1
|
Xiao M, Li X, Bu F, Ma S, Yang X, Chen J, Zhao Y, Cananzi F, Luo C, Min L. Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study. eLife 2025; 14:RP100887. [PMID: 40407808 PMCID: PMC12101831 DOI: 10.7554/elife.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2025] Open
Abstract
Background Retroperitoneal liposarcoma (RPLS) is a critical malignant disease with various clinical outcomes. However, the molecular heterogeneity of RPLS was poorly elucidated, and few biomarkers were proposed to monitor its progression. Methods RNA sequencing was performed on a training cohort of 88 RPLS patients to identify dysregulated genes and pathways using clusterProfiler. The GSVA algorithm was utilized to assess signaling pathway levels in each sample, and unsupervised clustering was employed to distinguish RPLS subtypes. Differentially expressed genes (DEGs) between RPLS subtypes were identified to construct a simplified dichotomous clustering via nonnegative matrix factorization. The feasibility of this classification was validated in a separate validation cohort (n=241) using immunohistochemistry (IHC) from the REtroperitoneal SArcoma Registry (RESAR). The study is registered with https://clinicaltrials.gov/ under number NCT03838718. Results Cell cycle, DNA damage and repair, and metabolism were identified as the most aberrant biological processes in RPLS, enabling the division of RPLS patients into two distinct subtypes with unique molecular signatures, tumor microenvironment, clinical features, and outcomes (overall survival [OS] and disease-free survival [DFS]). A simplified RPLS classification based on representative biomarkers (LEP and PTTG1) demonstrated high accuracy (area under the curve [AUC]>0.99), with patients classified as LEP+ and PTTG1-, showing lower aggressive pathological composition ratio and fewer surgery times, along with better OS (HR = 0.41, p<0.001) and DFS (HR = 0.60, p=0.005). Conclusions Our study provided an ever-largest gene expression landscape of RPLS and established an IHC-based molecular classification that was clinically relevant and cost-effective for guiding treatment decisions. Funding This work was supported by grants from the Beijing Municipal Science and Technology Project (Z191100006619081), National Natural Science Foundation of China (82073390), and Young Elite Scientists Sponsorship Program (2023QNRC001). The study sponsors had no role in the design and preparation of this manuscript. Clinical trial number NCT03838718.
Collapse
Affiliation(s)
- Mengmeng Xiao
- Department of Retroperitoneal Tumor Surgery, Peking University People’s HospitalBeijingChina
- Department of Retroperitoneal Tumor Surgery, Peking University International HospitalBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, Peking University International HospitalBeijingChina
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International HospitalBeijingChina
| | - Xiaohan Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jun Chen
- Department of Retroperitoneal Tumor Surgery, Peking University International HospitalBeijingChina
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Chenghua Luo
- Department of Retroperitoneal Tumor Surgery, Peking University People’s HospitalBeijingChina
- Department of Retroperitoneal Tumor Surgery, Peking University International HospitalBeijingChina
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
2
|
Saha S, Tandon R, Sanku J, Kumari A, Shukla R, Srivastava N. siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. Int J Pharm 2025; 674:125463. [PMID: 40081431 DOI: 10.1016/j.ijpharm.2025.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hormone-related cancers, also known as hormone-sensitive or hormone-dependent cancers, rely on hormones such as estrogen, testosterone, and progesterone for growth. These malignancies, including breast, pituitary, thyroid, ovarian, uterine, cervical, and prostate cancers, often exhibit accelerated progression in response to hormonal signaling. Small interfering RNA (siRNA) has emerged as a groundbreaking gene suppression therapy since the FDA approval of its first product in 2018. With over 200 ongoing clinical trials, siRNA is being actively explored as a targeted treatment for hormone-related cancers. Its ability to silence specific oncogenes offers significant advantages over conventional therapies, which are often associated with toxicity, resistance, and non-specific targeting. However, challenges in siRNA delivery remain a major barrier to its clinical translation, limiting its ability to reach target cells effectively. This review evaluates the potential of siRNA in hormone-related cancers, addressing the shortcomings of traditional treatments while examining novel strategies to enhance siRNA delivery and overcome tumor microenvironment obstacles. Notably, no existing literature comprehensively consolidates siRNA-based therapies for these cancers, emphasizing the importance of this manuscript in bridging current knowledge gaps and advancing the translational application of siRNA therapeutics.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Jhansi Sanku
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Anchala Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Wu H, Li D, Zhang CY, Huang LL, Zeng YJ, Chen TG, Yu K, Meng JW, Lin YX, Guo R, Zhou Y, Gao G. Restoration of ARA metabolic disorders in vascular smooth muscle cells alleviates intimal hyperplasia. Eur J Pharmacol 2024; 983:176824. [PMID: 39265882 DOI: 10.1016/j.ejphar.2024.176824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/14/2024]
Abstract
Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Hyperplasia
- Male
- Rats
- Cyclooxygenase 2/metabolism
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Sprague-Dawley
- Cell Movement/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/metabolism
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Tunica Intima/drug effects
- Becaplermin/pharmacology
- Neointima/pathology
- Neointima/metabolism
- Neointima/drug therapy
- Metabolic Diseases/metabolism
- Metabolic Diseases/drug therapy
- Metabolic Diseases/pathology
Collapse
Affiliation(s)
- Hui Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, 410005, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Ling-Li Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - You-Jie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tian-Ge Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Ke Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jia-Wei Meng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xin Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
He W, Zhu H, Zhang S, Shu G, Lei H, Yin G, Ni X, Wang M, Wu Q. Promoter Methylation Changes in DNA Damage-Response Genes in Ovarian Cancer and Their Correlation with Prognosis. CLIN EXP OBSTET GYN 2024; 51. [DOI: 10.31083/j.ceog5105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Background: Ovarian cancer has a poor prognosis, and DNA damage-response (DDR) genes are associated with both its occurrence and prognosis. However, previous studies have mostly focused on genetic mutations, with no clear conclusions on epigenetic factors such as DNA methylation. Methods: In this study, we comprehensively investigated the relationship between promoter methylation of DDR genes and ovarian cancer prognosis. We performed combined multidata analysis of the promoter methylation, expression, homologous recombination defieiency (HRD) score, and drug sensitivity of 377 DDR genes in ovarian cancer by utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. We then validated abnormal promoter methylation and its relationship with overall survival in clinical samples. Results: Our analysis identified 52 methylation-driven DDR genes that exhibited abnormal expression due to abnormal promoter methylation. These genes are mostly related to BRCA1-related DNA damage repair and cell cycle regulatory pathways. Further studies revealed six of these genes, BRCA1, PTTG1, TTK, AURKA, CDC6, and E2F1, to be significantly associated with HRD scores. Among them, E2F1, PTTG1, and CDC6 are associated with drug sensitivity. Finally, we verified in 81 ovarian cancer samples that methylation of the promoter of these three genes was significantly associated with patient survival. Conclusions: Our study identified a large number of methylation-driven aberrantly expressed DDR genes in ovarian cancer, some of which affect disease prognosis. Levels of methylation of these gene promoters may serve as potential prognostic markers.
Collapse
Affiliation(s)
- Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 200237 Shanghai, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 200237 Shanghai, China
| | - Sufen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 200237 Shanghai, China
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, 410013 Changsha, Hunan, China
| | - Han Lei
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, 410013 Changsha, Hunan, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, 410013 Changsha, Hunan, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 200237 Shanghai, China
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, 410013 Changsha, Hunan, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 200237 Shanghai, China
| |
Collapse
|
5
|
Zhang X, Ji H, Huang Y, Zhu B, Xing Q. Elevated PTTG1 predicts poor prognosis in kidney renal clear cell carcinoma and correlates with immunity. Heliyon 2023; 9:e13201. [PMID: 36793955 PMCID: PMC9922818 DOI: 10.1016/j.heliyon.2023.e13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Background PTTG1 has been reported to be linked with the prognosis and progression of various cancers, including kidney renal clear cell carcinoma (KIRC). In this article, we mainly investigated the associations between prognosis, immunity, and PTTG1 in KIRC patients. Method We downloaded transcriptome data from the TCGA-KIRC database. PCR and immunohistochemistry were used, respectively, to validate the expression of PTTG1 in KIRC at the cell line and the protein levels. Survival analyses as well as univariate or multivariate Cox hazard regression analyses were used to prove whether PTTG1 alone could affect the prognosis of KIRC. The most important point was to study the relationship between PTTG1 and immunity. Results The results of the paper revealed that the expression levels of PTTG1 were elevated in KIRC compared with para-cancerous normal tissues, validated by PCR and immunohistochemistry at the cell line and the protein levels (P < 0.05). High PTTG1 expression was related to shorter overall survival (OS) in patients with KIRC (P < 0.05). Through univariate or multivariate regression analysis, PTTG1 was confirmed to be an independent prognostic factor for OS of KIRC (P < 0.05), and its related seven pathways were obtained through gene set enrichment analysis (GSEA; P < 0.05). Moreover, tumor mutational burden (TMB) and immunity were found to be significantly connected with PTTG1 in KIRC (P < 0.05). Correlations between PTTG1 and immunotherapy responses implied that the low-PTTG1 group was more sensitive to immunotherapy (P < 0.05). Conclusions PTTG1 was closely associated with TMB or immunity, and it had a superior ability to forecast the prognosis of KIRC patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
6
|
Liu X, Zeng W, Zheng D, Tang M, Zhou W. Clinical significance of securin expression in solid cancers: A PRISMA-compliant meta-analysis of published studies and bioinformatics analysis based on TCGA dataset. Medicine (Baltimore) 2022; 101:e30440. [PMID: 36123907 PMCID: PMC9478268 DOI: 10.1097/md.0000000000030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Numerous studies have investigated the clinical significance of securin expression in solid cancers; however, the results have been inconsistent. Hence, we performed a meta-analysis of published studies to assess the clinical value of securin expression in patients with solid cancers. METHODS The Chinese National Knowledge Infrastructure, Web of Science, PubMed, and EMDASE databases were searched for eligible studies (from inception up to April 2021). Bioinformatics analysis based on The Cancer Genome Atlas dataset was also performed to evaluate the prognostic value of securin expression. RESULTS A total of 25 articles with 26 studies were included in the meta-analysis. The results of the meta-analysis implied that high securin expression was positively correlated with unfavorable overall survival (OS) (hazard ratio = 1.52, 95% CI, 1.33-1.73; P < .001) and lymph node metastasis (odd ratio = 2.96, 95% CI, 2.26-3.86; P < .001). Consistently, our bioinformatics analysis showed that increased securin expression was associated with worse OS and shorter disease-free survival in cancer patients. CONCLUSION Our study indicated that securin overexpression was positively associated with metastasis and inversely related to the prognosis of patients with solid cancers. However, additional high-quality studies should be conducted to validate these findings.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Dayang Zheng
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Min Tang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, Hengyang, China
- * Correspondence: Wangyan Zhou, Department of Medical Humanities and Education Department, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang 421001, China (e-mail: )
| |
Collapse
|
7
|
Demin DE, Stasevich EM, Murashko MM, Tkachenko EA, Uvarova AN, Schwartz AM. Full and D-BOX-Deficient PTTG1 Isoforms: Effects on Cell Proliferation. Mol Biol 2022. [DOI: 10.1134/s0026893322060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
9
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
10
|
Hinojosa-Amaya JM, Lam-Chung CE, Cuevas-Ramos D. Recent Understanding and Future Directions of Recurrent Corticotroph Tumors. Front Endocrinol (Lausanne) 2021; 12:657382. [PMID: 33986726 PMCID: PMC8111286 DOI: 10.3389/fendo.2021.657382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Corticotroph tumors (CTs) are pituitary neoplasms arising from the Tpit lineage, which may or not express adrenocorticotrophic hormone (ACTH). Functioning CTs cause Cushing's disease (CD), which has high morbidity and mortality due to hypercortisolemia. "Non-functioning" or silent CTs (SCT) and the Crooke's cell subtypes do not cause CD and may be asymptomatic until manifested by compressive symptoms and are more frequently found as macroadenoma. Both tend toward more aggressive behavior, recurrence, and a higher rate of malignant transformation to pituitary carcinoma. Tumorigenesis involves genetic, epigenetic, and post-transcriptional disruption of cell-cycle regulators, which increase cell proliferation, POMC overexpression, ACTH transcription, and/or hypersecretion. Furthermore, functioning CTs develop resistance to glucocorticoid-mediated negative feedback on ACTH secretion, through increased expression of testicular orphan nuclear receptor 4 (TR4), heat-shock protein 90 (HSP90), and loss-of-function mutation of CDK5 and ABL enzyme substrate 1 (CABLES1) gene. Overt autonomous hypercortisolemia is difficult to control, and multiple diagnostic studies and therapeutic modalities are commonly required. Cell-cycle regulation depends mainly on p27, cyclin E, cyclin-dependent kinases (CDKs), and the retinoblastoma protein (Rb)/E2F1 transcription factor complex. Gain-of-function mutations of ubiquitin-specific protease (USP) 8, USP48, and BRAF genes may subsequently cause overexpression of epithelial growth factor receptor (EGFR), and enhance POMC transcription, cell proliferation, and tumor growth. Epigenetic changes through micro RNAs and decreased DNA deacetylation by histone deacetylase type 2 (HDAC2), may also affect tumor growth. All the former mechanisms may become interesting therapeutic targets for CTs, aside from temozolomide, currently used for aggressive tumors. Potential therapeutic agents are EGFR inhibitors such as gefitinib and lapatinib, the purine analog R-roscovitine by dissociation of CDK2/Cyclin E complex, the HSP90 inhibitor silibinin (novobiocin), to reduce resistance to glucocorticoid-mediated negative feedback, and BRAF inhibitors vemurafenib and dabrafenib in BRAF V600E positive tumors. This review summarizes the molecular mechanisms related to CTs tumorigenesis, their diagnostic approach, and provides an update of the potential novel therapies, from the lab bench to the clinical translation.
Collapse
Affiliation(s)
- José Miguel Hinojosa-Amaya
- Pituitary Clinic, Endocrinology Division, Department of Medicine, Hospital Universitario “Dr. José E. González” UANL, Monterrey, Mexico
| | - César Ernesto Lam-Chung
- Neuroendocrinology Clinic, Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Daniel Cuevas-Ramos
- Neuroendocrinology Clinic, Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Daniel Cuevas-Ramos,
| |
Collapse
|
11
|
Demin DE, Uvarova AN, Klepikova AV, Schwartz AM. The Influence of the Minor Short Isoform of Securin (PTTG1) on Transcription is Significantly Different from the Impact of the Full Isoform. Mol Biol 2020. [DOI: 10.1134/s0026893320010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Välimäki N, Schalin-Jäntti C, Karppinen A, Paetau A, Kivipelto L, Aaltonen LA, Karhu A. Genetic and Epigenetic Characterization of Growth Hormone-Secreting Pituitary Tumors. Mol Cancer Res 2019; 17:2432-2443. [PMID: 31578227 DOI: 10.1158/1541-7786.mcr-19-0434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
Somatic driver mechanisms of pituitary adenoma pathogenesis have remained incompletely characterized; apart from mutations in the stimulatory Gα protein (Gαs encoded by GNAS) causing activated cAMP synthesis, pathogenic variants are rarely found in growth hormone-secreting pituitary tumors (somatotropinomas). The purpose of the current work was to clarify how genetic and epigenetic alterations contribute to the development of somatotropinomas by conducting an integrated copy number alteration, whole-genome and bisulfite sequencing, and transcriptome analysis of 21 tumors. Somatic mutation burden was low, but somatotropinomas formed two subtypes associated with distinct aneuploidy rates and unique transcription profiles. Tumors with recurrent chromosome aneuploidy (CA) were GNAS mutation negative (Gsp- ). The chromosome stable (CS) -group contained Gsp+ somatotropinomas and two totally aneuploidy-free Gsp- tumors. Genes related to the mitotic G1-S-checkpoint transition were differentially expressed in CA- and CS-tumors, indicating difference in mitotic progression. Also, pituitary tumor transforming gene 1 (PTTG1), a regulator of sister chromatid segregation, showed abundant expression in CA-tumors. Moreover, somatotropinomas displayed distinct Gsp genotype-specific methylation profiles and expression quantitative methylation (eQTM) analysis revealed that inhibitory Gα (Gαi) signaling is activated in Gsp+ tumors. These findings suggest that aneuploidy through modulated driver pathways may be a causative mechanism for tumorigenesis in Gsp- somatotropinomas, whereas Gsp+ tumors with constitutively activated cAMP synthesis seem to be characterized by DNA methylation activated Gαi signaling. IMPLICATIONS: These findings provide valuable new information about subtype-specific pituitary tumorigenesis and may help to elucidate the mechanisms of aneuploidy also in other tumor types.
Collapse
Affiliation(s)
- Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Atte Karppinen
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB, University of Helsinki, Helsinki, Finland
| | - Leena Kivipelto
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| |
Collapse
|
14
|
Galindo-Moreno M, Giráldez S, Limón-Mortés MC, Belmonte-Fernández A, Reed SI, Sáez C, Japón MÁ, Tortolero M, Romero F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage. FASEB J 2019; 33:11420-11430. [PMID: 31337255 PMCID: PMC6766643 DOI: 10.1096/fj.201900885r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022]
Abstract
Eukaryotic cells have developed sophisticated mechanisms to ensure the integrity of the genome and prevent the transmission of altered genetic information to daughter cells. If this control system fails, accumulation of mutations would increase risk of diseases such as cancer. Ubiquitylation, an essential process for protein degradation and signal transduction, is critical for ensuring genome integrity as well as almost all cellular functions. Here, we investigated the role of the SKP1-Cullin-1-F-box protein (SCF)-[F-box and tryptophan-aspartic acid (WD) repeat domain containing 7 (FBXW7)] ubiquitin ligase in cell proliferation by searching for targets implicated in this process. We identified a hitherto-unknown FBXW7-interacting protein, p53, which is phosphorylated by glycogen synthase kinase 3 at serine 33 and then ubiquitylated by SCF(FBXW7) and degraded. This ubiquitylation is carried out in normally growing cells but primarily after DNA damage. Specifically, we found that SCF(FBXW7)-specific targeting of p53 is crucial for the recovery of cell proliferation after UV-induced DNA damage. Furthermore, we observed that amplification of FBXW7 in wild-type p53 tumors reduced the survival of patients with breast cancer. These results provide a rationale for using SCF(FBXW7) inhibitors in the treatment of this subset of tumors.-Galindo-Moreno, M., Giráldez, S., Limón-Mortés, M. C., Belmonte-Fernández, A., Reed, S. I., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. SCF(FBXW7)-mediated degradation of p53 promotes cell recovery after UV-induced DNA damage.
Collapse
Affiliation(s)
- María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California, USA
| | | | | | - Steven I. Reed
- Department of Molecular Medicine, The Scripps Research Institute, San Diego, California, USA
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Á. Japón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
In silico repurposing the Rac1 inhibitor NSC23766 for treating PTTG1-high expressing clear cell renal carcinoma. Pathol Res Pract 2019; 215:152373. [DOI: 10.1016/j.prp.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/03/2019] [Accepted: 03/02/2019] [Indexed: 01/06/2023]
|
16
|
Fuertes M, Sapochnik M, Tedesco L, Senin S, Attorresi A, Ajler P, Carrizo G, Cervio A, Sevlever G, Bonfiglio JJ, Stalla GK, Arzt E. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr Relat Cancer 2018; 25:665-676. [PMID: 29622689 DOI: 10.1530/erc-18-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Abstract
Increased levels of the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) have been repeatedly reported in several human solid tumors, especially in endocrine-related tumors such as pituitary adenomas. Securin PTTG has a critical role in pituitary tumorigenesis. However, the cause of upregulation has not been found yet, despite analyses made at the gene, promoter and mRNA level that show that no mutations, epigenetic modifications or other mechanisms that deregulate its expression may explain its overexpression and action as an oncogene. We describe that high PTTG protein levels are induced by the RWD-containing sumoylation enhancer (RWDD3 or RSUME), a protein originally identified in the same pituitary tumor cell line in which PTTG was also cloned. We demonstrate that PTTG and RSUME have a positive expression correlation in human pituitary adenomas. RSUME increases PTTG protein in pituitary tumor cell lines, prolongs the half-life of PTTG protein and regulates the PTTG induction by estradiol. As a consequence, RSUME enhances PTTG transcription factor and securin activities. PTTG hyperactivity on the cell cycle resulted in recurrent and unequal divisions without cytokinesis, and the consequential appearance of aneuploidies and multinucleated cells in the tumor. RSUME knockdown diminishes securin PTTG and reduces its tumorigenic potential in a xenograft mouse model. Taken together, our findings show that PTTG high protein steady state levels account for PTTG tumor abundance and demonstrate a critical role of RSUME in this process in pituitary tumor cells.
Collapse
Affiliation(s)
- M Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - M Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - L Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - S Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - A Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - P Ajler
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - G Carrizo
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - A Cervio
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - G Sevlever
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - J J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - G K Stalla
- Department of Clinical ResearchMax Planck Institute of Psychiatry, Munich, Germany
| | - E Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Response of Myeloid Leukemia Cells to Luteolin is Modulated by Differentially Expressed Pituitary Tumor-Transforming Gene 1 (PTTG1) Oncoprotein. Int J Mol Sci 2018; 19:ijms19041173. [PMID: 29649138 PMCID: PMC5979486 DOI: 10.3390/ijms19041173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022] Open
Abstract
Luteolin, a flavonoid nutraceutical abundant in vegetables and fruits, exhibits a wide range of bioactive properties, including antioxidant, anti-inflammatory and anti-cancer activities. Pituitary tumor-transforming gene 1 (PTTG1), an oncoprotein that regulates cell proliferation, is highly expressed in several types of cancer cells including leukemia. In this study, we aim to investigate the anti-cancer effects of luteolin on cells with differential PTTG1 expression and their underlying mechanisms in human myeloid leukemia cells. Methyl thiazolyl tetrazolium (MTT) assay data showed that luteolin (25–100 μM) significantly reduced cell viability in THP-1, HL-60 and K562 cells but did not affect normal peripheral blood mononuclear cells (PBMCs). Flow cytometric analysis and Western blot data demonstrated that luteolin induced a stronger apoptosis on undifferentiated myeloid leukemia cells with higher PTTG1 protein levels than on 12-myristate 13-acetate (PMA)- or all-trans-retinoic acid (ATRA)-differentiated cells with lower PTTG1 expression. Furthermore, PTTG1 knockdown by shRNA in leukemia cells suppressed cell proliferation, arrested cell-cycle progression and impaired the effectiveness of luteolin on cell-cycle regulation. Moreover, PTTG1-knockdown cells with luteolin exposure presented a reduction of the apoptotic proteins and maintained higher levels of the anti-apoptotic proteins such as Mcl-1, Bcl-2 and p21, which exhibited greater resistance to apoptosis. Finally, microarray analysis showed that 20 genes associated with cell proliferation, such as CXCL10, VEGFA, TNF, TP63 and FGFR1, were dramatically down-regulated in PTTG1-knockdown cells. Our current findings clearly demonstrate that luteolin-triggered leukemic cell apoptosis is modulated by the differential expression of the PTTG1. PTTG1 oncoprotein overexpression may modulate cell proliferation-related regulators and enhance the response of myeloid leukemia cells to luteolin. Luteolin is beneficial for the treatment of cancer cells with highly expressed PTTG1 oncoprotein.
Collapse
|
18
|
Araki T, Liu NA. Cell Cycle Regulators and Lineage-Specific Therapeutic Targets for Cushing Disease. Front Endocrinol (Lausanne) 2018; 9:444. [PMID: 30147673 PMCID: PMC6096271 DOI: 10.3389/fendo.2018.00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022] Open
Abstract
Cell cycle proteins are critical to pituitary development, but their contribution to lineage-specific tumorigenesis has not been well-elucidated. Emerging evidence from in vitro human tumor analysis and transgenic mouse models indicates that G1/S-related cell cycle proteins, particularly cyclin E, p27, Rb, and E2F1, drive molecular mechanisms that underlie corticotroph-specific differentiation and development of Cushing disease. The aim of this review is to summarize the literature and discuss the complex role of cell cycle regulation in Cushing disease, with a focus on identifying potential targets for therapeutic intervention in patients with these tumors.
Collapse
Affiliation(s)
- Takako Araki
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Takako Araki
| | - Ning-Ai Liu
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
19
|
Zhi T, Jiang K, Xu X, Yu T, Wu W, Nie E, Zhou X, Jin X, Zhang J, Wang Y, Liu N. MicroRNA-520d-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting PTTG1. Am J Transl Res 2017; 9:4872-4887. [PMID: 29218086 PMCID: PMC5714772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. Acquiring a better understanding of the pathogenic mechanisms is essential to the design of effective therapeutic strategies. Previous studies have found that miR-520d-5p was negatively correlated with glioma grade, but its role and mechanism in glioma progression remain largely unknown. In the present study, we reported that miR-520d-5p directly targeted the Pituitary Tumor Transforming Gene 1 (PTTG1) and functioned as a tumor-suppressor in glioma. The expression of miR-520d-5p in glioma cells and specimens were detected by Quantitative reverse transcription-PCR and Fluorescence in situ hybridization (FISH). The effects of miR-520d-5p on glioma progression was examined by cell-counting kit 8, colony formation, 5-ethynyl-2-deoxyuridine (EDU) and flow cytometry assays. Using bioinformatics and luciferase reporter assays, we identified PTTG1 as a novel and direct target of miR-520d-3p. A xenograft model was used to study the effect of miR-520d-5p on tumor growth and angiogenesis. We found that miR-520d-5p expression was significantly decreased in glioma cell lines and tissues. Overexpression of miR-520d-5p showed a significant inhibitory effect on cell proliferation and accompanied cell cycle G0/G1 arrest in U87-MG and LN229 glioma cells. PTTG1 was a novel and direct target of miR-520d-5p, and the protein expression of PTTG1 was markedly reduced after overexpression of miR-520d-5p in U87-MG and LN229 cells. Overexpression of PTTG1 reversed the inhibitory effect of miR-520d-5p on glioma cell proliferation. In vivo studies confirmed that miR-520d-5p overexpression retarded the growth of U87 xenograft tumors, which was accompanied by reduced expression of PTTG1. In conclusion, these results provide compelling evidence that miR-520d-5p functions as an anti-onco-miRNA, which is important in inhibiting cell proliferation in GBM, and its anti-oncogenic effects are mediated chiefly through direct suppression of PTTG1 expression. Therefore, we suggest that miR-520d-5p is a potential candidate for the prevention of glioblastoma.
Collapse
Affiliation(s)
- Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Kuan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
- Department of Neurosurgery, Yixing People’s HospitalYixing 214200, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Xu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Xin Jin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu Province, China
| |
Collapse
|
20
|
Giotti B, Joshi A, Freeman TC. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types. BMC Genomics 2017; 18:30. [PMID: 28056781 PMCID: PMC5217208 DOI: 10.1186/s12864-016-3435-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. RESULTS Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. CONCLUSIONS Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G1/S-S and G2-M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.
Collapse
Affiliation(s)
- Bruno Giotti
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK.
| | - Anagha Joshi
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| | - Tom C Freeman
- Systems Immunology Group and Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
21
|
Gao H, Zhong F, Xie J, Peng J, Han Z. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling. Am J Cancer Res 2016; 6:425-439. [PMID: 27186413 PMCID: PMC4859670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023] Open
Abstract
Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed at higher level in most of the tumors. PTTG overexpression correlates with lymph node infiltration and a higher degree of tumor recurrence in breast cancer. However, the cellular functions and precise signals elicited by PTTG in breast cancer are not fully understood. Here, we established a breast cancer cell line which stably overexpressed PTTG. In vitro experiments showed that overexpression of PTTG in MCF-7 cells was associated with enhanced cell migration and invasion as well as EMT. Our results also demonstrated that PTTG overexpression correlated with elevated EMMPRIN level, which mediated the enhanced cell migration, invasion and EMT. Moreover, our findings suggested that PTTG enhances metastatic potential of breast cancer cells by inducing EMMPRIN through activating FAK/Akt/mTOR pathway. Our findings may lead to a better understanding of the biological effect of PTTG and provide mechanistic insights for developing potential therapeutic strategies for inhibiting the invasion and metastasis of breast cancer.
Collapse
Affiliation(s)
- Hui Gao
- Qingdao UniversityQingdao, Shandong 266071, China
| | - Feng Zhong
- Qingdao UniversityQingdao, Shandong 266071, China
| | - Jing Xie
- Qingdao UniversityQingdao, Shandong 266071, China
| | - Jianjun Peng
- College of Life Sciences, Chongqing Normal UniversityChongqing 401331, China
| | - Zhiwu Han
- Qingdao UniversityQingdao, Shandong 266071, China
- Qingdao University Affiliated HospitalQingdao, Shandong 266071, China
| |
Collapse
|
22
|
Cui L, Xu S, Song Z, Zhao G, Liu X, Song Y. Pituitary tumor transforming gene: a novel therapeutic target for glioma treatment. Acta Biochim Biophys Sin (Shanghai) 2015; 47:414-21. [PMID: 25908389 DOI: 10.1093/abbs/gmv026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/16/2022] Open
Abstract
Glioma which has strong proliferation and angiogenesis ability is the most common and malignant primary tumor in central nervous system. Pituitary tumor transforming gene (PTTG) is found in pituitary tumor, and plays important role in cell proliferation, cell cycle, cell apoptosis, and angiogenesis. However, the role of PTTG in glioma is still incompletely investigated. Here, we explored the correlation between PTTG and glioma grade, as well as micro-vessel density (MVD). In addition, siRNA was used to silence PTTG expression in glioma cell lines including U87MG, U251, and SHG44. Cell proliferation, apoptosis, invasion, and angiogenesis were studied both in vitro and in vivo. Our results demonstrated that PTTG expression was significantly up-regulated in glioma, and had positive correlation with glioma grade and MVD. Silencing of PTTG inhibited glioma cell proliferation, migration/invasion, and angiogenesis, induced cell apoptosis, suppressed cell invasion, and arrested cell cycle at G0/G1 stage. Silencing of PTTG could also inhibit tumor growth, invasion, and angiogenesis in vivo. Our data indicated that PTTG might be a potential target for glioma treatment.
Collapse
Affiliation(s)
- Lishan Cui
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Changchun 130021, China Department of Neurosurgery, The Fifth Hospital of Xiamen, Xiamen 361101, China
| | - Songbai Xu
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Changchun 130021, China
| | - Zhengmao Song
- Department of Neurosurgery, The Fifth Hospital of Xiamen, Xiamen 361101, China
| | - Gang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Jilin University, Changchun 130021, China
| | - Xiaoqian Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
23
|
Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst) 2015; 30:53-67. [PMID: 25881042 DOI: 10.1016/j.dnarep.2015.03.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/20/2015] [Indexed: 01/10/2023]
Abstract
Maintenance of a genome requires DNA repair integrated with chromatin remodeling. We have analyzed six transcriptome data sets and one data set on translational regulation of known DNA repair and remodeling genes in synchronized human cells. These data are available through our new database: www.dnarepairgenes.com. Genes that have similar transcription profiles in at least two of our data sets generally agree well with known protein profiles. In brief, long patch base excision repair (BER) is enriched for S phase genes, whereas short patch BER uses genes essentially equally expressed in all cell cycle phases. Furthermore, most genes related to DNA mismatch repair, Fanconi anemia and homologous recombination have their highest expression in the S phase. In contrast, genes specific for direct repair, nucleotide excision repair, as well as non-homologous end joining do not show cell cycle-related expression. Cell cycle regulated chromatin remodeling genes were most frequently confined to G1/S and S. These include e.g. genes for chromatin assembly factor 1 (CAF-1) major subunits CHAF1A and CHAF1B; the putative helicases HELLS and ATAD2 that both co-activate E2F transcription factors central in G1/S-transition and recruit DNA repair and chromatin-modifying proteins and DNA double strand break repair proteins; and RAD54L and RAD54B involved in double strand break repair. TOP2A was consistently most highly expressed in G2, but also expressed in late S phase, supporting a role in regulating entry into mitosis. Translational regulation complements transcriptional regulation and appears to be a relatively common cell cycle regulatory mechanism for DNA repair genes. Our results identify cell cycle phases in which different pathways have highest activity, and demonstrate that periodically expressed genes in a pathway are frequently co-expressed. Furthermore, the data suggest that S phase expression and over-expression of some multifunctional chromatin remodeling proteins may set up feedback loops driving cancer cell proliferation.
Collapse
|
24
|
Read ML, Seed RI, Modasia B, Kwan PPK, Sharma N, Smith VE, Watkins RJ, Bansal S, Gagliano T, Stratford AL, Ismail T, Wakelam MJO, Kim DS, Ward ST, Boelaert K, Franklyn JA, Turnell AS, McCabe CJ. The proto-oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Mol Carcinog 2014; 55:15-26. [PMID: 25408419 DOI: 10.1002/mc.22254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
The PTTG1-binding factor (PBF) is a transforming gene capable of eliciting tumor formation in xenograft models. However, the precise role of PBF in tumorigenesis and its prognostic value as a cancer biomarker remain largely uncharacterised, particularly in malignancies outside the thyroid. Here, we provide the first evidence that PBF represents a promising prognostic marker in colorectal cancer. Examination of a total of 39 patients demonstrated higher PBF expression at both the mRNA (P = 0.009) and protein (P < 0.0001) level in colorectal tumors compared to matched normal tissue. Critically, PBF was most abundant in colorectal tumors associated with Extramural Vascular Invasion (EMVI), increased genetic instability (GI) and somatic TP53 mutations, all features linked with recurrence and poorer patient survival. We further demonstrate by glutathione-S-transferase (GST) pull-down and coimmunoprecipitation that PBF binds to the tumor suppressor protein p53, as well as to p53 mutants (Δ126-132, M133K, V197E, G245D, I255F and R273C) identified in the colorectal tumors. Importantly, overexpression of PBF in colorectal HCT116 cells interfered with the transcriptional activity of p53-responsive genes such as mdm2, p21 and sfn. Diminished p53 stability (> 90%; P < 0.01) was also evident with a concurrent increase in ubiquitinated p53. Human colorectal tumors with wild-type TP53 and high PBF expression also had low p53 protein levels (P < 0.05), further emphasizing a putative interaction between these genes in vivo. Overall, these results demonstrate an emerging role for PBF in colorectal tumorigenesis through regulating p53 activity, with implications for PBF as a prognostic indicator for invasive tumors.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Robert I Seed
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Bhavika Modasia
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Perkin P K Kwan
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Neil Sharma
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Vicki E Smith
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Rachel J Watkins
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Sukhchain Bansal
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | | | - Anna L Stratford
- Department of Pediatrics, University of British Columbia, Canada
| | - Tariq Ismail
- School of Cancer Sciences, University of Birmingham, UK
| | | | - Dae S Kim
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Stephen T Ward
- Centre for Liver Research and NIHR Centre for Biomedical Research Unit, University of Birmingham, UK
| | - Kristien Boelaert
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Jayne A Franklyn
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | | | | |
Collapse
|
25
|
Lee HJ, Choi JH, Jung J, Kim JK, Lee SS, Kim GJ. Changes in PTTG1 by human TERT gene expression modulate the self-renewal of placenta-derived mesenchymal stem cells. Cell Tissue Res 2014; 357:145-57. [PMID: 24816985 DOI: 10.1007/s00441-014-1874-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/13/2014] [Indexed: 01/01/2023]
Abstract
In addition to their differentiation potential, self-renewal capability is an important characteristic of stem cells. The limited self-renewal activity of mesenchymal stem cells is the greatest obstacle to the application of stem cell therapy in regenerative medicine. The human TERT gene enhances the self-renewal of MSCs, but the mechanism of self-renewal and the interactions among TERT-gene-related molecules remain unknown. The objectives of this study were to generate immortalized MSCs derived from MSCs isolated from placenta (naive) by human TERT gene transfection with the AMAXA gene delivery system, to compare their characteristics, and to investigate whether increased TERT expression affected the pituitary tumor transforming gene (PTTG1; also known as securin), which is involved in chromosome segregation during mitosis. TERT-immortalized cells (TERT+) with a prolonged life span displayed high PTTG1 expression. TERT+ cells also retained the stemness capacity and multipotency of naive cells and displayed high PTTG1 expression. However, down-regulation of PTTG1 by treatment with short interfering RNA induced cell senescence and decreased telomerase activity. Moreover, TERT bound to PTTG1 formed complexes with chaperones such as Ku70 and heat shock protein 90. Thus, placental MSCs immortalized by TERT gene transfection display differentiation potential and exhibit enhanced self-renewal through a balanced interaction of PTTG1 and chaperones. The interaction between TERT and PTTG1 by association of Ku70 might be important for the enhancement of the limited self-renewal activity of MSCs and for understanding the regulatory mechanisms of self-renewal.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Biomedical Science, CHA University, 606-16 Yeoksam1-dong, Kangnam-Gu, Seoul, 135-097, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Hombach-Klonisch S, Natarajan S, Thanasupawat T, Medapati M, Pathak A, Ghavami S, Klonisch T. Mechanisms of therapeutic resistance in cancer (stem) cells with emphasis on thyroid cancer cells. Front Endocrinol (Lausanne) 2014; 5:37. [PMID: 24723911 PMCID: PMC3971176 DOI: 10.3389/fendo.2014.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022] Open
Abstract
The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells.
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Manoj Medapati
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Alok Pathak
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Chen PY, Yen JH, Kao RH, Chen JH. Down-regulation of the oncogene PTTG1 via the KLF6 tumor suppressor during induction of myeloid differentiation. PLoS One 2013; 8:e71282. [PMID: 23977008 PMCID: PMC3745464 DOI: 10.1371/journal.pone.0071282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/26/2013] [Indexed: 01/04/2023] Open
Abstract
The aberrant expression of proto-oncogenes is involved in processes that are responsible for cellular proliferation and the inhibition of myeloid differentiation in acute myeloid leukemia (AML). Pituitary Tumor-Transforming gene 1 (PTTG1), an oncogenic transcription factor, is abundantly expressed in various human cancers and hematopoietic malignancies. However, its expression in normal leukocytes and most normal tissues is very low or undetectable. The mechanism by which PTTG1 overexpression modifies myeloid cell development and promotes leukemogenesis remain unclear. To investigate the mechanistic links between PTTG1 overexpression and leukemia cell differentiation, we utilized phorbol 12-myristate 13-acetate (PMA), a well-known agent that triggers monocyte/macrophage differentiation, to analyze the expression patterns of PTTG1 in PMA-induced myeloid differentiation. We found that PTTG1 is down-regulated at the transcriptional level in PMA-treated HL-60 and THP1 cells. In addition, we identified a binding site for a tumor suppressor protein, Kruppel-like factor 6 (KLF6), in the PTTG1 promoter. We found that KLF6 could directly bind and repress PTTG1 expression. In HL-60 and THP1 cells, KLF6 mRNA and protein levels are up-regulated with a concordant reduction of PTTG1 expression upon treatment with PMA. Furthermore, KLF6 knockdown by shRNA abolished the suppression of PTTG1 and reduced the activation of the differentiation marker CD11b in PMA-primed cells. The protein kinase C (PKC) inhibitor and the MAPK/ERK kinase (MEK) inhibitor significantly blocked the potentiation of PMA-mediated KLF6 induction and the down-regulation of PTTG1, indicating that PTTG1 is suppressed via the activation of PKC/ERK/KLF6 pathway. Our findings suggest that drugs that increase the KLF6 inhibition of PTTG1 may have a therapeutic application in AML treatment strategies.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jui-Hung Yen
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Ruey-Ho Kao
- Department of Hematology-Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Ji-Hshiung Chen
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Critical differences between isoforms of securin reveal mechanisms of separase regulation. Mol Cell Biol 2013; 33:3400-15. [PMID: 23798554 DOI: 10.1128/mcb.00057-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sister chromatid separation depends on the activity of separase, which in turn requires the proteolysis of its inhibitor, securin. It has been speculated that securin also supports the activation of separase. In this study, we found that PTTG1 was the major securin isoform expressed in most normal and cancer cell lines. Remarkably, a highly homologous isoform called PTTG2 was unable to interact with separase. Using chimeras between PTTG1 and PTTG2 and other approaches, we pinpointed a single amino acid that accounted for the loss of securin function in PTTG2. Mutation of the homologous position in PTTG1 (H(134)) switched PTTG1 from an inhibitor into an activator of separase. In agreement with this, PTTG1 lacking H(134) was able to trigger premature sister chromatid separation. Conversely, introduction of H(134) into PTTG2 is sufficient to allow it to bind separase. These data demonstrate that while the motif containing H(134) has a strong affinity for separase and is involved in inhibiting it, another domain(s) is involved in activating separase and has a weaker affinity for it. Although PTTG2 lacks securin function, its differences from PTTG1 provide evidence of independent inhibitory and activating functions of PTTG1 on separase.
Collapse
|
29
|
|
30
|
PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility. Oncogene 2013; 33:851-61. [PMID: 23416975 PMCID: PMC3930149 DOI: 10.1038/onc.2013.16] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Pituitary tumor transforming gene (PTTG), the index mammalian securin, is abundantly expressed in several tumors and regulates tumor growth and progression. Molecular mechanisms elucidating PTTG regulation and actions remain elusive. Here, we provide evidence that PTTG acts as a STAT3 target gene. Total STAT3 and Tyr705 phosphorylated STAT3 were concordantly expressed with PTTG in human colorectal tumors (n=97 and n=95 respectively, P<0.001). STAT3 specifically bound the human PTTG promoter and induced PTTG transcriptional activity (2-fold) as assessed by chromatin immunoprecipitation and luciferase reporter assays. STAT3 transfection increased PTTG mRNA and protein abundance 2-fold in HCT116 human colon cancer cells, and induction was further enhanced (3-fold) by constitutively active STAT3 (STAT3-C), while strongly abrogated by dominant negative STAT3 (STAT3-DN). Attenuating PTTG expression by siRNA in STAT3 HCT116 stable transfectants suppressed cell growth and colony formation in vitro, and PTTG cell knockout also constrained activated STAT3-induced explanted murine tumor growth in vivo. STAT3 increased HCT116 cell migration and invasion up to 5-fold, whereas cell mobility was abolished by STAT3-DN (>85%). Impairing PTTG expression by siRNA also strongly suppressed STAT3-faciliated cell migration and invasion by up to 90%. Knocking out PTTG in STAT3-C HCT116 stable transfectants strongly decreased tumor metastases in nude mice, indicating the requirement of PTTG for STAT3-promoted metastasis. These results elucidate a mechanism for tumor cell PTTG regulation, whereby STAT3 induces PTTG expression to facilitate tumor growth and metastasis; and further support the rationale for targeting PTTG to abrogate colorectal cancer growth.
Collapse
|
31
|
Mora-Santos M, Castilla C, Herrero-Ruiz J, Giráldez S, Limón-Mortés MC, Sáez C, Japón MÁ, Tortolero M, Romero F. A single mutation in Securin induces chromosomal instability and enhances cell invasion. Eur J Cancer 2013; 49:500-10. [DOI: 10.1016/j.ejca.2012.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
32
|
Kakinuma S, Nishimura M, Amasaki Y, Takada M, Yamauchi K, Sudo S, Shang Y, Doi K, Yoshinaga S, Shimada Y. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma. Mutat Res 2012; 737:43-50. [PMID: 22706209 DOI: 10.1016/j.mrfmmm.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 02/04/2023]
Abstract
Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-induced point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens.
Collapse
|
33
|
Tseng HH, Chuah QY, Yang PM, Chen CT, Chao JC, Lin MD, Chiu SJ. Securin enhances the anti-cancer effects of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075) in human colorectal cancer cells. PLoS One 2012; 7:e36006. [PMID: 22563433 PMCID: PMC3338557 DOI: 10.1371/journal.pone.0036006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/29/2012] [Indexed: 12/15/2022] Open
Abstract
BPR0L075 [6-methoxy-3-(3′,4′,5′-trimethoxy-benzoyl)-1H-indole] is a novel anti-microtubule drug with anti-tumor and anti-angiogenic activities in vitro and in vivo. Securin is required for genome stability, and is expressed abundantly in most cancer cells, promoting cell proliferation and tumorigenesis. In this study, we found that BPR0L075 efficiently induced cell death of HCT116 human colorectal cancer cells that have higher expression levels of securin. The cytotoxicity of BPR0L075 was attenuated in isogenic securin-null HCT116 cells. BPR0L075 induced DNA damage response, G2/M arrest, and activation of the spindle assembly checkpoint in HCT116 cells. Interestingly, BPR0L075 induced phosphorylation of securin. BPR0L075 withdrawal resulted in degradation of securin, mitotic exit, and mitotic catastrophe, which were attenuated in securin-null cells. Inhibition of cdc2 decreased securin phosphorylation, G2/M arrest and cell death induced by BPR0L075. Moreover, BPR0L075 caused cell death through a caspase-independent mechanism and activation of JNK and p38 MAPK pathways. These findings provided evidence for the first time that BPR0L075 treatment is beneficial for the treatment of human colorectal tumors with higher levels of securin. Thus, we suggest that the expression levels of securin may be a predictive factor for application in anti-cancer therapy with BPR0L075 in human cancer cells.
Collapse
Affiliation(s)
- Ho-Hsing Tseng
- Department of Life Science, Tzu Chi University, Hualien, Taiwan R.O.C.
| | - Qiu-Yu Chuah
- Department of Life Science, Tzu Chi University, Hualien, Taiwan R.O.C.
| | - Pei-Ming Yang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan R.O.C.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan R.O.C.
| | - Jung-Chi Chao
- Department of Life Science, Tzu Chi University, Hualien, Taiwan R.O.C.
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetic, Tzu Chi University, Hualien, Taiwan R.O.C.
| | - Shu-Jun Chiu
- Department of Life Science, Tzu Chi University, Hualien, Taiwan R.O.C.
- * E-mail:
| |
Collapse
|
34
|
Lewy GD, Sharma N, Seed RI, Smith VE, Boelaert K, McCabe CJ. The pituitary tumor transforming gene in thyroid cancer. J Endocrinol Invest 2012; 35:425-33. [PMID: 22522436 DOI: 10.3275/8332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pituitary tumor transforming gene (PTTG) is a multifunctional proto-oncogene that is over-expressed in various tumors including thyroid carcinomas, where it is a prognostic indicator of tumor recurrence. PTTG has potent transforming capabilities in vitro and in vivo, and many studies have investigated the potential mechanisms by which PTTG contributes to tumorigenesis. As the human securin, PTTG is involved in critical mechanisms of cell cycle regulation, whereby aberrant expression induces aneuploidy. PTTG may further contribute to tumorigenesis through its role in DNA damage response pathways and via complex interactions with hormones and growth factors. Furthermore, PTTG over-expression negatively impacts upon the efficacy of radioiodine therapy in thyroid cancer, through repression of expression and function of the sodium iodide symporter. Given its various roles at all disease stages, PTTG appears to be an important oncogene in thyroid cancer. This review discusses the current knowledge of PTTG with particular focus on its role in thyroid cancer.
Collapse
Affiliation(s)
- G D Lewy
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
35
|
Karra H, Pitkänen R, Nykänen M, Talvinen K, Kuopio T, Söderström M, Kronqvist P. Securin predicts aneuploidy and survival in breast cancer. Histopathology 2012; 60:586-96. [DOI: 10.1111/j.1365-2559.2011.04107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Liao YC, Ruan JW, Lua I, Li MH, Chen WL, Wang JRY, Kao RH, Chen JH. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling. Oncogene 2011; 31:3086-97. [PMID: 22002306 PMCID: PMC3381367 DOI: 10.1038/onc.2011.476] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human pituitary tumour-transforming gene 1 (hPTTG1) is an oncogenic transcription factor that is overexpressed in many tumour types, especially tumours with metastatic abilities. However, how hPTTG1 overexpression drives metastasis is not yet clear. As a transcription factor, hPTTG1 may promote metastasis by activating target genes that are involved in the metastatic process. Here, we showed that Rho guanine nucleotide exchange factor-H1 (GEF-H1) was transcriptionally activated by hPTTG1, thereby promoting breast cancer metastasis. Luciferase reporter analyses and chromatin immunoprecipitation (ChIP) assays showed that hPTTG1 directly bound and activated the GEF-H1 gene promoter. In this study, RNA interference-mediated knockdown of hPTTG1 in highly metastatic breast tumour cells decreased GEF-H1 expression and RhoA activation, thereby reducing cell motility and invasion, and interfering with cytoskeletal remodelling in vitro, and impairing the tumour metastasis in vivo. The restoration of GEF-H1 expression in hPTTG1-knockdown cells rescued the hPTTG1-knockdown effects on cytoskeletal changes in vitro and tumour metastasis in vivo. Conversely, ectopic expression of hPTTG1 in non-metastatic breast tumour cells induced cytoskeletal rearrangements, and allowed these cells to metastasise in a mouse model by orthotopic implantation. In human tumour samples, hPTTG1 expression was also correlated to GEF-H1 expression in aggressive breast carcinoma. Altogether, these findings definitively establish a role for hPTTG1 in activating the GEF-H1/RhoA pathway as a newly identified mechanism in breast cancer metastasis.
Collapse
Affiliation(s)
- Y C Liao
- Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lubka-Pathak M, Shah AA, Gallozzi M, Müller M, Zimmermann U, Löwenheim H, Pfister M, Knipper M, Blin N, Schimmang T. Altered expression of securin (Pttg1) and serpina3n in the auditory system of hearing-impaired Tff3-deficient mice. Cell Mol Life Sci 2011; 68:2739-49. [PMID: 21076990 PMCID: PMC11114927 DOI: 10.1007/s00018-010-0586-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tff3 peptide exerts important functions in cytoprotection and restitution of the gastrointestinal (GI) tract epithelia. Moreover, its presence in the rodent inner ear and involvement in the hearing process was demonstrated recently. However, its role in the auditory system still remains elusive. Our previous results showed a deterioration of hearing with age in Tff3-deficient animals. RESULTS Present detailed analysis of auditory brain stem response (ABR) measurements and immunohistochemical study of selected functional proteins indicated a normal function and phenotype of the cochlea in Tff3 mutants. However, a microarray-based screening of tissue derived from the auditory central nervous system revealed an alteration of securin (Pttg1) and serpina3n expression between wild-type and Tff3 knock-out animals. This was confirmed by qRT-PCR, immunostaining and western blots. CONCLUSIONS We found highly down-regulated Pttg1 and up-regulated serpina3n expression as a consequence of genetically deleting Tff3 in mice, indicating a potential role of these factors during the development of presbyacusis.
Collapse
Affiliation(s)
- M. Lubka-Pathak
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - A. A. Shah
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - M. Gallozzi
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, 47003 Valladolid, Spain
| | - M. Müller
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - U. Zimmermann
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - H. Löwenheim
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M. Pfister
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - M. Knipper
- University Hospital of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - N. Blin
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - T. Schimmang
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|
38
|
Mora-Santos M, Limón-Mortés MC, Giráldez S, Herrero-Ruiz J, Sáez C, Japón MÁ, Tortolero M, Romero F. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors. J Biol Chem 2011; 286:30047-56. [PMID: 21757741 DOI: 10.1074/jbc.m111.232330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.
Collapse
Affiliation(s)
- Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci U S A 2011; 108:8414-9. [PMID: 21536883 DOI: 10.1073/pnas.1018091108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cushing disease caused by adrenocorticotropin (ACTH)-secreting pituitary adenomas leads to hypercortisolemia predisposing to diabetes, hypertension, osteoporosis, central obesity, cardiovascular morbidity, and increased mortality. There is no effective pituitary targeted pharmacotherapy for Cushing disease. Here, we generated germline transgenic zebrafish with overexpression of pituitary tumor transforming gene (PTTG/securin) targeted to the adenohypophyseal proopiomelanocortin (POMC) lineage, which recapitulated early features pathognomonic of corticotroph adenomas, including corticotroph expansion and partial glucocorticoid resistance. Adult Tg:Pomc-Pttg fish develop neoplastic coticotrophs and pituitary cyclin E up-regulation, as well as metabolic disturbances mimicking hypercortisolism caused by Cushing disease. Early development of corticotroph pathologies in Tg:Pomc-Pttg embryos facilitated drug testing in vivo. We identified a pharmacologic CDK2/cyclin E inhibitor, R-roscovitine (seliciclib; CYC202), which specifically reversed corticotroph expansion in live Tg:Pomc-Pttg embryos. We further validated that orally administered R-roscovitine suppresses ACTH and corticosterone levels, and also restrained tumor growth in a mouse model of ACTH-secreting pituitary adenomas. Molecular analyses in vitro and in vivo showed that R-roscovitine suppresses ACTH expression, induces corticotroph tumor cell senescence and cell cycle exit by up-regulating p27, p21 and p57, and downregulates cyclin E expression. The results suggest that use of selective CDK inhibitors could effectively target corticotroph tumor growth and hormone secretion.
Collapse
|
40
|
Chen S, Xiao L, Liu Z, Liu J, Liu Y. Pituitary tumor transforming gene-1 haplotypes and risk of pituitary adenoma: a case-control study. BMC MEDICAL GENETICS 2011; 12:44. [PMID: 21439054 PMCID: PMC3078851 DOI: 10.1186/1471-2350-12-44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022]
Abstract
Background It has been suggested that pituitary adenoma results from accumulation of multiple genetic and/or epigenetic aberrations, which may be identified through association studies. As pituitary tumor transforming gene-1 (PTTG1)/securin plays a critical role in promoting genomic instability in pituitary neoplasia, the present study explored the association of PTTG1 haplotypes with the risk of pituitary adenoma. Methods We genotyped five PTTG1 haplotype-tagging SNPs (htSNP) by PCR-RFLP assays in a case-control study, which included 280 Han Chinese patients diagnosed with pituitary adenoma and 280 age-, gender- and geographically matched Han Chinese controls. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of the htSNPs. Results No significant differences in allele and genotype frequencies of the htSNPs were observed between pituitary adenoma patients and controls, indicating that none of the individual PTTG1 SNPs examined in this study is associated with the risk of pituitary adenoma. In addition, no significant association was detected between the reconstructed PTTG1 haplotypes and pituitary adenoma cases or the controls. Conclusions Though no significant association was found between PTTG1 haplotypes and the risk of pituitary adenoma, this is the first report on the association of individual PTTG1 SNPs or PTTG1 haplotypes with the risk of pituitary adenoma based on a solid study; it will provide an important reference for future studies on the association between genetic alterations in PTTG1 and the risk of pituitary adenoma or other tumors.
Collapse
Affiliation(s)
- Shuai Chen
- Gamma Knife Treatment and Research Center, Xiangya Hospital, Central South University, Changsha, 410008 PR China
| | | | | | | | | |
Collapse
|
41
|
Menicanin D, Bartold PM, Zannettino ACW, Gronthos S. Identification of a common gene expression signature associated with immature clonal mesenchymal cell populations derived from bone marrow and dental tissues. Stem Cells Dev 2011; 19:1501-10. [PMID: 20128661 DOI: 10.1089/scd.2009.0492] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cell-like populations derived from adult bone marrow (BMSC), dental pulp (DPSC), and periodontal ligament (PDLSC) have the ability to differentiate into cells of mesenchymal and non-mesenchymal tissues in vitro and in vivo. However, culture-expanded MSC-like populations are a heterogeneous mix of stem/committed progenitor cells that exhibit altered growth and developmental potentials. In the present study we isolated and characterized clonal populations of BMSCs, DPSCs, and PDLSCs to identify potential biomarkers associated with long-lived multipotential stem cells. Microarray analysis was used to compare the global gene expression profiles of high growth/multipotential clones with low growth potential cell clones derived from 3 stromal tissues. Cross-comparison analyses of genes expressed by high growth/multipotential clones derived from bone marrow, dental pulp, and periodontal ligament identified 24 genes that are differentially up-regulated in all tissues. Notably, the transcription factors, E2F2, PTTG1, TWIST-1, and transcriptional cofactor, LDB2, each with critical roles in cell growth and survival, were highly expressed in all stem cell populations examined. These findings provide a model system for identifying a common molecular fingerprint associated with immature mesenchymal stem-like cells from different organs and implicate a potential role for these genes in MSC growth and development.
Collapse
Affiliation(s)
- Danijela Menicanin
- Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/Centre for Stem Cell Research, Robinson Institute, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
42
|
Feng ZZ, Chen JW, Yang ZR, Lu GZ, Cai ZG. Expression of PTTG1 and PTEN in endometrial carcinoma: correlation with tumorigenesis and progression. Med Oncol 2010; 29:304-10. [DOI: 10.1007/s12032-010-9775-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 12/04/2010] [Indexed: 11/29/2022]
|
43
|
Abstract
The pituitary tumor-transforming gene (PTTG1) encodes a multifunctional protein (PTTG) that is overexpressed in numerous tumours, including pituitary, thyroid, breast and ovarian carcinomas. PTTG induces cellular transformation in vitro and tumourigenesis in vivo, and several mechanisms by which PTTG contributes to tumourigenesis have been investigated. Also known as the human securin, PTTG is involved in cell cycle regulation, controlling the segregation of sister chromatids during mitosis. This review outlines current information regarding PTTG structure, expression, regulation and function in the pathogenesis of neoplasia. Recent progress concerning the use of PTTG as a prognostic marker or therapeutic target will be considered. In addition, the PTTG binding factor (PBF), identified through its interaction with PTTG, has also been established as a proto-oncogene that is upregulated in several cancers. Current knowledge regarding PBF is outlined and its role both independently and alongside PTTG in endocrine and related cancers is discussed.
Collapse
|
44
|
Lai PC, Fang TC, Chiu TH, Huang YT. Overexpression of Securin in Human Transitional Cell Carcinoma Specimens. Tzu Chi Med J 2010. [DOI: 10.1016/s1016-3190(10)60067-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Liao LJ, Hsu YH, Yu CH, Chiang CP, Jhan JR, Chang LC, Lin JJ, Lou PJ. Association of pituitary tumor transforming gene expression with early oral tumorigenesis and malignant progression of precancerous lesions. Head Neck 2010; 33:719-26. [PMID: 21069851 DOI: 10.1002/hed.21531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Pituitary tumor transforming gene (PTTG1) is overexpressed in many types of human cancers and is involved in late-stage tumor progression. The role of PTTG1 in initiating tumorigenesis is unclear. METHODS PTTG1 expression was assessed in precancerous lesions and squamous cell carcinomas of the oral cavity (OSCC). The association between the protein expression and clinicopathologic parameters was analyzed. The expression level of PTTG1 upon carcinogen treatment was also investigated. RESULTS PTTG1 was overexpressed in both precancerous lesions and OSCC. The expression of PTTG1 was associated with carcinogen exposure in vivo and in vitro. PTTG1 overexpression was an independent factor for oral cancer development in precancerous lesions. CONCLUSIONS This study provides the first evidence that PTTG1 is involved in the early stages of oral tumorigenesis. Carcinogen exposure may cause the initial induction of PTTG1 expression in oral precancerous lesions. PTTG1 overexpression is a potential prognosticator for malignant progression of oral precancerous lesions.
Collapse
Affiliation(s)
- Li-Jen Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Securin depletion sensitizes human colon cancer cells to fisetin-induced apoptosis. Cancer Lett 2010; 300:96-104. [PMID: 20974518 DOI: 10.1016/j.canlet.2010.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/22/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
Securin is highly-expressed in various tumors including those of the colon. In this study, the role of securin in the anticancer effects of fisetin on human colon cancer cells was investigated. Fisetin-induced apoptosis in HCT116 cells as indicated by TUNEL assay, Annexin V-FITC/PI double staining, Ser15-phosphorylation of p53, and cleavages of procaspase-3 and PARP. These effects were enhanced in HCT116 securin-null cells or in wild-type cells in which securin was knockdown by siRNA, but attenuated when wild-type or non-degradable securin was reconstituted. Moreover, fisetin did not induce apoptosis in HCT116 p53-null and HT-29 p53-mutant cells. Knockdown of securin in HCT116 p53-null cells potentiated fisetin-induced cytotoxicity by induction of apoptosis. Our results provide the first evidence to support that securin depletion sensitizes human colon cancer cells to fisetin-induced apoptosis.
Collapse
|
47
|
Chen WS, Yu YC, Lee YJ, Chen JH, Hsu HY, Chiu SJ. Depletion of securin induces senescence after irradiation and enhances radiosensitivity in human cancer cells regardless of functional p53 expression. Int J Radiat Oncol Biol Phys 2010; 77:566-74. [PMID: 20457353 DOI: 10.1016/j.ijrobp.2009.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/16/2009] [Accepted: 12/10/2009] [Indexed: 12/12/2022]
Abstract
PURPOSE Radiotherapy is one of the best choices for cancer treatment. However, various tumor cells exhibit resistance to irradiation-induced apoptosis. The development of new strategies to trigger cancer cell death besides apoptosis is necessary. This study investigated the role of securin in radiation-induced apoptosis and senescence in human cancer cells. METHODS AND MATERIALS Cell survival was determined using clonogenic assays. Western blot analysis was used to analyze levels of securin, caspase-3, PARP, p53, p21, Rb, gamma-H2AX, and phospho-Chk2. Senescent cells were analyzed using a beta-galactosidase staining assay. A securin-expressed vector (pcDNA-securin) was stably transfected into securin-null HCT116 cells. Securin gene knockdown was performed by small interfering RNA and small hairpin RNA in HCT116 and MDA-MB-231 cells, respectively. RESULTS Radiation was found to induce apoptosis in securin wild type HCT116 cells but induced senescence in securin-null cells. Restoration of securin reduced senescence and increased cell survival in securin-null HCT116 cells after irradiation. Radiation-induced gamma-H2AX and Chk2 phosphorylation were induced transiently in securin-wild-type cells but exhibited sustained activation in securin-null cells. Securin gene knockdown switches irradiation-induced apoptosis to senescence in both HCT116 p53-null and MDA-MB-231 cells. CONCLUSIONS Our results demonstrated that the level of securin expression plays a determining role in the radiosensitivity and fate of cells. Depletion of securin impairs DNA repair after irradiation, increasing DNA damage and promoting senescence in the residual surviving cells regardless of functional p53 expression. The knockdown of securin may contribute to a novel radiotherapy protocol for the treatment of human cancer cells that are resistant to irradiation.
Collapse
Affiliation(s)
- Wen-Shu Chen
- Department of Life Science, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
de Aguiar PHP, Aires R, Laws ER, Isolan GR, Logullo A, Patil C, Katznelson L. Labeling index in pituitary adenomas evaluated by means of MIB-1: is there a prognostic role? A critical review. Neurol Res 2010; 32:1060-71. [PMID: 20483025 DOI: 10.1179/016164110x12670144737855] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The present article presents an overview of the literature, and analyses the methods and the primary questions related to assessment of proliferation index using the Ki-67/MIB-1 labeling index in pituitary adenomas. Although atypical adenomas are characterized by their atypical morphological features by an elevated mitotic index, a Ki-67 (MIB-1) labeling index greater than 3% and extensive nuclear staining for p53, use of the proliferation index (LI) of pituitary adenomas in assessing the degree of tumor aggressiveness is a controversial topic in the literature, and there are disparate results involving many studies. METHODS A review of literature was carried out to correlate the role of Ki-67 LI and its correlation with clinical findings, tumor size, invasiveness, recurrence, adenoma subtype, adenoma doubling time, and pituitary carcinomas is addressed. RESULTS The prognosis cannot be predicted on the basis of the Ki-67 LI alone. Although there is no direct relation between Ki-67 LI and some of these variables and controversial data were found regarding some topics, our review justify the use of Ki-67 in the analysis of pituitary adenomas as an additional information for clinical decision. CONCLUSION Although assessment of proliferative may be helpful in predicting subsequent tumor recurrence or invasiveness, there are many other important and as yet unidentified factors pituitary tumors. It is clear that further research is needed to clarify these molecular mechanisms to predict those with a potentially poor clinical outcome.
Collapse
|
49
|
Feeney KM, Wasson CW, Parish JL. Cohesin: a regulator of genome integrity and gene expression. Biochem J 2010; 428:147-61. [PMID: 20462401 DOI: 10.1042/bj20100151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following DNA replication, chromatid pairs are held together by a proteinacious complex called cohesin until separation during the metaphase-to-anaphase transition. Accurate segregation is achieved by regulation of both sister chromatid cohesion establishment and removal, mediated by post-translational modification of cohesin and interaction with numerous accessory proteins. Recent evidence has led to the conclusion that cohesin is also vitally important in the repair of DNA lesions and control of gene expression. It is now clear that chromosome segregation is not the only important function of cohesin in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Katherine M Feeney
- Bute Medical School, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland, U.K
| | | | | |
Collapse
|
50
|
Hsu YH, Liao LJ, Yu CH, Chiang CP, Jhan JR, Chang LC, Chen YJ, Lou PJ, Lin JJ. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J Biol Chem 2010; 285:22630-8. [PMID: 20452981 DOI: 10.1074/jbc.m109.096255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary tumor transforming gene (PTTG1, securin) is involved in cell-cycle control through inhibition of sister-chromatid separation. Elevated levels of PTTG1 were found to be associated with many different tumor types that might be involved in late stage tumor progression. However, the role of PTTG1 in early stage of tumorigenesis is unclear. Here we utilized the adenovirus expression system to deliver PTTG1 into normal human fibroblasts to evaluate the role of PTTG1 in tumorigenesis. Expressing PTTG1 in normal human fibroblasts inhibited cell proliferation. Several senescence-associated (SA) phenotypes including increased SA-beta-galactosidase activities, decreased bromodeoxyuridine incorporation, and increased SA-heterochromatin foci formation were also observed in PTTG1-expressing cells, indicating that PTTG1 overexpression induced a senescent phenotype in normal cells. Significantly, the PTTG1-induced senescence is p53-dependent and telomerase-independent, which is distinctively different from that of replicative senescence. The mechanism of PTTG1-induced senescence was also analyzed. Consistent with its role in regulating sister-chromatid separation, overexpression of PTTG1 inhibited the activation of separase. Consequently, the numbers of cells with abnormal nuclei morphologies and chromosome separations were increased, which resulted in activation of the DNA damage response. Thus, we concluded that PTTG1 overexpression in normal human fibroblasts caused chromosome instability, which subsequently induced p53-dependent senescence through activation of DNA-damage response pathway.
Collapse
Affiliation(s)
- Yi-Hsin Hsu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|