6beta-E(2) were explored using pol eta and a truncated form of pol kappa (pol kappaDeltaC). Translesion synthesis catalyzed by pol eta bypassed both the 6alpha- and 6beta-isomers of dG-N(2)-6-E(2), with a weak blockage at the adduct site, while translesion synthesis catalyzed by pol kappaDeltaC readily bypassed both isomeric adducts. Quantitative analysis of base substitutions and deletions occurring at the adduct site showed that pol kappaDeltaC was more efficient than pol eta by incorporating dCMP opposite both 6alpha- and 6beta-isomeric dG-N(2)-6-E(2) adducts. The miscoding events occurred more frequently with pol eta, but not with pol kappaDeltaC. Pol eta promoted incorporation of dAMP and dTMP at both the 6alpha- and 6beta-isomeric adducts, generating G --> T transversions and G --> A transitions. One- and two-base deletions were also formed. The 6alpha-isomeric adduct promoted slightly lower frequency of dCMP incorporation and higher frequency of dTMP incorporation and one-base deletions, compared with the 6beta-isomeric adduct. These observations were supported by steady-state kinetic studies. Taken together, the miscoding property of the 6alpha-isomeric dG-N(2)-6-E(2) is likely to be similar to that of the 6beta-isomeric adduct.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
24
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
25
|
Xeroderma Pigmentosum Variant, XP-V: Its Product and Biological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 637:93-102. [DOI: 10.1007/978-0-387-09599-8_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Sun J, Yomogida K, Sakao S, Yamamoto H, Yoshida K, Watanabe K, Morita T, Araki K, Yamamura KI, Tateishi S. Rad18 is required for long-term maintenance of spermatogenesis in mouse testes. Mech Dev 2008; 126:173-83. [PMID: 19068231 DOI: 10.1016/j.mod.2008.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 01/19/2023]
Abstract
Maintaining the integrity of spermatogenic stem cells is essential to transfer genetic information to a descendant. However, knowledge of maintenance of genetic stability in stem cells is still limited. RAD18 is critical for postreplication repair through mono- and multi-ubiquitination of proliferating cell nuclear antigen (PCNA) to maintain genomic stability. Mammalian RAD18 is highly expressed in the spermatocytes and the nuclei of a few spermatogonia in adult mice. To elucidate the physiological function of RAD18, we analyzed a phenotype of Rad18-/- mice. The mice were born and appeared to grow normally. Although the mice were fertile, fertility and testis weight decreased with age. Histological examination revealed normal spermatogenesis in almost all seminiferous tubules in Rad18-/- testes at 2 months old, and abnormal sperm could not be detected in the epididymis. However, 25% of the tubules lost almost all germ cells at 12 months. The seminiferous tubules frequently retained only late differentiated phase germ cells, suggesting that the exhaustion of spermatogonial stem cells leads to the loss of all germ cells in the seminiferous tubules. Wild-type germ cells were successfully transplanted into and colonized in the seminiferous tubules of aged Rad18-/- mice, indicating that Sertoli cells have a normal supportive function even in aged testes. We conclude that RAD18 is intrinsically required for the long-term maintenance of spermatogenesis.
Collapse
Affiliation(s)
- Jinghua Sun
- Cell Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo2-2-1, 860-0811 Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ukai A, Ishimaru K, Ouchida R, Mori H, Kano C, Moritan T, Wang JY. Induction of A:T Mutations Is Dependent on Cellular Environment but Independent of Mutation Frequency and Target Gene Location. THE JOURNAL OF IMMUNOLOGY 2008; 181:7835-42. [DOI: 10.4049/jimmunol.181.11.7835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Makarova AV, Gening LV, Makarova IV, Tarantul VZ. Activity of error-prone DNA polymerase iota in different periods of house mouse Mus musculus ontogeny. Russ J Dev Biol 2008. [DOI: 10.1134/s1062360408050068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Inui H, Oh KS, Nadem C, Ueda T, Khan SG, Metin A, Gozukara E, Emmert S, Slor H, Busch DB, Baker CC, DiGiovanna JJ, Tamura D, Seitz CS, Gratchev A, Wu WH, Chung KY, Chung HJ, Azizi E, Woodgate R, Schneider TD, Kraemer KH. Xeroderma pigmentosum-variant patients from America, Europe, and Asia. J Invest Dermatol 2008; 128:2055-68. [PMID: 18368133 PMCID: PMC2562952 DOI: 10.1038/jid.2008.48] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xeroderma pigmentosum-variant (XP-V) patients have sun sensitivity and increased skin cancer risk. Their cells have normal nucleotide excision repair, but have defects in the POLH gene encoding an error-prone polymerase, DNA polymerase eta (pol eta). To survey the molecular basis of XP-V worldwide, we measured pol eta protein in skin fibroblasts from putative XP-V patients (aged 8-66 years) from 10 families in North America, Turkey, Israel, Germany, and Korea. Pol eta was undetectable in cells from patients in eight families, whereas two showed faint bands. DNA sequencing identified 10 different POLH mutations. There were two splicing, one nonsense, five frameshift (3 deletion and 2 insertion), and two missense mutations. Nine of these mutations involved the catalytic domain. Although affected siblings had similar clinical features, the relation between the clinical features and the mutations was not clear. POLH mRNA levels were normal or reduced by 50% in three cell strains with undetectable levels of pol eta protein, indicating that nonsense-mediated message decay was limited. We found a wide spectrum of mutations in the POLH gene among XP-V patients in different countries, suggesting that many of these mutations arose independently.
Collapse
Affiliation(s)
- Hiroki Inui
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kyu-Seon Oh
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Carine Nadem
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takahiro Ueda
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sikandar G. Khan
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ahmet Metin
- Ankara Ataturk Research and Training Hospital, Dermatology Clinic, Ankara, Turkey
| | - Engin Gozukara
- Department of Medical Biology and Genetics, Yeditepe University Medical School, Istanbul, Turkey
| | - Steffen Emmert
- Department of Dermatology, Georg-August-University, Goettingen, Germany
| | - Hanoch Slor
- Department of Human Genetics, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - David B. Busch
- Armed Forces Institute of Pathology, Washington, District of Columbia, USA
| | | | - John J. DiGiovanna
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Division of Dermatopharmacology, Department of Dermatology, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, USA
| | - Deborah Tamura
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cornelia S. Seitz
- Department of Dermatology, University of Wuerzburg, Wuerzburg, Germany
| | - Alexei Gratchev
- Department of Dermatology, University Medical Center Mannheim, Ruprecht–Karls University of Heidelberg, Mannheim, Germany
| | - Wen Hao Wu
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kee Yang Chung
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Chung
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Esther Azizi
- Department of Dermatology, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Thomas D. Schneider
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Pabla R, Rozario D, Siede W. Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:157-68. [PMID: 17874115 DOI: 10.1007/s00411-007-0132-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/03/2007] [Indexed: 05/17/2023]
Abstract
RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo.
Collapse
Affiliation(s)
- Ritu Pabla
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
31
|
Shiomi Y, Masutani C, Hanaoka F, Kimura H, Tsurimoto T. A Second Proliferating Cell Nuclear Antigen Loader Complex, Ctf18-Replication Factor C, Stimulates DNA Polymerase η Activity. J Biol Chem 2007; 282:20906-14. [PMID: 17545166 DOI: 10.1074/jbc.m610102200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication factor C (RFC) loads the clamp protein PCNA onto DNA structures. Ctf18-RFC, which consists of the chromosome cohesion factors Ctf18, Dcc1, and Ctf8 and four small RFC subunits, functions as a second proliferating cell nuclear antigen (PCNA) loader. To identify potential targets of Ctf18-RFC, human cell extracts were assayed for DNA polymerase activity specifically stimulated by Ctf18-RFC in conjunction with PCNA. After several chromatography steps, an activity stimulated by Ctf18-RFC but not by RFC was identified. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis revealed the presence of two DNA polymerases, eta and lambda, in the most purified fraction, but experiments with purified recombinant proteins demonstrated that only polymerase (pol) eta was responsible for activity. Ctf18-RFC alone stimulated pol eta, and the addition of PCNA cooperatively increased stimulation. Furthermore, Ctf18-RFC interacted physically with pol eta, as indicated by co-precipitation in human cells. We propose that this novel loader-DNA polymerase interaction allows DNA replication forks to overcome interference by various template structures, including damaged DNA and DNA-protein complexes that maintain chromosome cohesion.
Collapse
Affiliation(s)
- Yasushi Shiomi
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
32
|
Tanioka M, Masaki T, Ono R, Nagano T, Otoshi-Honda E, Matsumura Y, Takigawa M, Inui H, Miyachi Y, Moriwaki S, Nishigori C. Molecular analysis of DNA polymerase eta gene in Japanese patients diagnosed as xeroderma pigmentosum variant type. J Invest Dermatol 2007; 127:1745-51. [PMID: 17344931 DOI: 10.1038/sj.jid.5700759] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
POLH mutations were identified in 16 Japanese patients, who were diagnosed, both clinically and at a cellular level, as being of the xeroderma pigmentosum variant type (XPV). While all the patients developed skin cancer with an average onset of the cancer at 45 years, in non-XP Japanese the onset was at over 70 years. All the cell strains from the patients were normal or slightly hypersensitive to UV and most of these showed enhanced UV sensitivity when the post-UV colony formation was performed in the presence of caffeine. Immunoprecipitation analysis with two kinds of anti-POLH protein antibodies revealed that cells from 13 patients did not show the 83 kDa POLH band and that cells from one patient had a faint 83 kDa band. All of these 14 cell strains, without a POLH band or with a weak POLH band, had mutations in the POLH gene. The IP analysis of the POLH protein revealed a very useful method for screening the patients suspected of XPV. Seven mutations in the POLH gene including three novel mutations were identified. Among the mutations detected, 11 alleles out of 28 (39%) were G490T mutations.
Collapse
Affiliation(s)
- Miki Tanioka
- Department of Dermatology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jaroudi S, SenGupta S. DNA repair in mammalian embryos. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:53-77. [PMID: 17141556 DOI: 10.1016/j.mrrev.2006.09.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.
Collapse
Affiliation(s)
- Souraya Jaroudi
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Sioban SenGupta
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
34
|
Yasui M, Suzuki N, Laxmi YRS, Shibutani S. Translesion synthesis past tamoxifen-derived DNA adducts by human DNA polymerases eta and kappa. Biochemistry 2006; 45:12167-74. [PMID: 17002316 PMCID: PMC2593916 DOI: 10.1021/bi0608461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The long-term treatment of tamoxifen (TAM), widely used for adjuvant chemotherapy and chemoprevention for breast cancer, increases a risk of developing endometrial cancer. A high frequency of K-ras mutations has been observed in the endometrium of women treated with TAM. Human DNA polymerase (pol) eta and pol kappa are highly expressed in the reproductive organs and are associated with translesion synthesis past bulky DNA adducts. To explore the miscoding properties of alpha-(N2-deoxyguanosinyl)tamoxifen (dG-N2-TAM), a major TAM-DNA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of trans or cis forms of dG-N2-TAM were prepared by phosphoramidite chemical procedure and used as templates. The primer extension reaction catalyzed by pol kappa deltaC, a truncated form of pol kappa, extended more efficiently past the adduct than that of pol eta by incorporating dCMP, a correct base, opposite the adduct. With pol eta, all diastereoisomers of dG-N2-TAM promoted small amounts of direct incorporation of dAMP and deletions. With pol kappa deltaC, dG-N2-TAM promoted small amounts of dTMP and/or dAMP incorporations and deletions. The miscoding properties varied depending on the diastereoisomer of dG-N2-TAM adducts and the DNA pol used. Steady-state kinetic studies were also performed using either the nonspecific sequence or the K-ras gene sequence containing a single dG-N2-TAM at the second base of codon 12. With pol eta, the bypass frequency past the dA x dG-N2-TAM pair positioned in the K-ras sequence was only 2.3 times lower than that for the dC x dG-N2-TAM pair, indicating that dG-N2-TAM in the K-ras sequence has higher miscoding potential than that in the nonspecific sequence. However, with pol kappa deltaC, the bypass frequency past the dC x dG-N2-TAM pair was higher than that of the dT x dG-N2-TAM pair in both sequences. The properties of pol eta and pol kappa are consistent with the mutagenic events attributed to TAM-DNA adducts.
Collapse
Affiliation(s)
| | - Naomi Suzuki
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794−8651
| | - Y. R. Santosh Laxmi
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794−8651
| | - Shinya Shibutani
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794−8651
| |
Collapse
|
35
|
Ohkumo T, Kondo Y, Yokoi M, Tsukamoto T, Yamada A, Sugimoto T, Kanao R, Higashi Y, Kondoh H, Tatematsu M, Masutani C, Hanaoka F. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol 2006; 26:7696-706. [PMID: 17015482 PMCID: PMC1636855 DOI: 10.1128/mcb.01076-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Ohkumo
- Cellular Biology Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cruet-Hennequart S, Coyne S, Glynn MT, Oakley GG, Carty MP. UV-induced RPA phosphorylation is increased in the absence of DNA polymerase eta and requires DNA-PK. DNA Repair (Amst) 2006; 5:491-504. [PMID: 16520097 DOI: 10.1016/j.dnarep.2006.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 01/30/2023]
Abstract
Signaling from arrested replication forks plays a role in maintaining genome stability. We have investigated this process in xeroderma pigmentosum variant cells that carry a mutation in the POLH gene and lack functional DNA polymerase eta (poleta). Poleta is required for error-free bypass of UV-induced cyclobutane pyrimidine dimers; in the absence of poleta in XPV cells, DNA replication is arrested at sites of UV-induced DNA damage, and mutagenic bypass of lesions is ultimately carried out by other, error-prone, DNA polymerases. The present study investigates whether poleta expression influences the activation of a number of UV-induced DNA damage responses. In a stably transfected XPV cell line (TR30-9) in which active poleta can be induced by addition of tetracycline, expression of poleta determines the extent of DNA double-strand break formation following UV-irradiation. UV-induced phosphorylation of replication protein A (RPA), a key DNA-binding protein involved in DNA replication, repair and recombination, is increased in cells lacking poleta compared to when poleta is expressed in the same cell line. To identify the protein kinase responsible for increased UV-induced hyperphosphorylation of the p34 subunit of RPA, we have used NU7441, a specific small molecule inhibitor of DNA-PK. DNA-PK is necessary for RPA p34 hyperphosphorylation, but DNA-PK-mediated phosphorylation is not required for recruitment of RPA p34 into nuclear foci in response to UV-irradiation. The results demonstrate that activation of a UV-induced DNA damage response pathway, involving phosphorylation of RPA p34 by DNA-PK, is enhanced in cells lacking poleta.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- DNA Damage Response Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway City, Ireland
| | | | | | | | | |
Collapse
|
37
|
Lin Q, Clark AB, McCulloch SD, Yuan T, Bronson RT, Kunkel TA, Kucherlapati R. Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res 2006; 66:87-94. [PMID: 16397220 DOI: 10.1158/0008-5472.can-05-1862] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Xeroderma pigmentosum variant (XPV) patients with mutations in the DNA polymerase eta (pol eta) gene are hypersensitive to sunlight and have greatly increased susceptibility to sunlight-induced skin cancer. Consistent with the ability of Pol eta to efficiently bypass UV light-induced cyclobutane pyrimidine dimers, XPV cells lacking Pol eta have diminished capacity to replicate UV-damaged DNA and are sensitive to UV light-induced killing and mutagenesis. To better understand these and other Pol eta functions, we generated Pol eta-deficient mice. Mice homozygous for a null mutation in pol eta are viable, fertile, and do not show any obvious spontaneous defects during the first year of life. However, fibroblasts derived from these mutant mice are sensitive to killing by exposure to UV light, and all Pol eta-deficient mice develop skin tumors after UV irradiation, in contrast to the wild-type littermate controls that did not develop such tumors. These results and biochemical studies of translesion synthesis by mouse Pol eta indicate that Pol eta-dependent bypass of cyclobutane pyrimidine dimers suppresses UV light-induced skin cancer in mice. Moreover, 37.5% of pol eta heterozygous mice also developed skin cancer during 5 months after a 5-month exposure to UV light, suggesting that humans who are heterozygous for mutations in pol eta may also have an increased risk of skin cancer.
Collapse
Affiliation(s)
- Qingcong Lin
- Harvard Medical School/Partners Healthcare Center for Genetics and Genomics, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
McIlwraith MJ, Mcllwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 2005; 20:783-92. [PMID: 16337601 DOI: 10.1016/j.molcel.2005.10.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 09/27/2005] [Accepted: 10/03/2005] [Indexed: 11/17/2022]
Abstract
Stalled replication forks pose a serious threat to genome integrity. To overcome the catastrophic consequences associated with fork demise, translesion synthesis (TLS) polymerases such as poleta promote DNA synthesis past lesions. Alternatively, a stalled fork may collapse and undergo repair by homologous recombination. By using fractionated cell extracts and purified recombinant proteins, we show that poleta extends DNA synthesis from D loop recombination intermediates in which an invading strand serves as the primer. Extracts from XP-V cells, which are defective in poleta, exhibit severely reduced D loop extension activity. The D loop extension activity of poleta is unusual, as this reaction cannot be promoted by the replicative DNA polymerase delta or by other TLS polymerases such as poliota. Moreover, we find that poleta interacts with RAD51 recombinase and RAD51 stimulates poleta-mediated D loop extension. Our results indicate a dual function for poleta at stalled replication forks: the promotion of translesion synthesis and the reinitiation of DNA synthesis by homologous recombination repair.
Collapse
Affiliation(s)
- Michael J McIlwraith
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
King NM, Nikolaishvili-Feinberg N, Bryant MF, Luche DD, Heffernan TP, Simpson DA, Hanaoka F, Kaufmann WK, Cordeiro-Stone M. Overproduction of DNA polymerase eta does not raise the spontaneous mutation rate in diploid human fibroblasts. DNA Repair (Amst) 2005; 4:714-24. [PMID: 15886068 DOI: 10.1016/j.dnarep.2005.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 11/22/2022]
Abstract
Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers.
Collapse
Affiliation(s)
- Nicole M King
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | | | |
Collapse
|
41
|
Kusumoto R, Masutani C, Shimmyo S, Iwai S, Hanaoka F. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 2005; 9:1139-50. [PMID: 15569147 DOI: 10.1111/j.1365-2443.2004.00797.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human XPV (xeroderma pigmentosum variant) gene is responsible for the cancer-prone xeroderma pigmentosum syndrome and encodes DNA polymerase eta (pol eta), which catalyses efficient translesion synthesis past cis-syn cyclobutane thymine dimers (TT dimers) and other lesions. The fidelity of DNA synthesis by pol eta on undamaged templates is extremely low, suggesting that pol eta activity must be restricted to damaged sites on DNA. Little is known, however, about how the activity of pol eta is targeted and restricted to damaged DNA. Here we show that pol eta binds template/primer DNAs regardless of the presence of TT dimers. Rather, enhanced binding to template/primer DNAs containing TT dimers is only observed when the 3'-end of the primer is an adenosine residue situated opposite the lesion. When two nucleotides have been incorporated into the primer beyond the TT dimer position, the pol eta-template/primer DNA complex is destabilized, allowing DNA synthesis by DNA polymerases alpha or delta to resume. Our study provides mechanistic explanations for polymerase switching at TT dimer sites.
Collapse
Affiliation(s)
- Rika Kusumoto
- Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
42
|
Stumpf JD, Foster PL. Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli. Mol Microbiol 2005; 57:751-61. [PMID: 16045619 PMCID: PMC1314974 DOI: 10.1111/j.1365-2958.2005.04724.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ppk gene encodes polyphosphate kinase (Ppk), an enzyme that catalyses the polymerization of inorganic phosphate into long chains of polyphosphate (polyP). An insertion mutation in ppk causes a decrease in adaptive mutation in Escherichia coli strain FC40. Adaptive mutation in FC40 mostly results from error-prone DNA polymerase IV (Pol IV), encoded by dinB; most of the antimutagenic phenotype of the ppk mutant disappears in a dinB mutant strain. In addition, the ppk mutant causes a decrease in growth-dependent mutations produced by overexpressing Pol IV. However, the amount of Pol IV protein is unchanged in the ppk mutant strain, indicating that the activity or fidelity of Pol IV is altered. Adaptive mutation is inhibited both by the absence of Ppk, which results in low amounts of polyP, and by overproduction of Ppk, which results in high amounts of polyP, suggesting that an optimal level of polyP is necessary. Taken together, these results suggest a novel mechanism involving polyP that directly or indirectly regulates DNA polymerase activity or fidelity.
Collapse
Affiliation(s)
- Jeffrey D. Stumpf
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Patricia L. Foster
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
43
|
Laan R, Baarends WM, Wassenaar E, Roest HP, Hoeijmakers JHJ, Grootegoed JA. Expression and possible functions of DNA lesion bypass proteins in spermatogenesis. ACTA ACUST UNITED AC 2005; 28:1-15. [PMID: 15679615 DOI: 10.1111/j.1365-2605.2004.00505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, there is a complex interplay of different DNA damage response and repair mechanisms. Several observations suggest that, in particular in gametogenesis, proteins involved in DNA repair play an intricate role in and outside the context of DNA repair. Here, we discuss the possible roles of proteins that take part in replicative damage bypass (RDB) mechanisms, also known as post-replication DNA repair (PRR), in germ line development. In yeast, and probably also in mammalian somatic cells, RDB [two subpathways: damage avoidance and translesion synthesis (TLS)] prevents cessation of replication forks during the S phase of the cell cycle, in situations when the replication machinery encounters a lesion present in the template DNA. Many genes encoding proteins involved in RDB show an increased expression in testis, in particular in meiotic and post-meiotic spermatogenic cells. Several RDB proteins take part in protein ubiquitination, and we address relevant aspects of the ubiquitin system in spermatogenesis. RDB proteins might be required for damage avoidance and TLS of spontaneous DNA damage during gametogenesis. In addition, we consider the possible functional relation between TLS and the induction of mutations in spermatogenesis. TLS requires the activity of highly specialized polymerases, and is an error-prone process that may induce mutations. In evolutionary terms, controlled generation of a limited number of mutations in gametogenesis might provide a mechanism for evolvability.
Collapse
Affiliation(s)
- Roald Laan
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Johansson F, Lagerqvist A, Erixon K, Jenssen D. A method to monitor replication fork progression in mammalian cells: nucleotide excision repair enhances and homologous recombination delays elongation along damaged DNA. Nucleic Acids Res 2004; 32:e157. [PMID: 15537835 PMCID: PMC534636 DOI: 10.1093/nar/gnh154] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 12/28/2022] Open
Abstract
The capacity to rescue stalled replication forks (RFs) is important for the maintenance of cell viability and genome integrity. Here, we have developed a novel method for monitoring RF progression and the influence of DNA lesions on this process. The method is based on the principle that each RF is expected to be associated with a pair of single-stranded ends, which can be analyzed by employing strand separation in alkali. This method was applied to examine the rate of RF progression in Chinese hamster cell lines deficient in ERCC1, which is involved in nucleotide excision repair (NER), or in XRCC3, which participates in homologous recombination repair, following irradiation with ultraviolet (UV) light or exposure to benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE). The endpoints observed were cell survival, NER activity, formation of double-strand breaks and the rate of RF progression. Subsequently, we attempted to explain our observation that cells deficient in XRCC3 (irs1SF) exhibit enhanced sensitivity to UV radiation and BPDE. irs1SF cells demonstrated a capacity for NER that was comparable with wild-type AA8 cells, but the rate of RF progression was even higher than that for the wild-type AA8 cells. As expected, cells deficient in ERCC1 (UV4) showed no NER activity and were hypersensitive to both UV radiation and BPDE. The observation that cells deficient in NER displayed a pronounced delay in RF progression indicates that NER plays an important role in maintaining fork progression along damaged DNA. The elevated rate of RF progression in XRCC3-deficient cells indicates that this protein is involved in a time-consuming process which resolves stalled RFs.
Collapse
Affiliation(s)
- Fredrik Johansson
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH. Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 2004; 64:5597-607. [PMID: 15313897 DOI: 10.1158/0008-5472.can-04-0603] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recently discovered human enzyme DNA polymerase iota (pol iota) has been shown to have an exceptionally high error rate on artificial DNA templates. Although there is a considerable body of in vitro evidence for a role for pol iota in DNA lesion bypass, there is no in vivo evidence to confirm this action. We report here that pol iota expression is elevated in breast cancer cells and correlates with a significant decrease in DNA replication fidelity. We also demonstrate that UV treatment of breast cancer cells additionally increases pol iota expression with a peak occurring between 30 min and 2 h after cellular insult. This implies that the change in pol iota expression is an early event after UV-mediated DNA damage. That pol iota may play a role in the higher mutation frequencies observed in breast cancer cells was suggested when a reduction in mutation frequency was found after pol iota was immunodepleted from nuclear extracts of the cells. Analysis of the UV-induced mutation spectra revealed that > 90% were point mutations. The analysis also demonstrated a decreased C --> T nucleotide transition and an increased C --> A transversion rate. Overall, our data strongly suggest that pol iota may be involved in the generation of both increased spontaneous and translesion mutations during DNA replication in breast cancer cells, thereby contributing to the accumulation of genetic damage.
Collapse
Affiliation(s)
- Jin Yang
- Department of Medicine, Division of Hematology/Oncology, Cancer Research Institute, Indiana University of School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
46
|
Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 2004; 22:6621-30. [PMID: 14657033 PMCID: PMC291821 DOI: 10.1093/emboj/cdg626] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pol kappa and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Pol kappa. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Pol zeta) and with two other Y-family polymerases, Pol iota and Pol eta. Mouse Pol kappa, Rev7, Pol iota and Pol eta each bind to the same approximately 100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Pol kappa for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Pol kappa, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas,TX 75390-9072, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone polymerases are sometimes used in circumstances where the capacity to make errors has a selective advantage. The mutagenic potential of the error-prone polymerases requires that their expression, activity, and access to undamaged DNA templates be regulated. Here we review these specialized polymerases with an emphasis on their biological roles.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, NCI-Frederick, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
48
|
Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, Bryant MF, Zhou T, Luche DD, Nikolaishvili-Feinberg N, Simpson DA, Cordeiro-Stone M. Caffeine and human DNA metabolism: the magic and the mystery. Mutat Res 2004; 532:85-102. [PMID: 14643431 PMCID: PMC4046582 DOI: 10.1016/j.mrfmmm.2003.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
50
|
McDonald JP, Frank EG, Plosky BS, Rogozin IB, Masutani C, Hanaoka F, Woodgate R, Gearhart PJ. 129-derived strains of mice are deficient in DNA polymerase iota and have normal immunoglobulin hypermutation. J Exp Med 2003; 198:635-43. [PMID: 12925679 PMCID: PMC2194173 DOI: 10.1084/jem.20030767] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies suggest that DNA polymerase eta (poleta) and DNA polymerase iota (poliota) are involved in somatic hypermutation of immunoglobulin variable genes. To test the role of poliota in generating mutations in an animal model, we first characterized the biochemical properties of murine poliota. Like its human counterpart, murine poliota is extremely error-prone when catalyzing synthesis on a variety of DNA templates in vitro. Interestingly, when filling in a 1 base-pair gap, DNA synthesis and subsequent strand displacement was greatest in the presence of both pols iota and eta. Genomic sequence analysis of Poli led to the serendipitous discovery that 129-derived strains of mice have a nonsense codon mutation in exon 2 that abrogates production of poliota. Analysis of hypermutation in variable genes from 129/SvJ (Poli-/-) and C57BL/6J (Poli+/+) mice revealed that the overall frequency and spectrum of mutation were normal in poliota-deficient mice. Thus, either poliota does not participate in hypermutation, or its role is nonessential and can be readily assumed by another low-fidelity polymerase.
Collapse
Affiliation(s)
- John P McDonald
- Laboratory of Genomic Integrity, Building 6, Room 1A13, NICHD, NIH, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA.
| | | | | | | | | | | | | | | |
Collapse
|