1
|
Flemmer RT, Connolly SP, Geizer BA, Opferman JT, Vanderluit JL. The Role of Mcl-1 in Embryonic Neural Precursor Cell Apoptosis. Front Cell Dev Biol 2021; 9:659531. [PMID: 33959612 PMCID: PMC8093775 DOI: 10.3389/fcell.2021.659531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023] Open
Abstract
Myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic Bcl-2 protein, regulates neural precursor cell (NPC) survival in both the developing and adult mammalian nervous system. It is unclear when during the neurogenic period Mcl-1 becomes necessary for NPC survival and whether Bax is the sole pro-apoptotic target of Mcl-1. To address these questions, we used the nervous system-specific Nestin-Cre Mcl-1 conditional knockout mouse line (Mcl-1 CKO) to assess the anti-apoptotic role of Mcl-1 in developmental neurogenesis. Loss of Mcl-1 resulted in a wave of apoptosis beginning in the brainstem and cervical spinal cord at embryonic day 9.5 (E9.5) and in the forebrain at E10.5. Apoptosis was first observed ventrally in each region and spread dorsally over time. Within the spinal cord, apoptosis also spread in a rostral to caudal direction following the path of differentiation. Breeding the Mcl-1 CKO mouse with the Bax null mouse rescued the majority of NPC from apoptosis except in the dorsomedial brainstem and ventral thoracic spinal cord where only 50% were rescued. This demonstrates that Mcl-1 promotes NPC survival primarily by inhibiting the activation of Bax, but that Bax is not the sole pro-apoptotic target of Mcl-1 during embryonic neurogenesis. Interestingly, although co-deletion of Bax rescued the majority of NPC apoptosis, it resulted in embryonic lethality at E13, whereas conditional deletion of both Mcl-1 and Bax rescued embryonic lethality. In summary, this study demonstrates the widespread dependency on Mcl-1 during nervous system development.
Collapse
Affiliation(s)
- Robert T Flemmer
- Division of BioMedical Sciences, Memorial University, St. John's, NL, Canada
| | - Sarah P Connolly
- Division of BioMedical Sciences, Memorial University, St. John's, NL, Canada
| | - Brittany A Geizer
- Division of BioMedical Sciences, Memorial University, St. John's, NL, Canada
| | - Joseph T Opferman
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | | |
Collapse
|
2
|
Volzing K, Biliouris K, Smadbeck P, Kaznessis Y. Computer-Aided Design of Synthetic Biological Constructs with the Synthetic Biology Software Suite. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
3
|
Peacock RWS, Sullivan KA, Wang CL. Tetracycline-regulated expression implemented through transcriptional activation combined with proximal and distal repression. ACS Synth Biol 2012; 1:156-62. [PMID: 23651153 DOI: 10.1021/sb200029a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetracycline-regulated expression systems are widely used to control ectopic gene expression in mammalian cells. However, background or "leaky" expression in the "off" state can limit applications that require control of expression at low levels. In this work we have engineered a tetracycline-regulated expression system with an improved range of control and lower background expression. To lower background expression without diminishing the controllable expression range, we designed a feed-forward scheme that repressed both expression of the gene of interest and the transcriptional activator. By using a tetracycline-responsive repressor that can modify chromatin and repress transcription over short and long distances, we were able to repress these two expression targets using a single tetracycline-responsive genetic element. This dual-targeting repressor/activation system demonstrated decreased background expression in its "off" state and a 25-fold range of expression in response to doxycycline. This study demonstrates that genetic circuits can be improved by leveraging trans-acting factors with long-range capabilities.
Collapse
Affiliation(s)
- Ryan W. S. Peacock
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kathryn A. Sullivan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Clifford L. Wang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Lochner S, Einsiedel J, Schaefer G, Berens C, Hillen W, Gmeiner P. Anhydrotetracycline–peptide conjugates as representatives for ligand-based transactivating systems. Bioorg Med Chem 2010; 18:6127-33. [DOI: 10.1016/j.bmc.2010.06.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022]
|
6
|
Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008; 3:217-35. [DOI: 10.2217/17460751.3.2.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the ‘zoo’ of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, D-69120 Heidelber, Germany
| | - Leonid Eshkind
- Johannes Gutenberg-Universität Mainz, Institute of Toxicology/Mouse Genetics, Obere Zahlbacher Str. 67,55131, Mainz, Germany
| | - Thomas Lehmann
- TRM-Leipzig, Philipp-Rosenthal-Strasse 55, University of Leipzig, 04103 Leipzig, Germany
| | - Jan M Braun
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Frank Emmrich
- University of Leipzig, Institute of Clinical Immunology and Transfusion Medicine (IKIT), Germany
| | - Jan G Hengstler
- Dortmund University of Technology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Institute of Legal Medicine and Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
7
|
Hartenbach S, Daoud-El Baba M, Weber W, Fussenegger M. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res 2007; 35:e136. [PMID: 17947334 PMCID: PMC2175317 DOI: 10.1093/nar/gkm652] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (PART) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals.
Collapse
Affiliation(s)
- Shizuka Hartenbach
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Oppermann M, Fechner H, Eberle J. Dimethyl sulfoxide enhances doxycycline-dependent protein expression in Tet-On cells. Biotechniques 2007; 42:304, 306, 308 passim. [PMID: 17390537 DOI: 10.2144/000112387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Bach M, Grigat S, Pawlik B, Fork C, Utermöhlen O, Pal S, Banczyk D, Lazar A, Schömig E, Gründemann D. Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor. FEBS J 2007; 274:783-90. [PMID: 17288558 DOI: 10.1111/j.1742-4658.2006.05623.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a novel plasmid vector, pEBTetD, for full establishment of doxycycline-inducible protein expression by just a single transfection. pEBTetD contains an Epstein-Barr virus origin of replication for stable and efficient episomal propagation in human cell lines, a cassette for continuous expression of the simple tetracycline repressor, and a cytomegalovirus-type 2 tetracycline operator (tetO2)-tetO2 promoter. As there is no integration of vector into the genome, clonal isolation of transfected cells is not necessary. Cells are thus ready for use 1 week after transfection; this contrasts with 3-12 weeks for other systems. Adequate regulation of protein expression was accomplished by abrogation of mRNA polyadenylation. In northern analysis of seven cDNAs coding for transport proteins, pools of transfected human embryonic kidney 293 cells showed on/off mRNA ratios in the order of 100:1. Cell pools were also analyzed for regulation of protein function. With two transport proteins of the plasma membrane, the on/off activity ratios were 24:1 and 34:1, respectively. With enhanced green fluorescent protein, a 23:1 ratio was observed based on fluorescence intensity data from flow cytometry. The unique advantage of our system rests on the unmodified tetracycline repressor, which is less likely, by relocation upon binding of doxycycline, to cause cellular disturbances than chimera of tetracycline repressor and eukaryotic transactivation domains. Thus, in a comprehensive comparison of on- and off-states, a steady cellular background is provided. Finally, in contrast to a system based on Flp recombinase, the set-up of our system is inherently reliable.
Collapse
Affiliation(s)
- Markus Bach
- Department of Pharmacology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Controlling gene activity in space and time represents a cornerstone technology in gene and cell therapeutic applications, bioengineering, drug discovery as well as fundamental and applied research. This chapter provides a comprehensive overview of the different approaches for regulating gene activity and product protein formation at different biosynthetic levels, from genomic rearrangements over transcription and translation control to strategies for engineering inducible secretion and protein activity with a focus on the development during the past 2 years. Recent advances in designing second-generation gene switches, based on novel inducer administration routes (gas phase) as well as on the combination of heterologous switches with endogenous signals, will be complemented by an overview of the emerging field of mammalian synthetic biology, which enables the design of complex synthetic and semisynthetic gene networks. This article will conclude with an overview of how the different gene switches have been applied in gene therapy studies, bioengineering and drug discovery.
Collapse
Affiliation(s)
- W Weber
- Institute for Chemical and Bioengineering, ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | |
Collapse
|
11
|
May T, Hauser H, Wirth D. Current status of transcriptional regulation systems. Cytotechnology 2006; 50:109-19. [PMID: 19003074 DOI: 10.1007/s10616-006-9007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2006] [Indexed: 10/24/2022] Open
Abstract
Many attempts have been undertaken to control transgene activity in mammalian cells. This is of importance for both applied biotechnology and basic research activities. State of the art regulatory systems use elements for transgene regulation which are unrelated to host regulatory networks and thus do not interfere with endogenous activities. Most of these regulation systems consist of transregulators and transregulator responding promoter elements that are derived from non mammalian origin. Apart from the tetracycline (Tet) regulated system which is most widely used for conditional gene expression at the moment, a number of new systems were created. These systems have been significantly refined and their performance makes them suitable for regulating transgenes not only in cellular systems but also in transgenic animals and for human therapeutic use.
Collapse
Affiliation(s)
- Tobias May
- Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, Braunschweig, D-38124, Germany
| | | | | |
Collapse
|
12
|
Turnbull L, Zhou HZ, Swigart PM, Turcato S, Karliner JS, Conklin BR, Simpson PC, Baker AJ. Sustained preconditioning induced by cardiac transgenesis with the tetracycline transactivator. Am J Physiol Heart Circ Physiol 2006; 290:H1103-9. [PMID: 16243914 DOI: 10.1152/ajpheart.00732.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preconditioning protocols that protect the heart from ischemic injury may aid in the development of new therapies. However, the temporal window of cardioprotection is limited to a few days after the preconditioning stimulus. Here we report a sustained cardioprotected phenotype in mice expressing a tetracycline transactivator (tTA) transcription factor under the control of the alpha-myosin heavy chain (alphaMHC) promoter. alphaMHC-tTA mice were originally designed for tetracycline-regulated gene expression in the heart (Tet system). However, we found that after 45 min of global ischemia at 37 degrees C, left ventricular developed pressure (LVDP) of Langendorff-perfused alphaMHC-tTA mouse hearts rapidly recovered in 5 min to 60% of initial levels, whereas LVDP of wild-type (WT) littermates recovered to only 10% of the initial level. Improved postischemic recovery of function for alphaMHC-tTA hearts was associated with a 50% decrease of infarct size and a significantly smaller release of lactate dehydrogenase to the coronary effluent. Improved postischemic recovery was not attributable to differences in coronary flow that was similar for WT- and alphaMHC-tTA hearts during recovery. Moreover, improved postischemic recovery of alphaMHC-tTA hearts was not abolished by inhibitors of classical cardioprotective effectors (mitochondrial ATP-sensitive K+ channels, PKC, or adenosine receptors), suggesting a novel mechanism. Finally, the tetracycline analog doxycycline, which inhibits binding of tTA to DNA, did not abolish improved recovery for alphaMHC-tTA hearts. The sustained cardioprotected phenotype of alphaMHC-tTA hearts may have implications for developing new therapies to minimize cardiac ischemic injury. Furthermore, investigations of cardioprotection using the Tet system may be aberrantly influenced by sustained preconditioning induced by cardiac transgenesis with tTA.
Collapse
Affiliation(s)
- Lynne Turnbull
- Department of Radiology, University of California, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
14
|
Muñoz I, Carrillo M, Zanuy S, Gómez A. Regulation of exogenous gene expression in fish cells: An evaluation of different versions of the tetracycline-regulated system. Gene 2005; 363:173-82. [PMID: 16236467 DOI: 10.1016/j.gene.2005.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/09/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
The exogenous control of foreign gene expression is relevant to both basic research and biotechnological applications. In fish, the number of isolated genes has become larger in the last few years; however an efficient system for controlling gene expression is not yet available. The tetracycline-regulated system has proved to be efficient and it is widely used in mammals, but it has never been tested in fish. This work includes the establishment of the tetracycline-regulated system for use in fish cells, and the determination of the optimal conditions to achieve a tight exogenous expression regulation. We have compared the tet-off and tet-on systems and the performance of the transactivators under the control of promoters with different origin and strength. The results show that the tet-off is more efficient than the tet-on system for use in fish cells. The hCMV promoter/enhancer proved to be more efficient than the carp beta-actin promoter to drive the expression of the transactivator, since the use of the carp beta-actin promoter resulted in a high intra-clonal variability when stably expressed. An auto-regulated system approach proved useful only when transiently expressed.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595, Torrelasal, Castellón, Spain
| | | | | | | |
Collapse
|
15
|
Karzenowski D, Potter DW, Padidam M. Inducible control of transgene expression with ecdysone receptor: gene switches with high sensitivity, robust expression, and reduced size. Biotechniques 2005; 39:191-2, 194, 196 passim. [PMID: 16116792 DOI: 10.2144/05392st01] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ecdysone receptor (EcR)-based gene regulation system is a tool for controlling gene expression. To improve the sensitivity of this system, we evaluated many two-hybrid format synthetic gene constructs in which the GAL4 DNA binding domain was fused to the ligand binding domain of the Choristoneura fumiferana EcR mutant V390I/Y410E (GEvy), and various activation domains--VP16, p53, p65, or E2F-i--were fused to the EF domains of chimeric human RXR. These gene switches were assayed in NIH3T3 cells, HEK293 cells, and in mouse quadriceps in the presence of the nonsteroidal inducer RG-115819 or GS-E. All of the two-hybrid format constructs had no or very low background in the "off" condition and high luciferase reporter gene expression levels in "on" conditions. Extremely high sensitivity was achieved, with EC50 values in the subnanomolar range and with maximal induction at 10 nM RG-115819. Co-expression of both receptor genes with encephalomyocarditis virus (EMCV) or eIF4G internal ribosome entry site (IRES) sequences gave robust induction levels. To reduce the size of the switch construct, we tested single receptor formats, in which any of 14 different activation domains were fused to GEvy. We identified several switches with acceptable levels of basal and maximal induction levels. The gene switches described here provide receptor configuration options suitable for gene function studies, therapeutic protein production in cell culture, transgenic mouse models, and gene/cell therapy.
Collapse
|
16
|
Keeley MB, Busch J, Singh R, Abel T. TetR hybrid transcription factors report cell signaling and are inhibited by doxycycline. Biotechniques 2005; 39:529-36. [PMID: 16235565 DOI: 10.2144/000112002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We developed a bigenic reporter system composed of a hybrid transcription factor that combines the regulatory and activation domains of either Elk-1 or cyclic AMP-responsive element binding protein (CREB) with the DNA binding, dimerization, and regulatory domains from a synthetic variant of the bacterial Tet repressor (TetR). The novel hybrid transcription factor TetR-Elk-1 was regulated by MAPK ERK kinase 1 (MEK-1) overexpression, and TetR-CREB was regulated by protein kinase A (PKA) overexpression or elevation of cyclic AMP levels. These hybrid transcription factors could be useful reporters of cell signaling pathways because, unlike previous GAL4 hybrid reporters, TetR hybrid transcription factors are inhibited by the administration of doxycycline. We validated this system in cell culture transfection experiments utilizing luciferase assays to monitor reporter gene expression and Western blot analysis to monitor transcription factor expression and phosphorylation levels. This system may be useful in creating temporally restricted windows of response to cell signaling and may be of value in the advancement of methods used to study signal transduction.
Collapse
|
17
|
Malphettes L, Weber CC, El-Baba MD, Schoenmakers RG, Aubel D, Weber W, Fussenegger M. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res 2005; 33:e107. [PMID: 16002786 PMCID: PMC1174900 DOI: 10.1093/nar/gni107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-O(NIC)) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its O(NIC)-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric O(NIC)-containing promoters (P(NIC); O(NIC) fused to a minimal eukaryotic promoter [P(min)]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-O(NIC) and/or O(NIC)-P(min) spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF121) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ronald G. Schoenmakers
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- Integrative Bioscience Institute, Swiss Federal Institute of Technology LausanneCH-1015 Lausanne, Switzerland
| | - Dominique Aubel
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Wilfried Weber
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Martin Fussenegger
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3448; Fax: +41 44 633 1234;
| |
Collapse
|
18
|
Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005; 7:803-17. [PMID: 15655804 DOI: 10.1002/jgm.712] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.
Collapse
Affiliation(s)
- Krzysztof Pluta
- Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
19
|
Malphettes L, Fussenegger M. Macrolide- and tetracycline-adjustable siRNA-mediated gene silencing in mammalian cells using polymerase II-dependent promoter derivatives. Biotechnol Bioeng 2004; 88:417-25. [PMID: 15382105 DOI: 10.1002/bit.20230] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RNA interference has emerged as a powerful technology for downregulation of specific genes in cells and animals. We have pioneered macrolide- and tetracycline-adjustable short interfering RNA (siRNA) expression for conditional target gene translation fine-tuning in mammalian/human cell lines based on modified RNA polymerase II promoters. Established macrolide- and tetracycline-dependent transactivators/trans-silencers bound and activated modified target promoters tailored for optimal siRNA expression in response to clinical antibiotics' dosing regimes and modulated desired target genes in Chinese hamster ovary (CHO-K1) and human fibrosarcoma (HT-1080) cells with high precision. Further optimization of adjustable RNA polymerase II-based siRNA-specific promoters as well as their combination with various transmodulators enabled near-perfect regulation configurations in specific cell types. Devoid of major genetic constraints compared to basic RNA polymerase III-based siRNA-specific promoters, we expect RNA polymerase II counterparts to significantly advance siRNA-based molecular interventions in biopharmaceutical manufacturing and gene-function analysis as well as gene therapy and tissue engineering.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hönggerberg, HPT D74, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
20
|
Muñoz I, Gómez A, Zanuy S, Carrillo M. A one-step approach to obtain cell clones expressing tetracycline-responsive transactivators. Anal Biochem 2004; 331:153-60. [PMID: 15246008 DOI: 10.1016/j.ab.2004.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 10/26/2022]
Abstract
Despite the wide application of the tetracycline-regulated gene expression system, several drawbacks in establishing the system in in vitro-cultured cells have been described. Most of the problems are related to obtaining a reliable tetracycline-regulated cell clone, which often results in arduous labor. We describe here a new approach to facilitate the screening and selection of such cell clones. We have constructed a tetracycline-responsive plasmid that harbors an antibiotic resistance gene fused to the enhanced green fluorescent protein (EGFP) gene and the luciferase gene, both under the control of a bidirectional promoter. We demonstrate that the selection of tetracycline-regulated clones is highly simplified by using this plasmid. Only clones expressing the system in a functional manner are able to survive under antibiotic selection. In addition, a quick characterization of the responsiveness of the clones is possible by monitoring GFP expression in vivo.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595 Torrelasal, Castellon, Spain
| | | | | | | |
Collapse
|
21
|
Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3109-21. [PMID: 12869186 DOI: 10.1046/j.1432-1033.2003.03694.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
22
|
Krueger C, Berens C, Schmidt A, Schnappinger D, Hillen W. Single-chain Tet transregulators. Nucleic Acids Res 2003; 31:3050-6. [PMID: 12799431 PMCID: PMC162254 DOI: 10.1093/nar/gkg421] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that the Tet repressor (TetR), a dimeric allosterical regulatory protein, can be converted to a fully functional monomer when connected by a 29 amino acid linker. TetR-based transregulators are widely used to regulate gene expression in eukaryotes. They can be fused to form single-chain (sc) Tet transregulators with two TetR moieties and one eukaryotic regulatory domain. Sc variants of transactivator and transsilencer exhibit the same regulatory properties as their respective dimeric counterparts in human cell lines. In particular, the reverse 'tet-on' phenotype of rtTA variants is also present in the sc variants. Coexpression of a reverse transactivator and sc transsilencer leads to reduced background expression and shows full activation upon induction. The data demonstrate that sc Tet transregulators exhibit the phenotype of their respective dimers and lack functional interference when coexpressed in the same cell.
Collapse
Affiliation(s)
- Christel Krueger
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
23
|
Schubert W, Yang XY, Yang TTC, Factor SM, Lisanti MP, Molkentin JD, Rincon M, Chow CW. Requirement of transcription factor NFAT in developing atrial myocardium. J Cell Biol 2003; 161:861-74. [PMID: 12796475 PMCID: PMC2172977 DOI: 10.1083/jcb.200301058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor of activated T cell (NFAT) is a ubiquitous regulator involved in multiple biological processes. Here, we demonstrate that NFAT is temporally required in the developing atrial myocardium between embryonic day 14 and P0 (birth). Inhibition of NFAT activity by conditional expression of dominant-negative NFAT causes thinning of the atrial myocardium. The thin myocardium exhibits severe sarcomere disorganization and reduced expression of cardiac troponin-I (cTnI) and cardiac troponin-T (cTnT). Promoter analysis indicates that NFAT binds to and regulates transcription of the cTnI and the cTnT genes. Thus, regulation of cytoskeletal protein gene expression by NFAT may be important for the structural architecture of the developing atrial myocardium.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Animals
- Animals, Newborn
- Binding Sites/genetics
- Cell Nucleus/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/genetics
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Genes, Regulator/genetics
- Heart Atria/abnormalities
- Heart Atria/growth & development
- Heart Atria/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Mutation/genetics
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Troponin I/biosynthesis
- Troponin I/genetics
- Troponin T/biosynthesis
- Troponin T/genetics
Collapse
Affiliation(s)
- William Schubert
- Dept. of Molecular Pharmacology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Weber W, Marty RR, Keller B, Rimann M, Kramer BP, Fussenegger M. Versatile macrolide-responsive mammalian expression vectors for multiregulated multigene metabolic engineering. Biotechnol Bioeng 2002; 80:691-705. [PMID: 12378611 DOI: 10.1002/bit.10461] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The novel macrolide-inducible and -repressible mammalian gene regulation systems (E.REX) have been cloned into a variety of sophisticated expression configurations including (1) multi-purpose expression vectors, (2) pTRIDENT-based artificial operons, (3) dual-regulated expression strategies for independent control of two different transgenes, (4) autoregulated vectors for one-step installation of adjustable multigene expression, and (5) oncoretroviral and lentiviral plasmids for transduction of macrolide-, streptogramin- and tetracycline-dependent transactivators and production of cell lines supporting independent control of three different transgenes. This vector portfolio represents a construction kit-like toolbox for efficient installation of adjustable gene expression responsive to clinically licensed antibiotics and enables the design of multiregulated multigene metabolic engineering strategies required for biopharmaceutical manufacturing, gene therapy, and tissue engineering.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Weber W, Kramer BP, Fux C, Keller B, Fussenegger M. Novel promoter/transactivator configurations for macrolide- and streptogramin-responsive transgene expression in mammalian cells. J Gene Med 2002; 4:676-86. [PMID: 12439859 DOI: 10.1002/jgm.314] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The recently developed heterologous macrolide- (E.REX system) and streptogramin- (PIP system) responsive gene regulation systems show significant differences in their regulation performance in diverse cell lines. METHODS In order to provide optimal regulation modalities for a wide variety of mammalian cell lines, we have performed a detailed analysis of E.REX and PIP systems modified in (i) the transactivation domains of the antibiotic-dependent transactivators, (ii) the type of minimal promoter used, and (iii) the spacing between the operator module and the minimal promoter. RESULTS These novel E.REX and PIP regulation components showed not only dramatically improved regulation performance in some cell types, but also enabled their use in cell lines which had previously been inaccessible to regulated transgene expression. CONCLUSIONS Due to their modular set-up the novel E.REX and PIP regulation systems presented here are most versatile and ready for future upgrades using different cell-specific key regulation components.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Guan X, Stege J, Kim M, Dahmani Z, Fan N, Heifetz P, Barbas CF, Briggs SP. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci U S A 2002; 99:13296-301. [PMID: 12271125 PMCID: PMC130627 DOI: 10.1073/pnas.192412899] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2002] [Indexed: 11/18/2022] Open
Abstract
Zinc finger transcription factors (TFs(ZF)) were designed and applied to transgene and endogenous gene regulation in stably transformed plants. The target of the TFs(ZF) is the Arabidopsis gene APETALA3 (AP3), which encodes a transcription factor that determines floral organ identity. A zinc finger protein (ZFP) was designed to specifically bind to a region upstream of AP3. AP3 transcription was induced by transformation of leaf protoplasts with a transformation vector that expressed a TF(ZF) consisting of the ZFP fused to the tetrameric repeat of herpes simplex VP16's minimal activation domain. Histochemical staining of beta-glucuronidase (GUS) activity in transgenic AP3GUS reporter plants expressing GUS under control of the AP3 promoter was increased dramatically in petals when the AP3-specific TF(ZF) activator was cointroduced. TF(ZF)-amplified GUS expression signals were also evident in sepal tissues of these double-transgenic plants. Floral phenotype changes indicative of endogenous AP3 factor coactivation were also observed. The same AP3-specific ZFP(AP3) was also fused to a human transcriptional repression domain, the mSIN3 interaction domain, and introduced into either AP3GUS-expressing plants or wild-type Arabidopsis plants. Dramatic repression of endogenous AP3 expression in floral tissue resulted when a constitutive promoter was used to drive the expression of this TF(ZF). These plants were also sterile. When a floral tissue-specific promoter from APETALA1 (AP1) gene was used, floral phenotype changes were also observed, but in contrast the plants were fertile. Our results demonstrate that artificial transcriptional factors based on synthetic zinc finger proteins are capable of stable and specific regulation of endogenous genes through multiple generations in multicellular organisms.
Collapse
Affiliation(s)
- Xuen Guan
- Torrey Mesa Research Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kenny PA, Enver T, Ashworth A. Retroviral vectors for establishing tetracycline-regulated gene expression in an otherwise recalcitrant cell line. BMC Mol Biol 2002; 3:13. [PMID: 12392602 PMCID: PMC126263 DOI: 10.1186/1471-2199-3-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 09/03/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetracycline-regulated systems have been used to control the expression of heterologous genes in such diverse organisms as yeast, plants, flies and mice. Adaptation of this prokaryotic regulatory system avoids many of the problems inherent in other inducible systems. There have, however, been many reports of difficulties in establishing functioning stable cell lines due to the cytotoxic effects of expressing high levels of the tetracycline transactivator, tTA, from a strong viral promoter. RESULTS Here we report the successful incorporation of tetracycline-mediated gene expression in a mouse mammary epithelial cell line, HC11, in which conventional approaches failed. We generated retroviruses in which tTA expression was controlled by one of three promoters: a synthetic tetracycline responsive promoter (TRE), the elongation factor 1-alpha promoter (EF1alpha) or the phosphoglycerate kinase-1 promoter (PGK), and compared the resulting cell lines to one generated using a cytomegalovirus immediate early gene promoter (CMV). In contrast to cells produced using the CMV and PGK promoters, those produced using the EF1alpha and TRE promoters expressed high levels of beta-galactosidase in a tetracycline-dependent manner. CONCLUSIONS These novel retroviral vectors performed better than the commercially available system and may have a more general utility in similarly recalcitrant cell lines.
Collapse
Affiliation(s)
- Paraic A Kenny
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
- Current address: Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Tariq Enver
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| |
Collapse
|
29
|
Abstract
Inducible expression systems show great potential for use in human gene therapy and systems based on insect ecdysone receptors are particularly promising candidates. This article describes such systems and reviews actual and potential uses of ecdysone-controlled transgenes in vitro and in vivo. The ligand specificity of ecdysone receptor-based systems is considered, along with the safety and efficacy of the ecdysteroid and non-steroidal compounds used to activate them.
Collapse
Affiliation(s)
- Lloyd D Graham
- CSIRO Molecular Science, Sydney Laboratory, PO BOX 184, North Ryde, NSW 1670, Australia.
| |
Collapse
|
30
|
Jiang W, Zhou L, Breyer B, Feng T, Cheng H, Haydon R, Ishikawa A, He TC. Tetracycline-regulated gene expression mediated by a novel chimeric repressor that recruits histone deacetylases in mammalian cells. J Biol Chem 2001; 276:45168-74. [PMID: 11581265 DOI: 10.1074/jbc.m106924200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated gene expression will provide important platforms from which gene functions can be investigated and safer means of gene therapy may be developed. Histone deacetylases have recently been shown to play an important role in regulating gene expression. Here we investigated whether a more tightly controlled expression could be achieved by using a novel chimeric repressor that recruits histone deacetylases to a tetracycline-responsive promoter. This chimeric repressor was engineered by fusing the tetracycline repressor (TetR) with an mSin3-interacting domain of human Mad1 and was shown to bind the tetO(2) element with high affinity, and its binding was efficiently abrogated by doxycycline. The chimeric repressor was shown to directly interact with mSin3 of the histone deacetylase complex. This inducible system was further simplified by using a single vector that contained both a chimeric repressor expression cassette and a tetracycline-responsive promoter. When transiently introduced into mammalian cells, the chimeric repressor system exhibited a significantly lower basal level of luciferase activity (up to 25-fold) than that of the TetR control. When stably transfected into HEK 293 cells, the chimeric repressor system was shown to exert a tight control of green fluorescent protein expression in a doxycycline dose- and time-dependent fashion. Therefore, this novel chimeric repressor provides an effective means for more tightly regulated gene expression, and the simplified inducible system may be used for a broad range of basic and clinical studies.
Collapse
Affiliation(s)
- W Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Investigations of the mechanisms involved in appropriate, developmentally regulated tissue-specific gene transcription have laid the foundations for transgenic and gene-therapy technologies directing specific induction or ablation of genes of interest in a tissue-restricted manner. This technology has further evolved to allow for temporal control of gene expression and ablation. Genes can now be switched on and off or be ablated by administering exogenous compounds. These technologies are based on the development of ligand-inducible transcription factors or recombinases that regulate gene expression or ablation by the administration of specific ligands and should lead to animal models that are better suited for investigating the molecular basis of human disease. This review describes the evolution, components and applications of systems that are currently being employed in transgenic and mutant-mouse technology for the conditional regulation of gene expression and ablation.
Collapse
Affiliation(s)
- F J DeMayo
- Dept of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|