1
|
Chen SY, Zhang FL, Zhang YL, Liao L, Deng L, Shao ZM, Liu GY, Li DQ. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett 2024; 586:216672. [PMID: 38280476 DOI: 10.1016/j.canlet.2024.216672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/17/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression. STRBP expression was upregulated in TNBC tissues and correlated with poor disease prognosis. Functionally, STRBP promoted TNBC cell proliferation, migration, and invasion in vitro, and enhanced xenograft tumor growth and lung colonization in mice. Mechanistically, STRBP interacted with Dicer, a core component of the microRNA biogenesis machinery, and promoted its proteasomal degradation through enhancing its interaction with E3 ubiquitin ligase UBR5. MicroRNA-sequencing analysis identified miR-200a-3p as a downstream effector of STRBP, which was regulated by Dicer and affected epithelial-mesenchymal transition. Importantly, the impaired malignant phenotypes of TNBC cells caused by STRBP depletion were largely rescued by knockdown of Dicer, and these effects were compromised by transfection of miR-200a-3p mimics. Collectively, these findings revealed a previously unrecognized oncogenic role of STRBP in TNBC progression and identified STRBP as a promising target against TNBC.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guang-Yu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Iwata T, Kishikawa T, Seimiya T, Notoya G, Suzuki T, Shibata C, Miyakawa Y, Odawara N, Funato K, Tanaka E, Yamagami M, Sekiba K, Otsuka M, Koike K, Fujishiro M. Satellite double-stranded RNA induces mesenchymal transition in pancreatic cancer by regulating alternative splicing. J Biol Chem 2024; 300:105742. [PMID: 38346537 PMCID: PMC10943486 DOI: 10.1016/j.jbc.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024] Open
Abstract
Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.
Collapse
Affiliation(s)
- Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genso Notoya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nariaki Odawara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Girardi E, Messmer M, Lopez P, Fender A, Chicher J, Chane-Woon-Ming B, Hammann P, Pfeffer S. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection. RNA (NEW YORK, N.Y.) 2023; 29:361-375. [PMID: 36617674 PMCID: PMC9945444 DOI: 10.1261/rna.079270.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Viruses are obligate intracellular parasites, which depend on the host cellular machineries to replicate their genome and complete their infectious cycle. Long double-stranded (ds)RNA is a common viral by-product originating during RNA virus replication and is universally sensed as a danger signal to trigger the antiviral response. As a result, viruses hide dsRNA intermediates into viral replication factories and have evolved strategies to hijack cellular proteins for their benefit. The characterization of the host factors associated with viral dsRNA and involved in viral replication remains a major challenge to develop new antiviral drugs against RNA viruses. Here, we performed anti-dsRNA immunoprecipitation followed by mass spectrometry analysis to fully characterize the dsRNA interactome in Sindbis virus (SINV) infected human cells. Among the identified proteins, we characterized SFPQ (splicing factor, proline-glutamine rich) as a new dsRNA-associated proviral factor upon SINV infection. We showed that SFPQ depletion reduces SINV infection in human HCT116 and SK-N-BE(2) cells, suggesting that SFPQ enhances viral production. We demonstrated that the cytoplasmic fraction of SFPQ partially colocalizes with dsRNA upon SINV infection. In agreement, we proved by RNA-IP that SFPQ can bind dsRNA and viral RNA. Furthermore, we showed that overexpression of a wild-type, but not an RNA binding mutant SFPQ, increased viral infection, suggesting that RNA binding is essential for its positive effect on the virus. Overall, this study provides the community with a compendium of dsRNA-associated factors during viral infection and identifies SFPQ as a new proviral dsRNA binding protein.
Collapse
Affiliation(s)
- Erika Girardi
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Mélanie Messmer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Paula Lopez
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Aurélie Fender
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Johana Chicher
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg-Esplanade, 67084 Strasbourg France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Philippe Hammann
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg-Esplanade, 67084 Strasbourg France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| |
Collapse
|
4
|
Zhang XY, Dai HP, Li Z, Yin J, Lang XP, Yang CX, Xiao S, Zhu MQ, Liu DD, Liu H, Shen HJ, Wu DP, Tang XW. Identification of STRBP as a Novel JAK2 Fusion Partner Gene in a Young Adult With Philadelphia Chromosome-Like B-Lymphoblastic Leukemia. Front Oncol 2021; 10:611467. [PMID: 33505919 PMCID: PMC7831028 DOI: 10.3389/fonc.2020.611467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Philadelphia chromosome-like B-lymphoblastic leukemia (Ph-like ALL) describes a group of genetically heterogeneous, Ph-negative entities with high relapse rates and poor prognoses. A Janus-kinase-2 (JAK2) rearrangement has been reported in approximately 7% of Ph-like ALL patients whose therapeutic responses to JAK inhibitors have been studied in clinical trials. Here, we report a novel STRBP-JAK2 fusion gene in a 21-year-old woman with Ph-like ALL. Although a normal karyotype was observed, a hitherto unreported JAK2 rearrangement was detected cytogenetically. STRBP-JAK2 fusion was identified by RNA sequencing and validated by Sanger sequencing. The Ph-like ALL proved refractory to traditional induction chemotherapy combined with ruxolitinib. The patient consented to infusion of autologous chimeric antigen receptor (CAR) T cells against both CD19 and CD22, which induced morphologic remission. Haplo-identical stem cell transplantation was then performed; however, she suffered relapse at just one month after transplantation. The patient subsequently received donor lymphocyte infusion after which she achieved and maintained a minimal residual disease negative remission. However, she succumbed to grade IV graft-versus-host disease 7 months post-transplant. In conclusion, this report describes a novel STRBP-JAK2 gene fusion in a Ph-like ALL patient with a very aggressive disease course, which proved resistant to chemotherapy combined with ruxolitinib but sensitive to immunotherapy. Our study suggests that CAR T-cell therapy may be a viable option for this type of leukemia.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | | | | | - Sheng Xiao
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ming-Qing Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dan-Dan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Dixit U, Pandey AK, Mishra P, Sengupta A, Pandey VN. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells. Nucleic Acids Res 2016; 44:5271-5287. [PMID: 27106056 PMCID: PMC4914112 DOI: 10.1093/nar/gkw312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3' NTR and domain IIId of the HCV-IRES in the 5' NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Priya Mishra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amitabha Sengupta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Nakadai T, Fukuda A, Shimada M, Nishimura K, Hisatake K. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators. J Biol Chem 2015; 290:26832-45. [PMID: 26381409 DOI: 10.1074/jbc.m115.688317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Aya Fukuda
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Shimada
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Ken Nishimura
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
7
|
Gleghorn ML, Maquat LE. 'Black sheep' that don't leave the double-stranded RNA-binding domain fold. Trends Biochem Sci 2014; 39:328-40. [PMID: 24954387 DOI: 10.1016/j.tibs.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022]
Abstract
The canonical double-stranded RNA (dsRNA)-binding domain (dsRBD) is composed of an α1-β1-β2-β3-α2 secondary structure that folds in three dimensions to recognize dsRNA. Recently, structural and functional studies of divergent dsRBDs revealed adaptations that include intra- and/or intermolecular protein interactions, sometimes in the absence of detectable dsRNA-binding ability. We describe here how discrete dsRBD components can accommodate pronounced amino-acid sequence changes while maintaining the core fold. We exemplify the growing importance of divergent dsRBDs in mRNA decay by discussing Dicer, Staufen (STAU)1 and 2, trans-activation responsive RNA-binding protein (TARBP)2, protein activator of protein kinase RNA-activated (PKR) (PACT), DiGeorge syndrome critical region (DGCR)8, DEAH box helicase proteins (DHX) 9 and 30, and dsRBD-like fold-containing proteins that have ribosome-related functions. We also elaborate on the computational limitations to discovering yet-to-be-identified divergent dsRBDs.
Collapse
Affiliation(s)
- Michael L Gleghorn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Kim MY, Park J, Lee JJ, Ha DH, Kim J, Kim CG, Hwang J, Kim CG. Staufen1-mediated mRNA decay induces Requiem mRNA decay through binding of Staufen1 to the Requiem 3'UTR. Nucleic Acids Res 2014; 42:6999-7011. [PMID: 24799437 PMCID: PMC4066795 DOI: 10.1093/nar/gku388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/14/2022] Open
Abstract
Requiem (REQ/DPF2) was originally identified as an apoptosis-inducing protein in mouse myeloid cells and belongs to the novel Krüppel-type zinc finger d4-protein family of proteins, which includes neuro-d4 (DPF1) and cer-d4 (DPF3). Interestingly, when a portion of the REQ messenger ribonucleic acid (mRNA) 3' untranslated region (3'UTR), referred to as G8, was overexpressed in K562 cells, β-globin expression was induced, suggesting that the 3'UTR of REQ mRNA plays a physiological role. Here, we present evidence that the REQ mRNA 3'UTR, along with its trans-acting factor, Staufen1 (STAU1), is able to reduce the level of REQ mRNA via STAU1-mediated mRNA decay (SMD). By screening a complementary deoxyribonucleic acid (cDNA) expression library with an RNA-ligand binding assay, we identified STAU1 as an interactor of the REQ mRNA 3'UTR. Specifically, we provide evidence that STAU1 binds to putative 30-nucleotide stem-loop-structured RNA sequences within the G8 region, which we term the protein binding site core; this binding triggers the degradation of REQ mRNA and thus regulates translation. Furthermore, we demonstrate that siRNA-mediated silencing of either STAU1 or UPF1 increases the abundance of cellular REQ mRNA and, consequently, the REQ protein, indicating that REQ mRNA is a target of SMD.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences
| | - Jungyun Park
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Jong Joo Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences
| | - Dae Hyun Ha
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences
| | - Jonghwan Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences
| | - Chan Gil Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences
| |
Collapse
|
9
|
Wen X, Huang X, Mok BWY, Chen Y, Zheng M, Lau SY, Wang P, Song W, Jin DY, Yuen KY, Chen H. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3753-64. [DOI: 10.4049/jimmunol.1302813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
11
|
Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem 2012; 113:2754-64. [DOI: 10.1002/jcb.24152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Sadler AJ. Orchestration of the activation of protein kinase R by the RNA-binding motif. J Interferon Cytokine Res 2010; 30:195-204. [PMID: 20377414 DOI: 10.1089/jir.2010.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protein kinase R (PKR) constitutes part of the host antiviral response. PKR activation is regulated by the N-terminus of protein, which encodes tandem RNA-binding motifs (RBMs). The full capabilities of RBMs from PKR and other proteins have surpassed the narrow specificities initially determined as merely binding double-stranded RNA. Recognition of the increased affinity of the RBM for additional RNA species has established an immunological distinction by which PKR can detect exogenous RNAs, as well as identified PKR-mediated expression of specific endogenous genes. Furthermore, as RBMs also mediate interactions with other proteins, including PKR itself, this motif connects PKR to the broader RNA metabolism. Given the fundamental importance of protein-RNA interactions, not only in the innate immune response to intracellular pathogens, but also to coordinate the cellular replication machinery, there is considerable interest in the mechanisms by which proteins recognize and respond to RNA. This review appraises our understanding of how PKR activity is modulated by the RBMs.
Collapse
Affiliation(s)
- Anthony J Sadler
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Urcuqui-Inchima S, Castaño ME, Hernandez-Verdun D, St-Laurent G, Kumar A. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function. Retrovirology 2006; 3:83. [PMID: 17125513 PMCID: PMC1713252 DOI: 10.1186/1742-4690-3-83] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/24/2006] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv) has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. RESULTS Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. CONCLUSION The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | - Maria Eugenia Castaño
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | - Danièle Hernandez-Verdun
- Institut Jacques Monod, CNRS, University Paris VI and Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France
| | - Georges St-Laurent
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, D.C. 20037, USA
| | - Ajit Kumar
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, D.C. 20037, USA
| |
Collapse
|
15
|
Parrott AM, Walsh MR, Reichman TW, Mathews MB. RNA binding and phosphorylation determine the intracellular distribution of nuclear factors 90 and 110. J Mol Biol 2005; 348:281-93. [PMID: 15811368 DOI: 10.1016/j.jmb.2005.02.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/20/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA. About half of the NF90 is tethered in the nucleus by RNA bound to the protein's dsRNA-binding motifs. The nuclear localization of NF110 is also dependent on RNA binding but is independent of these motifs, and is governed by contacts made to the protein's unique C terminus. During mitosis, about half of the cytoplasmic NF90 becomes dissociated from RNA, but phosphorylation does not impair the binding affinity of either NF90 or NF110 for dsRNA. We conclude that NF90 and NF110 engage RNA differentially and translocate from the nucleus to the cytoplasm in mitosis because phosphorylation disturbs their interactions with other nuclear proteins.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Biochemistry and Molecular Biology and New Jersey Medical School, UMDNJ, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | |
Collapse
|
16
|
Jones KL, King SS, Iqbal MJ. Endophyte-infected tall fescue diet alters gene expression in heifer luteal tissue as revealed by interspecies microarray analysis. Mol Reprod Dev 2004; 67:154-61. [PMID: 14694430 DOI: 10.1002/mrd.10395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cattle consuming endophyte-infected tall fescue grass have an associated reduction in circulating progesterone and reduced reproductive rates. In this study, commercially available rat microarrays were used to analyze the gene expression in luteal tissues from heifers fed endophyte-free fescue, endophyte-infected fescue, or endophyte-infected fescue supplemented with the dopamine (DA) antagonist, domperidone. The number of hybridized spots represented approximately 40% of the total 10,000 rat genes/ESTs evaluated. Each luteal sample was analyzed in triplicate, resulting in within treatment correlation coefficients of >/=0.98. Median values of mRNA abundance from luteal tissue taken from the endophyte-infected fed heifers revealed 598 genes and ESTs that were down regulated and 56 genes and ESTs that were upregulated compared with luteal mRNA values from the endophyte-free treatment. There were fewer comparative differences between median values from luteal mRNA from the endophyte-free versus feeding endophyte-infected plus domperidone treated heifers. Only 19 genes and ESTs were upregulated and two were down-regulated.
Collapse
Affiliation(s)
- K L Jones
- Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
17
|
Scarlett GP, Elgar SJ, Cary PD, Noble AM, Orford RL, Kneale GG, Guille MJ. Intact RNA-binding domains are necessary for structure-specific DNA binding and transcription control by CBTF122 during Xenopus development. J Biol Chem 2004; 279:52447-55. [PMID: 15452137 DOI: 10.1074/jbc.m406107200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CBTF122 is a subunit of the Xenopus CCAAT box transcription factor complex and a member of a family of double-stranded RNA-binding proteins that function in both transcriptional and post-transcriptional control. Here we identify a region of CBTF122 containing the double-stranded RNA-binding domains that is capable of binding either RNA or DNA. We show that these domains bind A-form DNA in preference to B-form DNA and that the -59 to -31 region of the GATA-2 promoter (an in vivo target of CCAAT box transcription factor) adopts a partial A-form structure. Mutations in the RNA-binding domains that inhibit RNA binding also affect DNA binding in vitro. In addition, these mutations alter the ability of CBTF122 fusions with engrailed transcription repressor and VP16 transcription activator domains to regulate transcription of the GATA-2 gene in vivo. These data support the hypothesis that the double-stranded RNA-binding domains of this family of proteins are important for their DNA binding both in vitro and in vivo.
Collapse
Affiliation(s)
- Garry P Scarlett
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Gupta V, Huang X, Patel RC. The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity. Virology 2003; 315:283-91. [PMID: 14585331 DOI: 10.1016/s0042-6822(03)00589-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PKR is an interferon(IFN)-induced, serine-threonine protein kinase, which plays a crucial role in IFN's antiviral and antiproliferative actions. The three known activators of PKR are dsRNA, heparin, and PACT. PACT activates PKR by direct protein-protein interaction in response to cellular stress. The human TAR (trans-activating region)-binding protein (TRBP), which is very homologous to PACT, also interacts with PKR, leading to an inhibition of PKR activity. Since these two highly homologous proteins have opposite effects on PKR, we examined if they interact with PKR differently by assaying their interaction with various point mutants of PKR. Our results indicate that TRBP and PACT interact with PKR through the same residues, and no differences were identified in these two interactions. Domain swap experiments between PACT and TRBP indicated that the inhibitory effects of TRBP on PKR activity are mediated through its carboxy-terminal residues, which contain TRBP's third dsRNA-binding motif.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
19
|
Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332:85-98. [PMID: 12946349 DOI: 10.1016/s0022-2836(03)00885-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yin Z, Haynie J, Williams BRG, Yang YC. C114 is a novel IL-11-inducible nuclear double-stranded RNA-binding protein that inhibits protein kinase R. J Biol Chem 2003; 278:22838-45. [PMID: 12679338 DOI: 10.1074/jbc.m212969200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cDNA (named C114) that encodes novel transcripts induced by IL-11 in mouse 3T3 L1 cells. Northern analysis of RNAs from multiple mouse tissues detects two C114 transcripts of approximately 1.0 and approximately 2.0 kb with the highest expression in liver, testis, brain, and kidney. The C114 cDNA contains an open reading frame of 187 amino acids with a predicted mass of 21 kDa. Three putative nuclear localization signals are predicted at amino acids 83-88, 126-131, and 167-178. Using green fluorescent protein (GFP)-C114 fusion plasmids, amino acids 126-131 are shown to be essential for the nuclear localization of C114. An arginine-rich region (amino acids 98-143) spanning the nuclear localization signals (amino acids 126-131) exhibits a double-stranded RNA (dsRNA) binding activity. Competition experiments with different RNA homopolymers demonstrate that C114 preferentially binds to poly(I.C). Similar to other dsRNA-binding proteins, C114 binds to the dsRNA-activated protein kinase, protein kinase R (PKR), via dsRNA-binding domains of PKR and the N-terminal region of the C114 protein. In vitro kinase assays indicate that C114 inhibits PKR activation via a dsRNA-independent mechanism. Overexpression of C114 protein inhibits the induction of eIF-2alpha phosphorylation following poly(I.C) treatment. This is the first demonstration of a novel PKR modulator induced by a gp130 superfamily cytokine that may play a role in cytokine-mediated biological functions.
Collapse
Affiliation(s)
- Zhan Yin
- Department of Pharmacology and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
22
|
Reichman TW, Mathews MB. RNA binding and intramolecular interactions modulate the regulation of gene expression by nuclear factor 110. RNA (NEW YORK, N.Y.) 2003; 9:543-554. [PMID: 12702813 PMCID: PMC1370420 DOI: 10.1261/rna.2181103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 01/17/2003] [Indexed: 05/24/2023]
Abstract
Nuclear factor 110 (NF110) belongs to the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA) binding proteins that regulate gene expression at the transcriptional level in vertebrates. The proteins are identical at their N terminus, which functions as a negative regulatory region, but have distinct C termini as a result of alternate splicing. Maximal transcriptional activity of NF110 requires its C-terminal domain and a central domain that contains a nuclear localization signal and two dsRNA-binding motifs (dsRBMs). We find that dsRNA binding is reduced by RGG and GQSY motifs present in the C-terminal region. To directly evaluate the role of RNA binding in transactivation, we conducted site-directed mutagenesis to substitute conserved residues in one or both of the dsRBMs. The mutations reduced the ability of NF110 to stimulate gene expression to an extent that paralleled the mutants' reduced ability to bind dsRNA. Full activity was restored when the dsRBM-containing region of NF110 was replaced with the RNA-binding region of the protein kinase PKR. Finally, NF110-mediated transactivation was inhibited by cotransfection of a plasmid encoding an artificial highly structured RNA. These data suggest that NF110 and its homologs are regulated by cis-acting domains present in some of the protein isoforms, and via interactions with RNAs that bind to their dsRBMs. We propose a model in which structured RNAs regulate gene expression by modulating transcription through interactions with members of the NF90 protein family.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark 01701-1709, USA
| | | |
Collapse
|
23
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
24
|
Reichman TW, Muñiz LC, Mathews MB. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 2002; 22:343-56. [PMID: 11739746 PMCID: PMC134226 DOI: 10.1128/mcb.22.1.343-356.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor 90 (NF90) was originally isolated in a complex that binds to the antigen recognition response element (ARRE-2) present in the interleukin-2 promoter. To characterize the transcriptional properties of NF90 in mammalian cells, we examined its ability to modulate promoter function in cellular transfection assays. NF90-Gal4 fusion proteins inhibited transcription from the adenovirus major late promoter in a fashion that was dependent on Gal4 targeting. Conversely, NF90 activated the cytomegalovirus immediate-early promoter, to which it was not targeted. These effects required distinct but overlapping domains in the C terminus of NF90, which contains a functional nuclear localization signal and two double-stranded-RNA binding motifs. NF90 is present in cellular complexes together with the NF45 protein. Transfection assays showed that NF45 binds NF90 strongly and stimulates its ability to activate but not to inhibit gene expression. This report characterizes NF90 as both a positive and negative regulator of gene expression, depending on the promoter context, and suggests a role for NF45 as a regulator of NF90.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-2714, USA
| | | | | |
Collapse
|
25
|
Parker LM, Fierro-Monti I, Mathews MB. Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase. J Biol Chem 2001; 276:32522-30. [PMID: 11438540 DOI: 10.1074/jbc.m104408200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nuclear factor 90 (NF90) is a member of an expanding family of double-stranded (ds) RNA-binding proteins thought to be involved in gene expression. Originally identified in complex with nuclear factor 45 (NF45) as a sequence-specific DNA-binding protein, NF90 contains two double stranded RNA-binding motifs (dsRBMs) and interacts with highly structured RNAs as well as the dsRNA-activated protein kinase, PKR. In this report, we characterize the biochemical interactions between these two dsRBM containing proteins. NF90 binds to PKR through two independent mechanisms: an RNA-independent interaction occurs between the N terminus of NF90 and the C-terminal region of PKR, and an RNA-dependent interaction is mediated by the dsRBMs of the two proteins. Co-immunoprecipitation analysis demonstrates that NF90, NF45, and PKR form a complex in both nuclear and cytosolic extracts, and both proteins serve as substrates for PKR in vitro. NF90 is phosphorylated by PKR in its RNA-binding domain, and this reaction is partially blocked by the NF90 N-terminal region. The C-terminal region also inhibits PKR function, probably through competitive binding to dsRNA. A model for NF90-PKR interactions is proposed.
Collapse
Affiliation(s)
- L M Parker
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry, New Jersey, Newark, New Jersey 07103-2714, USA
| | | | | |
Collapse
|
26
|
Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 2001; 276:32300-12. [PMID: 11438536 DOI: 10.1074/jbc.m104207200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the isolation and characterization of two proteins, NFAR-1 and -2, which were isolated through their ability to interact with the dsRNA-dependent protein kinase, PKR. The NFAR proteins, of 90 and 110 kDa, are derived from a single gene through alternative splicing and are evolutionarily conserved nuclear phosphoproteins that interact with double-stranded RNA. Both NFAR-1 and -2 are phosphorylated by PKR, reciprocally co-immunoprecipitate with PKR, and colocalize with the kinase in a diffuse nuclear pattern within the cell. Transfection studies indicate that the NFARs regulate gene expression at the level of transcription, probably during the processing of pre-mRNAs, an activity that was increased in fibroblasts lacking PKR. Subsequent functional analyses indicated that amino acids important for NFAR's activity were localized to the C terminus of the protein, a region that was found to specifically interact with FUS and SMN, proteins also known as regulators of RNA processing. Accordingly, both NFARs were found to associate with both pre-mRNAs and spliced mRNAs in post-transcriptional studies, similar to the known splicing factor ASF/SF-2. Collectively, our data indicate that the NFARs may facilitate double-stranded RNA-regulated gene expression at the level of post-transcription and possibly contribute to host defense-related mechanisms in the cell.
Collapse
Affiliation(s)
- L R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|