1
|
Jagielski NP, Rai AK, Rajan KS, Mangal V, Garikipati VNS. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102087. [PMID: 38178918 PMCID: PMC10765057 DOI: 10.1016/j.omtn.2023.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
As cardiovascular diseases continue to be the leading cause of death worldwide, groundbreaking research is being conducted to mitigate their effects. This review looks into the potential of small nucleolar RNAs (snoRNAs) and the opportunity to use these molecular agents as therapeutic biomarkers for cardiovascular issues specific to the heart. Through an investigation of snoRNA biogenesis, functionality, and roles in cardiovascular diseases, this review relates our past and present knowledge of snoRNAs to the current scientific literature. Considering the initial discovery of snoRNAs and the studies thereafter analyzing the roles of snoRNAs in disease, we look forward to uncovering many other noncanonical functions that could lead researchers closer to finding preventive and curative solutions for cardiovascular diseases.
Collapse
Affiliation(s)
- Noah Peter Jagielski
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute, Rehovot 76100 001, Israel
| | - Vatsal Mangal
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Neumann SA, Gaspin C, Sáez-Vásquez J. Plant ribosomes as a score to fathom the melody of 2'- O-methylation across evolution. RNA Biol 2024; 21:70-81. [PMID: 39508203 PMCID: PMC11542601 DOI: 10.1080/15476286.2024.2417152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.
Collapse
MESH Headings
- Methylation
- Ribosomes/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- Plants/metabolism
- Plants/genetics
- Humans
- Evolution, Molecular
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/chemistry
- RNA, Plant/metabolism
- RNA, Plant/genetics
- RNA, Plant/chemistry
- Archaea/genetics
- Archaea/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
Collapse
Affiliation(s)
- Sara Alina Neumann
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics Facility, Castanet-Tolosan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
3
|
Kravchenko OV, Baymukhametov TN, Afonina ZA, Vassilenko KS. High-Resolution Structure and Internal Mobility of a Plant 40S Ribosomal Subunit. Int J Mol Sci 2023; 24:17453. [PMID: 38139282 PMCID: PMC10743738 DOI: 10.3390/ijms242417453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ribosome is a major part of the protein synthesis machinery, and analysis of its structure is of paramount importance. However, the structure of ribosomes from only a limited number of organisms has been resolved to date; it especially concerns plant ribosomes and ribosomal subunits. Here, we report a high-resolution cryo-electron microscopy reconstruction of the small subunit of the Triticum aestivum (common wheat) cytoplasmic ribosome. A detailed atomic model was built that includes the majority of the rRNA and some of the protein modifications. The analysis of the obtained data revealed structural peculiarities of the 40S subunit in the monocot plant ribosome. We applied the 3D Flexible Refinement approach to analyze the internal mobility of the 40S subunit and succeeded in decomposing it into four major motions, describing rotations of the head domain and a shift in the massive rRNA expansion segment. It was shown that these motions are almost uncorrelated and that the 40S subunit is flexible enough to spontaneously adopt any conformation it takes as a part of a translating ribosome or ribosomal complex. Here, we introduce the first high-resolution structure of an isolated plant 40S subunit and the first quantitative analysis of the flexibility of small ribosomal subunits, hoping that it will help in studying various aspects of ribosome functioning.
Collapse
Affiliation(s)
- Olesya V. Kravchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.V.K.)
| | - Timur N. Baymukhametov
- National Research Center, “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Zhanna A. Afonina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.V.K.)
| | | |
Collapse
|
4
|
Wang Y, Deng XW, Zhu D. From molecular basics to agronomic benefits: Insights into noncoding RNA-mediated gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2290-2308. [PMID: 36453685 DOI: 10.1111/jipb.13420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The development of plants is largely dependent on their growth environment. To better adapt to a particular habitat, plants have evolved various subtle regulatory mechanisms for altering gene expression. Non coding RNAs (ncRNAs) constitute a major portion of the transcriptomes of eukaryotes. Various ncRNAs have been recognized as important regulators of the expression of genes involved in essential biological processes throughout the whole life cycles of plants. In this review, we summarize the current understanding of the biogenesis and contributions of small nucle olar RNA (snoRNA)- and regulatory long non coding RNA (lncRNA)-mediated gene regulation in plant development and environmental responses. Many regulatory ncRNAs appear to be associated with increased yield, quality and disease resistance of various species and cultivars. These ncRNAs may potentially be used as genetic resources for improving agronomic traits and for molecular breeding. The challenges in understanding plant ncRNA biology and the possibilities to make better use of these valuable gene resources in the future are discussed in this review.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Cao Y, Wang J, Wu S, Yin X, Shu J, Dai X, Liu Y, Sun L, Zhu D, Deng XW, Ye K, Qian W. The small nucleolar RNA SnoR28 regulates plant growth and development by directing rRNA maturation. THE PLANT CELL 2022; 34:4173-4190. [PMID: 36005862 PMCID: PMC9614442 DOI: 10.1093/plcell/koac265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs (ncRNAs) that guide chemical modifications of structural RNAs, which are essential for ribosome assembly and function in eukaryotes. Although numerous snoRNAs have been identified in plants by high-throughput sequencing, the biological functions of most of these snoRNAs remain unclear. Here, we identified box C/D SnoR28.1s as important regulators of plant growth and development by screening a CRISPR/Cas9-generated ncRNA deletion mutant library in Arabidopsis thaliana. Deletion of the SnoR28.1 locus, which contains a cluster of three genes producing SnoR28.1s, resulted in defects in root and shoot growth. SnoR28.1s guide 2'-O-ribose methylation of 25S rRNA at G2396. SnoR28.1s facilitate proper and efficient pre-rRNA processing, as the SnoR28.1 deletion mutants also showed impaired ribosome assembly and function, which may account for the growth defects. SnoR28 contains a 7-bp antisense box, which is required for 2'-O-ribose methylation of 25S rRNA at G2396, and an 8-bp extra box that is complementary to a nearby rRNA methylation site and is partially responsible for methylation of G2396. Both of these motifs are required for proper and efficient pre-rRNA processing. Finally, we show that SnoR28.1s genetically interact with HIDDEN TREASURE2 and NUCLEOLIN1. Our results advance our understanding of the roles of snoRNAs in Arabidopsis.
Collapse
Affiliation(s)
- Yuxin Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jia Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xing Dai
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Yannan Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| |
Collapse
|
6
|
Kramer MC, Kim HJ, Palos KR, Garcia BA, Lyons E, Beilstein MA, Nelson ADL, Gregory BD. A Conserved Long Intergenic Non-coding RNA Containing snoRNA Sequences, lncCOBRA1, Affects Arabidopsis Germination and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:906603. [PMID: 35693169 PMCID: PMC9175010 DOI: 10.3389/fpls.2022.906603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an increasingly studied group of non-protein coding transcripts with a wide variety of molecular functions gaining attention for their roles in numerous biological processes. Nearly 6,000 lncRNAs have been identified in Arabidopsis thaliana but many have yet to be studied. Here, we examine a class of previously uncharacterized lncRNAs termed CONSERVED IN BRASSICA RAPA (lncCOBRA) transcripts that were previously identified for their high level of sequence conservation in the related crop species Brassica rapa, their nuclear-localization and protein-bound nature. In particular, we focus on lncCOBRA1 and demonstrate that its abundance is highly tissue and developmental specific, with particularly high levels early in germination. lncCOBRA1 contains two snoRNAs domains within it, making it the first sno-lincRNA example in a non-mammalian system. However, we find that it is processed differently than its mammalian counterparts. We further show that plants lacking lncCOBRA1 display patterns of delayed germination and are overall smaller than wild-type plants. Lastly, we identify the proteins that interact with lncCOBRA1 and propose a novel mechanism of lincRNA action in which it may act as a scaffold with the RACK1A protein to regulate germination and development, possibly through a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Marianne C. Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Kyle R. Palos
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- CyVerse Inc., Tucson, AZ, United States
| | - Mark A. Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Brian D. Gregory,
| |
Collapse
|
7
|
Chen X, Deng Z, Yu D, Zhang X, An Z, Wu W, Liang Q, Huang X, Huang H, Cheng H. Genome-Wide Identification and Analysis of Small Nucleolar RNAs and Their Roles in Regulating Latex Regeneration in the Rubber Tree ( Hevea brasiliensis). FRONTIERS IN PLANT SCIENCE 2021; 12:731484. [PMID: 34764965 PMCID: PMC8575768 DOI: 10.3389/fpls.2021.731484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of conserved nuclear RNAs that play important roles in the modification of ribosomal RNAs (rRNAs) in plants. In rubber trees, rRNAs are run off with latex flow during tapping and need to be regenerated for maintaining the functions of the laticifer cells. SnoRNAs are expected to play essential roles in the regeneration of rRNAs. However, snoRNAs in the rubber tree have not been sufficiently characterized thus far. In this study, we performed nuclear RNA sequencing (RNA-seq) to identify snoRNAs globally and investigate their roles in latex regeneration. We identified a total of 3,626 snoRNAs by computational prediction with nuclear RNA-seq data. Among these snoRNAs, 50 were highly expressed in latex; furthermore, the results of reverse transcription polymerase chain reaction (RT-PCR) showed the abundant expression of 31 of these snoRNAs in latex. The correlation between snoRNA expression and adjusted total solid content (TSC/C) identified 13 positively yield-correlated snoRNAs. To improve the understanding of latex regeneration in rubber trees, we developed a novel insulated tapping system (ITS), which only measures the latex regenerated in specific laticifers. Using this system, a laticifer-abundant snoRNA, HbsnoR28, was found to be highly correlated with latex regeneration. To the best of our knowledge, this is the first report to globally identify snoRNAs that might be involved in latex regeneration regulation and provide new clues for unraveling the mechanisms underlying the regulation of latex regeneration.
Collapse
|
8
|
Streit D, Schleiff E. The Arabidopsis 2'-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. FRONTIERS IN PLANT SCIENCE 2021; 12:684626. [PMID: 34381476 PMCID: PMC8351944 DOI: 10.3389/fpls.2021.684626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Eukaryotic ribosome assembly starts in the nucleolus, where the ribosomal DNA (rDNA) is transcribed into the 35S pre-ribosomal RNA (pre-rRNA). More than two-hundred ribosome biogenesis factors (RBFs) and more than two-hundred small nucleolar RNAs (snoRNA) catalyze the processing, folding and modification of the rRNA in Arabidopsis thaliana. The initial pre-ribosomal 90S complex is formed already during transcription by association of ribosomal proteins (RPs) and RBFs. In addition, small nucleolar ribonucleoprotein particles (snoRNPs) composed of snoRNAs and RBFs catalyze the two major rRNA modification types, 2'-O-ribose-methylation and pseudouridylation. Besides these two modifications, rRNAs can also undergo base methylations and acetylation. However, the latter two modifications have not yet been systematically explored in plants. The snoRNAs of these snoRNPs serve as targeting factors to direct modifications to specific rRNA regions by antisense elements. Today, hundreds of different sites of modifications in the rRNA have been described for eukaryotic ribosomes in general. While our understanding of the general process of ribosome biogenesis has advanced rapidly, the diversities appearing during plant ribosome biogenesis is beginning to emerge. Today, more than two-hundred RBFs were identified by bioinformatics or biochemical approaches, including several plant specific factors. Similarly, more than two hundred snoRNA were predicted based on RNA sequencing experiments. Here, we discuss the predicted and verified rRNA modification sites and the corresponding identified snoRNAs on the example of the model plant Arabidopsis thaliana. Our summary uncovers the plant modification sites in comparison to the human and yeast modification sites.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
9
|
Wu S, Wang Y, Wang J, Li X, Li J, Ye K. Profiling of RNA ribose methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:4104-4119. [PMID: 33784398 PMCID: PMC8053127 DOI: 10.1093/nar/gkab196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic rRNAs and snRNAs are decorated with abundant 2′-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2′-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.
Collapse
Affiliation(s)
- Songlin Wu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilong Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Azevedo-Favory J, Gaspin C, Ayadi L, Montacié C, Marchand V, Jobet E, Rompais M, Carapito C, Motorin Y, Sáez-Vásquez J. Mapping rRNA 2'-O-methylations and identification of C/D snoRNAs in Arabidopsis thaliana plants. RNA Biol 2021; 18:1760-1777. [PMID: 33596769 PMCID: PMC8583080 DOI: 10.1080/15476286.2020.1869892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In all eukaryotic cells, the most abundant modification of ribosomal RNA (rRNA) is methylation at the ribose moiety (2ʹ-O-methylation). Ribose methylation at specific rRNA sites is guided by small nucleolar RNAs (snoRNAs) of C/D-box type (C/D snoRNA) and achieved by the methyltransferase Fibrillarin (FIB). Here we used the Illumina-based RiboMethSeq approach for mapping rRNA 2ʹ-O-methylation sites in A. thaliana Col-0 (WT) plants. This analysis detected novel C/D snoRNA-guided rRNA 2ʹ-O-methylation positions and also some orphan sites without a matching C/D snoRNA. Furthermore, immunoprecipitation of Arabidopsis FIB2 identified and demonstrated expression of C/D snoRNAs corresponding to majority of mapped rRNA sites. On the other hand, we show that disruption of Arabidopsis Nucleolin 1 gene (NUC1), encoding a major nucleolar protein, decreases 2ʹ-O-methylation at specific rRNA sites suggesting functional/structural interconnections of 2ʹ-O-methylation with nucleolus organization and plant development. Finally, based on our findings and existent database sets, we introduce a new nomenclature system for C/D snoRNA in Arabidopsis plants.
Collapse
Affiliation(s)
- J Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - C Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, 31326, Castanet-Tolosan, France.,Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics facility, 31326
| | - L Ayadi
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA (UMR7365), F-54000 Nancy, France
| | - C Montacié
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - V Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France
| | - E Jobet
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS/Université de Strasbourg, Strasbourg, France
| | - Y Motorin
- Université de Lorraine, CNRS, INSERM, IBSLor, (UMS2008/US40), Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, F-54000 Nancy, France.,Université de Lorraine, CNRS, IMoPA (UMR7365), F-54000 Nancy, France
| | - J Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, 66860 Perpignan, France.,Univ. Perpignan Via Domitia, LGDP, UMR5096, 66860 Perpignan, France
| |
Collapse
|
11
|
Streit D, Shanmugam T, Garbelyanski A, Simm S, Schleiff E. The Existence and Localization of Nuclear snoRNAs in Arabidopsis thaliana Revisited. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1016. [PMID: 32806552 PMCID: PMC7464842 DOI: 10.3390/plants9081016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is one cell function-defining process. It depends on efficient transcription of rDNAs in the nucleolus as well as on the cytosolic synthesis of ribosomal proteins. For newly transcribed rRNA modification and ribosomal protein assembly, so-called small nucleolar RNAs (snoRNAs) and ribosome biogenesis factors (RBFs) are required. For both, an inventory was established for model systems like yeast and humans. For plants, many assignments are based on predictions. Here, RNA deep sequencing after nuclei enrichment was combined with single molecule species detection by northern blot and in vivo fluorescence in situ hybridization (FISH)-based localization studies. In addition, the occurrence and abundance of selected snoRNAs in different tissues were determined. These approaches confirm the presence of most of the database-deposited snoRNAs in cell cultures, but some of them are localized in the cytosol rather than in the nucleus. Further, for the explored snoRNA examples, differences in their abundance in different tissues were observed, suggesting a tissue-specific function of some snoRNAs. Thus, based on prediction and experimental confirmation, many plant snoRNAs can be proposed, while it cannot be excluded that some of the proposed snoRNAs perform alternative functions than are involved in rRNA modification.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Thiruvenkadam Shanmugam
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Asen Garbelyanski
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Institute of Bioinformatics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Frankfurt Institute of Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. SCIENCE CHINA. LIFE SCIENCES 2020; 63:463-468. [PMID: 32189240 DOI: 10.1007/s11427-020-1676-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
14
|
Li LX, Liao HZ, Jiang LX, Tan Q, Ye D, Zhang XQ. Arabidopsis thaliana NOP10 is required for gametophyte formation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:723-736. [PMID: 29578643 DOI: 10.1111/jipb.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 05/19/2023]
Abstract
The female gametophyte is crucial for sexual reproduction of higher plants, yet little is known about the molecular mechanisms underlying its development. Here, we report that Arabidopsis thaliana NOP10 (AtNOP10) is required for female gametophyte formation. AtNOP10 was expressed predominantly in the seedling and reproductive tissues, including anthers, pollen grains, and ovules. Mutations in AtNOP10 interrupted mitosis of the functional megaspore during early development and prevented polar nuclear fusion in the embryo sacs. AtNOP10 shares a high level of amino acid sequence similarity with Saccharomyces cerevisiae (yeast) NOP10 (ScNOP10), an important component of the H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) implicated in 18S rRNA synthesis and rRNA pseudouridylation. Heterologous expression of ScNOP10 complemented the mutant phenotype of Atnop10. Thus, AtNOP10 influences functional megaspore mitosis and polar nuclear fusion during gametophyte formation in Arabidopsis.
Collapse
Affiliation(s)
- Lin-Xiao Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Non-Food Biomass Energy and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery and Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Li-Xi Jiang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qing Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Chen X, Lu L, Qian S, Scalf M, Smith LM, Zhong X. Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing. THE PLANT CELL 2018; 30:134-152. [PMID: 29343504 PMCID: PMC5810568 DOI: 10.1105/tpc.17.00626] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/11/2017] [Accepted: 01/12/2018] [Indexed: 05/13/2023]
Abstract
Ribosome biogenesis is a fundamental process required for all cellular activities. Histone deacetylases play critical roles in many biological processes including transcriptional repression and rDNA silencing. However, their function in pre-rRNA processing remains poorly understood. Here, we discovered a previously uncharacterized role of Arabidopsis thaliana histone deacetylase HD2C in pre-rRNA processing via both canonical and noncanonical manners. HD2C interacts with another histone deacetylase HD2B and forms homo- and/or hetero-oligomers in the nucleolus. Depletion of HD2C and HD2B induces a ribosome-biogenesis deficient phenotype and aberrant accumulation of 18S pre-rRNA intermediates. Our genome-wide analysis revealed that HD2C binds and represses the expression of key genes involved in ribosome biogenesis. Using RNA immunoprecipitation and sequencing, we further uncovered a noncanonical mechanism of HD2C directly associating with pre-rRNA and small nucleolar RNAs to regulate rRNA methylation. Together, this study reveals a multifaceted role of HD2C in ribosome biogenesis and provides mechanistic insights into how histone deacetylases modulate rRNA maturation at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Xiangsong Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Li Lu
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Shuiming Qian
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
16
|
Patra Bhattacharya D, Canzler S, Kehr S, Hertel J, Grosse I, Stadler PF. Phylogenetic distribution of plant snoRNA families. BMC Genomics 2016; 17:969. [PMID: 27881081 PMCID: PMC5122169 DOI: 10.1186/s12864-016-3301-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. Results In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. Conclusions The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3301-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deblina Patra Bhattacharya
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany.,Institut für Informatik, Halle (Saale), D-06120, Germany
| | - Sebastian Canzler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Jana Hertel
- Young Investigators Group Bioinformatics & Transcriptomics, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, D-04318, Germany
| | - Ivo Grosse
- Institut für Informatik, Halle (Saale), D-06120, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, D-04103, Germany. .,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, Leipzig, A-1090, Germany. .,Center for RNA in Technology and Health, Univ. Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Copenhagen, Denmark. .,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA. .,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
17
|
Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis. Proc Natl Acad Sci U S A 2016; 113:11967-11972. [PMID: 27708161 DOI: 10.1073/pnas.1614852113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA-rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.
Collapse
|
18
|
Xu L, Ziegelbauer J, Wang R, Wu WW, Shen RF, Juhl H, Zhang Y, Rosenberg A. Distinct Profiles for Mitochondrial t-RNAs and Small Nucleolar RNAs in Locally Invasive and Metastatic Colorectal Cancer. Clin Cancer Res 2015; 22:773-84. [PMID: 26384739 DOI: 10.1158/1078-0432.ccr-15-0737] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To gain insight into factors involved in tumor progression and metastasis, we examined the role of noncoding RNAs in the biologic characteristics of colorectal carcinoma, in paired samples of tumor together with normal mucosa from the same colorectal carcinoma patient. The tumor and healthy tissue samples were collected and stored under stringent conditions, thereby minimizing warm ischemic time. EXPERIMENTAL DESIGN We focused particularly on distinctions among high-stage tumors and tumors with known metastases, performing RNA-Seq analysis that quantifies transcript abundance and identifies novel transcripts. RESULTS In comparing 35 colorectal carcinomas, including 9 metastatic tumors (metastases to lymph nodes and lymphatic vessels), with their matched healthy control mucosa, we found a distinct signature of mitochondrial transfer RNAs (MT-tRNA) and small nucleolar RNAs (snoRNA) for metastatic and high-stage colorectal carcinoma. We also found the following: (i) MT-TF (phenylalanine) and snord12B expression correlated with a substantial number of miRNAs and mRNAs in 14 colorectal carcinomas examined; (ii) an miRNA signature of oxidative stress, hypoxia, and a shift to glycolytic metabolism in 14 colorectal carcinomas, regardless of grade and stage; and (iii) heterogeneous MT-tRNA/snoRNA fingerprints for 35 pairs. CONCLUSIONS These findings could potentially assist in more accurate and predictive staging of colorectal carcinoma, including identification of those colorectal carcinomas likely to metastasize.
Collapse
Affiliation(s)
- Lai Xu
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | | - Rong Wang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, Maryland
| | | | - Yaqin Zhang
- OBP/DBRR-III, CDER, FDA, Silver Spring, Maryland
| | | |
Collapse
|
19
|
Goyal RK, Kumar V, Shukla V, Mattoo R, Liu Y, Chung SH, Giovannoni JJ, Mattoo AK. Features of a unique intronless cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes on chromosome 6 in tomato (Solanum lycopersicum). PLANTA 2012; 235:453-71. [PMID: 21947620 DOI: 10.1007/s00425-011-1518-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/05/2011] [Indexed: 05/03/2023]
Abstract
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Collapse
Affiliation(s)
- Ravinder K Goyal
- US Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agriculture Research Service, Beltsville, MD 20705-2350, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
RNA-guided RNA 2'-O-methylation and pseudouridylation are naturally occurring processes, in which guide RNAs specifically direct modifications to rRNAs or spliceosomal snRNAs in the nucleus of eukaryotic cells. Modifications can profoundly alter the properties of an RNA, thus influencing the contributions of the RNA to the cellular process in which it participates. Recently, it has been shown that, by expressing artificial guide RNAs (derived from naturally occurring guide RNAs), modifications can also be specifically introduced into other RNAs, thus offering an opportunity to study RNAs in vivo. Here, we present strategies for constructing guide RNAs and manipulating RNA modifications in the nucleus.
Collapse
|
22
|
Kim SH, Spensley M, Choi SK, Calixto CPG, Pendle AF, Koroleva O, Shaw PJ, Brown JWS. Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli. Nucleic Acids Res 2010; 38:3054-67. [PMID: 20081206 PMCID: PMC2875012 DOI: 10.1093/nar/gkp1241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 11/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Mark Spensley
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Seung Kook Choi
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Cristiane P. G. Calixto
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Ali F. Pendle
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Olga Koroleva
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Peter J. Shaw
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - John W. S. Brown
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK, Division of Biosciences and Bioinformatics, College of Natural Science, Myongji University, Yongin, Kyeongki-do 449-728, Korea, Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, Scotland, Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich NR4 7UH and School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| |
Collapse
|
23
|
Wang PPS, Ruvinsky I. Computational prediction of Caenorhabditis box H/ACA snoRNAs using genomic properties of their host genes. RNA (NEW YORK, N.Y.) 2010; 16:290-298. [PMID: 20038629 PMCID: PMC2811658 DOI: 10.1261/rna.1876210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover. Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.
Collapse
Affiliation(s)
- Paul Po-Shen Wang
- Department of Ecology and Evolution , University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
24
|
Liu N, Xiao ZD, Yu CH, Shao P, Liang YT, Guan DG, Yang JH, Chen CL, Qu LH, Zhou H. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights. BMC Genomics 2009; 10:515. [PMID: 19895704 PMCID: PMC2780460 DOI: 10.1186/1471-2164-10-515] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/08/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. RESULTS Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. CONCLUSION This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by box C/D snoRNAs in multicellular fungus than in unicellular yeasts was revealed, indicating the high diversity of post-transcriptional modification guided by snoRNAs in the fungus kingdom.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhen-Dong Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun-Hong Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peng Shao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yin-Tong Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dao-Gang Guan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun-Long Chen
- Centre National de la Recherche Scientifique (CNRS), UPR 2167, CGM, Gif sur Yvette, 91198, France
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
25
|
Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83-8. [PMID: 19446021 DOI: 10.1016/j.ygeno.2009.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|
26
|
Mishra PC, Kumar A, Sharma A. Analysis of small nucleolar RNAs reveals unique genetic features in malaria parasites. BMC Genomics 2009; 10:68. [PMID: 19200392 PMCID: PMC2656528 DOI: 10.1186/1471-2164-10-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 02/07/2009] [Indexed: 01/07/2023] Open
Abstract
Background Ribosome biogenesis is an energy consuming and stringently controlled process that involves hundreds of trans-acting factors. Small nucleolar RNAs (snoRNAs), important components of ribosome biogenesis are non-coding guide RNAs involved in rRNA processing, nucleotide modifications like 2'-O-ribose methylation, pseudouridylation and possibly gene regulation. snoRNAs are ubiquitous and are diverse in their genomic organization, mechanism of transcription and process of maturation. In vertebrates, most snoRNAs are present in introns of protein coding genes and are processed by exonucleolytic cleavage, while in plants they are transcribed as polycistronic transcripts. Results This is a comprehensive analysis of malaria parasite snoRNA genes and proteins that have a role in ribosomal biogenesis. Computational and experimental approaches have been used to identify several box C/D snoRNAs from different species of Plasmodium and confirm their expression. Our analyses reveal that the gene for endoribonuclease Rnt1 is absent from Plasmodium falciparum genome, which indicates the existence of alternative pre-rRNA processing pathways. The structural features of box C/D snoRNAs are highly conserved in Plasmodium genus; however, unlike other organisms most parasite snoRNAs are present in single copy. The genomic localization of parasite snoRNAs shows mixed patterns of those observed in plants, yeast and vertebrates. We have localized parasite snoRNAs in untranslated regions (UTR) of mRNAs, and this is an unprecedented and novel genetic feature. Akin to mammalian snoRNAs, those in Plasmodium may also behave as mobile genetic elements. Conclusion This study provides a comprehensive overview on trans-acting genes involved in ribosome biogenesis and also a genetic insight into malaria parasite snoRNA genes.
Collapse
Affiliation(s)
- Prakash Chandra Mishra
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology Aruna Asaf Ali Road, New Delhi, 110067, India.
| | | | | |
Collapse
|
27
|
Myslyuk I, Doniger T, Horesh Y, Hury A, Hoffer R, Ziporen Y, Michaeli S, Unger R. Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes. BMC Bioinformatics 2008; 9:471. [PMID: 18986541 PMCID: PMC2613932 DOI: 10.1186/1471-2105-9-471] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 11/05/2008] [Indexed: 11/12/2022] Open
Abstract
Background Detection of non coding RNA (ncRNA) molecules is a major bioinformatics challenge. This challenge is particularly difficult when attempting to detect H/ACA molecules which are involved in converting uridine to pseudouridine on rRNA in trypanosomes, because these organisms have unique H/ACA molecules (termed H/ACA-like) that lack several of the features that characterize H/ACA molecules in most other organisms. Results We present here a computational tool called Psiscan, which was designed to detect H/ACA-like molecules in trypanosomes. We started by analyzing known H/ACA-like molecules and characterized their crucial elements both computationally and experimentally. Next, we set up constraints based on this analysis and additional phylogenic and functional data to rapidly scan three trypanosome genomes (T. brucei, T. cruzi and L. major) for sequences that observe these constraints and are conserved among the species. In the next step, we used minimal energy calculation to select the molecules that are predicted to fold into a lowest energy structure that is consistent with the constraints. In the final computational step, we used a Support Vector Machine that was trained on known H/ACA-like molecules as positive examples and on negative examples of molecules that were identified by the computational analyses but were shown experimentally not to be H/ACA-like molecules. The leading candidate molecules predicted by the SVM model were then subjected to experimental validation. Conclusion The experimental validation showed 11 molecules to be expressed (4 out of 25 in the intermediate stage and 7 out of 19 in the final validation after the machine learning stage). Five of these 11 molecules were further shown to be bona fide H/ACA-like molecules. As snoRNA in trypanosomes are organized in clusters, the new H/ACA-like molecules could be used as starting points to manually search for additional molecules in their neighbourhood. All together this study increased our repertoire by fourteen H/ACA-like and six C/D snoRNAs molecules from T. brucei and L. Major. In addition the experimental analysis revealed that six ncRNA molecules that are expressed are not downregulated in CBF5 silenced cells, suggesting that they have structural features of H/ACA-like molecules but do not have their standard function. We termed this novel class of molecules AGA-like, and we are exploring their function. This study demonstrates the power of tight collaboration between computational and experimental approaches in a combined effort to reveal the repertoire of ncRNA molecles.
Collapse
Affiliation(s)
- Inna Myslyuk
- Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Maxim Golovkin
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
29
|
Huang ZP, Chen CJ, Zhou H, Li BB, Qu LH. A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes. Genomics 2007; 89:490-501. [PMID: 17222528 DOI: 10.1016/j.ygeno.2006.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/09/2006] [Accepted: 12/02/2006] [Indexed: 12/28/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the posttranscriptional modifications of rRNAs in eukaryotes. Prior to this study, only 28 snoRNA genes had been identified from Caenorhabditis elegans, indicating that most snoRNA genes are hidden in the worm genome, which represents a simple multicellular metazoan. In this study, a genome-wide analysis of the two major families of snoRNA genes in C. elegans was performed using the snoscan and snoGPS programs incorporating comparative genome analyses. Seventy gene variants, including 36 box C/D and 34 box H/ACA snoRNA genes, were identified, of which 50 are novel. Two families of snoRNAs showed a characteristic genomic organization. Notably, 6 box C/D snoRNA genes were located in the antisense orientation of introns. In contrast to insect and mammal, the distances between many intronic snoRNAs and 3' splice sites of introns were less than 50 nt in the worm, an unexpected finding as intron-encoded snoRNAs in C. elegans are supposed to be expressed in a splicing-dependent pathway. Interestingly, a canonical H/ACA snoRNA, PsiCeU5-48, was revealed to be partially homologous to small Cajal body-specific RNA (scaRNA) U85 and U89 in fly and human, indicating a possible evolutionary relationship between snoRNAs and scaRNAs.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
30
|
Wang Y, van der Hoeven RS, Nielsen R, Mueller LA, Tanksley SD. Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 112:72-84. [PMID: 16208505 DOI: 10.1007/s00122-005-0107-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/01/2005] [Indexed: 05/04/2023]
Abstract
A collection of 9,990 single-pass nuclear genomic sequences, corresponding to 5 Mb of tomato DNA, were obtained using methylation filtration (MF) strategy and reduced to 7,053 unique undermethylated genomic islands (UGIs) distributed as follows: (1) 59% non-coding sequences, (2) 28% coding sequences, (3) 12% transposons-96% of which are class I retroelements, and (4) 1% organellar sequences integrated into the nuclear genome over the past approximately 100 million years. A more detailed analysis of coding UGIs indicates that the unmethylated portion of tomato genes extends as far as 676 bp upstream and 766 bp downstream of coding regions with an average of 174 and 171 bp, respectively. Based on the analysis of the UGI copy distribution, the undermethylated portion of the tomato genome is determined to account for the majority of the unmethylated genes in the genome and is estimated to constitute 61+/-15 Mb of DNA (approximately 5% of the entire genome)--which is significantly less than the 220 Mb estimated for gene-rich euchromatic arms of the tomato genome. This result indicates that, while most genes reside in the euchromatin, a significant portion of euchromatin is methylated in the intergenic spacer regions. Implications of the results for sequencing the genome of tomato and other solanaceous species are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Plant Breeding and Genetics, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
31
|
Nolivos S, Carpousis AJ, Clouet-d'Orval B. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 2005; 33:6507-14. [PMID: 16293637 PMCID: PMC1289080 DOI: 10.1093/nar/gki962] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 10/29/2005] [Accepted: 10/29/2005] [Indexed: 12/03/2022] Open
Abstract
The C/D guide RNAs predicted from the genomic sequences of three species of Pyrococcus delineate a family of small non-coding archaeal RNAs involved in the methylation of rRNA and tRNA. The C/D guides assemble into ribonucleoprotein (RNP) that contains the methyltransferase. The protein L7Ae, a key structural component of the RNP, binds to a Kink-turn (K-turn) formed by the C/D motif. The K-turn is a structure that consists of two RNA stems separated by a short asymmetric loop with a characteristic sharp bend (kink) between the two stems. The majority of the pyrococcal C/D guides contain a short 3 nt-spacer between the C'/D' motifs. We show here that conserved terminal stem-loops formed by the C'/D' motif of the Pyrococcus C/D RNAs are also L7Ae-binding sites. These stem-loops are related to the K-turn by sequence and structure, but they consist of a single stem closed by a terminal loop. We have named this structure the K-loop. We show that conserved non-canonical base pairs in the stem of the K-loop are necessary for L7Ae binding. For the C/D guides with a 3 nt-spacer we show that the sequence and length is also important. The K-loop could improve the stability of the C/D guide RNAs in Pyrococcal species, which are extreme hyperthermophiles.
Collapse
Affiliation(s)
- Sophie Nolivos
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Agamemnon J. Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, UMR 5100 Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex 9, France
| |
Collapse
|
32
|
Huang ZP, Zhou H, Qu LH. Maintaining a conserved methylation in plant and insect U2 snRNA through compensatory mutation by nucleotide insertion. IUBMB Life 2005; 57:693-9. [PMID: 16223710 DOI: 10.1080/15216540500306983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The extensive post-transcriptional modification of U2 snRNA is required for spliceosome assembly and pre-mRNA splicing in vertebrates. However, the rare modification of U2 snRNA in yeast implies a different mechanism for regulating spliceosome biogenesis in single-celled eukaryotes. To understand the evolutionary pattern of U2 snRNA methylation, we determined for the first time, the 2'-O-methylations of U2 snRNA in Oryza sativa, Arabidopsis thaliana and Drosophila melanogaster, and revealed two methylations which are conserved in a crucial region of U2 snRNA in plants. Interestingly, one of the methylations, U2-Cm29 is also methylated in D. melanogaster, but not in vertebrates. According to the methylation of U2-C29, computational analysis of databases identified three canonical box C/D snoRNAs, named OsmgU2-29, AtmgU2-29 and DmmgU2-28, as small methylation guides of U2 snRNA from O. sativa, A. thaliana and D. melanogaster, respectively. Although very divergent in their sequence, the three snoRNAs exhibit in common an 11 nucleotide-long sequence complementarity to corresponding U2 snRNA, implying a functional constraint on the modification during evolution. Interestingly, a nucleotide is found to be inserted both in U2 snRNA and DmmgU2-28 and maintains a perfect match of duplex specifying the methylation of C28 in Drosophila U2 snRNA. This is the first time a new model is being provided for compensatory mutations between a small guide RNA and its target by nucleotide insertion, instead of the known nucleotide substitution. In contrast to small Cajal body-specific RNAs (scaRNAs), the snoRNAs are similar to the reported singlet guide RNAs and are known to localize in nucleolus.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, People's Republic of China
| | | | | |
Collapse
|
33
|
Ohtani M, Sugiyama M. Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:479-90. [PMID: 16098103 DOI: 10.1111/j.1365-313x.2005.02469.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transcription machinery of small nuclear RNA (snRNA) genes has been investigated extensively in human cell-free systems, but its physiological function in vivo has not been addressed. This paper demonstrates the physiological role of an activator of snRNA transcription using a temperature-sensitive mutant of Arabidopsis thaliana, srd2. Phenotypic characteristics of the srd2 mutant suggest that the SRD2 gene participates in the control of competence in cell proliferation. The SRD2 gene encodes a nuclear protein that shares sequence similarity with the human SNAP50 protein, which is a subunit of SNAPc and is required for snRNA transcription in vitro. Our results, obtained from analysis of snRNA expression in the srd2 mutant, indicate that the SRD2 protein functions in the upregulation of transcription of snRNA genes, the promoters of which contain the upstream sequence element, to elevate cell proliferation competence.
Collapse
Affiliation(s)
- Misato Ohtani
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
| | | |
Collapse
|
34
|
Huang ZP, Zhou H, He HL, Chen CL, Liang D, Qu LH. Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. RNA (NEW YORK, N.Y.) 2005; 11:1303-16. [PMID: 15987805 PMCID: PMC1370813 DOI: 10.1261/rna.2380905] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are an abundant group of noncoding RNAs mainly involved in the post-transcriptional modifications of rRNAs in eukaryotes. In this study, a large-scale genome-wide analysis of the two major families of snoRNA genes in the fruit fly Drosophila melanogaster has been performed using experimental and computational RNomics methods. Two hundred and twelve gene variants, encoding 56 box H/ACA and 63 box C/D snoRNAs, were identified, of which 57 novel snoRNAs have been reported for the first time. These snoRNAs were predicted to guide a total of 147 methylations and pseudouridylations on rRNAs and snRNAs, showing a more comprehensive pattern of rRNA modification in the fruit fly. With the exception of nine, all the snoRNAs identified to date in D. melanogaster are intron encoded. Remarkably, the genomic organization of the snoRNAs is characteristic of 8 dUhg genes and 17 intronic gene clusters, demonstrating that distinct organizations dominate the expression of the two families of snoRNAs in the fruit fly. Of the 267 introns in the host genes, more than half have been identified as host introns for coding of snoRNAs. In contrast to mammals, the variation in size of the host introns is mainly due to differences in the number of snoRNAs they contain. These results demonstrate the extensive utilization of introns for coding of snoRNAs in the host genes and shed light on further research of other noncoding RNA genes in the large introns of the Drosophila genome.
Collapse
Affiliation(s)
- Zhan-Peng Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Zhongshan University, Guangzhou 510275, Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Hüttenhofer A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 2005; 55:469-81. [PMID: 15659164 DOI: 10.1111/j.1365-2958.2004.04428.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
Collapse
Affiliation(s)
- Thean-Hock Tang
- Institute for Research in Molecular Medicine, University Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelatan, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang CY, Zhou H, Luo J, Qu LH. Identification of 20 snoRNA-like RNAs from the primitive eukaryote, Giardia lamblia. Biochem Biophys Res Commun 2005; 328:1224-31. [PMID: 15708007 DOI: 10.1016/j.bbrc.2005.01.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 11/23/2022]
Abstract
From a specialized cDNA library of Giardia lamblia, 20 snoRNA-like RNAs, including 16 box C/D sRNAs and four box H/ACA sRNAs, were first identified. The sRNAs were predicted to guide a total of 11 2'-O-methylation and four pseudouridylation sites on the G. lamblia rRNAs, respectively. By using primer extension assay, seven methylation sites were precisely mapped in the G. lamblia 16S rRNA, despite its high GC content. All of the sRNA genes locate on the small intergenic regions of the G. lamblia genome and seem to be independently transcribed from their own promoters. Particularly, a cluster composed of GlsR17 and GlsR18 genes is transcribed as a dicistronic precursor, implying a mechanism of endonuclease cleavage for the maturation of the two sRNAs. The systematic identification of the sRNAs in G. lamblia has provided valuable information about the characteristics of the two major families of small guide RNAs in one of the most primitive eukaryotes and would contribute to the understanding of the evolution of small non-messenger RNA genes from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- Cheng-Yong Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | |
Collapse
|
37
|
Mechanisms and functions of RNA-guided RNA modification. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2004. [DOI: 10.1007/b105585] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Luo Y, Zhuo H, Li S, Qu L. Identification and functional analysis of a novel box C/D snoRNA fromSchizosaccharomyces pombe. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Russell AG, Schnare MN, Gray MW. Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA (NEW YORK, N.Y.) 2004; 10:1034-46. [PMID: 15208440 PMCID: PMC1370595 DOI: 10.1261/rna.7300804] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotes, box H/ACA small nucleolar RNAs (snoRNAs) guide sites of pseudouridine (Psi) formation in rRNA. These snoRNAs reside in RNP complexes containing the putative Psi synthase, Cbf5p. In this study we have identified Cbf5p-associated RNAs in Euglena gracilis, an early diverging eukaryote, by immunoprecipitating Cbf5p-containing complexes from cellular extracts. We characterized one box H/ACA-like RNA which, however, does not appear to guide Psi formation in rRNA. We also identified four single Psi-guide box AGA RNAs. We determined target sites for these putative Psi-guide RNAs and confirmed that the predicted Psi modifications do, in fact, occur at these positions in Euglena rRNA. The Cbf5p-associated snoRNAs appear to be encoded by multicopy genes, some of which are clustered in the genome together with methylation-guide snoRNA genes. These modification-guide snoRNAs and snoRNA genes are the first ones to be reported in euglenid protists, the evolutionary sister group to the kinetoplastid protozoa. Unexpectedly, we also found and have partially characterized a selenocysteine tRNA homolog in the anti-Cbf5p-immunoprecipitated sample.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Room 8F-2, Dal-housie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
40
|
Vitali P, Royo H, Seitz H, Bachellerie JP, Hüttenhofer A, Cavaillé J. Identification of 13 novel human modification guide RNAs. Nucleic Acids Res 2004; 31:6543-51. [PMID: 14602913 PMCID: PMC275545 DOI: 10.1093/nar/gkg849] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the two expanding RNA subclasses termed C/D and H/ACA RNAs guide the 2'-O-methylations and pseudouridylations, respectively, of rRNA and spliceosomal RNAs (snRNAs). Here, we report on the identification of 13 novel human intron-encoded small RNAs (U94-U106) belonging to the two subclasses of modification guides. Seven of them are predicted to direct 2'-O-methylations in rRNA or snRNAs, while the remainder represent novel orphan RNA modification guides. From these, U100, which is exclusively detected in Cajal bodies (CBs), is predicted to direct modification of a U6 snRNA uridine, U(9), which to date has not been found to be pseudouridylated. Hence, within CBs, U100 might function in the folding pathway or other aspects of U6 snRNA metabolism rather than acting as a pseudouridylation guide. U106 C/D snoRNA might also possess an RNA chaperone activity only since its two conserved antisense elements match two rRNA sequences devoid of methylated nucleotides and located remarkably close to each other within the 18S rRNA secondary structure. Finally, we have identified a retrogene for U99 snoRNA located within an intron of the Siat5 gene, supporting the notion that retro-transposition events might have played a substantial role in the mobility and diversification of snoRNA genes during evolution.
Collapse
Affiliation(s)
- Patrice Vitali
- Institute for Molecular Biology, Department of Functional Genomics, University of Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Zhou H, Zhao J, Yu CH, Luo QJ, Chen YQ, Xiao Y, Qu LH. Identification of a novel box C/D snoRNA from mouse nucleolar cDNA library. Gene 2004; 327:99-105. [PMID: 14960365 DOI: 10.1016/j.gene.2003.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 06/24/2003] [Accepted: 11/07/2003] [Indexed: 11/28/2022]
Abstract
By construction and screen of mouse nucleolar cDNA library, a novel mammalian small nucleolar RNAs (snoRNA) was identified. The novel snoRNA, 70 nt in length, displays structural features typical of C/D box snoRNA family. The snoRNA possesses an 11-nt-long rRNA antisense element and is predicted to guide the 2'-O-methylation of mouse 28S rRNA at G4043, a site unknown so far to be modified in vertebrates. The comparison of functional element of snoRNA guides among eukaryotes reveals that the novel snoRNA is a mammalian counterpart of yeast snR38 despite highly divergent sequence between them. Mouse and human snR38 and other cognates in distant vertebrates were positively detected with slight length variability. As expected, the rRNA ribose-methylation site predicted by mouse snR38 was precisely mapped by specific-primer extension assay. Furthermore, our analyses show that mouse and human snR38 gene have multiple variants and are nested in the introns of different host genes with unknown function. Thus, snR38 is a phylogenetically conserved methylation guide but exhibits different genomic organization in eukaryotes.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.
Collapse
Affiliation(s)
- Espen Enerly
- Division of Molecular Biology, Institute of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
43
|
Chen CL, Liang D, Zhou H, Zhuo M, Chen YQ, Qu LH. The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucleic Acids Res 2003; 31:2601-13. [PMID: 12736310 PMCID: PMC156054 DOI: 10.1093/nar/gkg373] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 02/18/2003] [Accepted: 03/25/2003] [Indexed: 11/14/2022] Open
Abstract
Using a powerful computer-assisted analysis strategy, a large-scale search of small nucleolar RNA (snoRNA) genes in the recently released draft sequence of the rice genome was carried out. This analysis identified 120 different box C/D snoRNA genes with a total of 346 gene variants, which were predicted to guide 135 2'-O-ribose methylation sites in rice rRNAs. Though not exhaustive, this analysis has revealed that rice has the highest number of known box C/D snoRNAs among eukaryotes. Interestingly, although many snoRNA genes are conserved between rice and Arabidopsis, almost half of the identified snoRNA genes are rice specific, which may highlight further the differences in rRNA methylation patterns between monocotyledons and dicotyledons. In addition to 76 singletons, 70 clusters involving 270 snoRNA genes were also found in rice. The large number of the novel snoRNA polycistrons found in the introns of rice protein-coding genes is in contrast to the one-snoRNA-per-intron organization of vertebrates and yeast, and of Arabidopsis in which only a few intronic snoRNA gene clusters were identified. Furthermore, due to a high degree of gene duplication, rice snoRNA genes are clearly redundant and exhibit great sequence variation among isoforms, allowing generation of new snoRNAs for selection. Thus, the large snoRNA gene family in plants can serve as an excellent model for a rapid and functional evolution.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Library
- Genes, Plant/genetics
- Genetic Variation
- Genome, Plant
- Methylation
- Molecular Sequence Data
- Multigene Family/genetics
- Oryza/genetics
- Plants/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Chun-Long Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhoushan University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
44
|
Kruszka K, Barneche F, Guyot R, Ailhas J, Meneau I, Schiffer S, Marchfelder A, Echeverría M. Plant dicistronic tRNA-snoRNA genes: a new mode of expression of the small nucleolar RNAs processed by RNase Z. EMBO J 2003; 22:621-32. [PMID: 12554662 PMCID: PMC140725 DOI: 10.1093/emboj/cdg040] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) guiding modifications of ribosomal RNAs and other RNAs display diverse modes of gene organization and expression depending on the eukaryotic system: in animals most are intron encoded, in yeast many are monocistronic genes and in plants most are polycistronic (independent or intronic) genes. Here we report an unprecedented organization: plant dicistronic tRNA-snoRNA genes. In Arabidopsis thaliana we identified a gene family encoding 12 novel box C/D snoRNAs (snoR43) located just downstream from tRNA(Gly) genes. We confirmed that they are transcribed, probably from the tRNA gene promoter, producing dicistronic tRNA(Gly)-snoR43 precursors. Using transgenic lines expressing a tagged tRNA-snoR43.1 gene we show that the dicistronic precursor is accurately processed to both snoR43.1 and tRNA(Gly). In addition, we show that a recombinant RNase Z, the plant tRNA 3' processing enzyme, efficiently cleaves the dicistronic precursor in vitro releasing the snoR43.1 from the tRNA(Gly). Finally, we describe a similar case in rice implicating a tRNA(Met-e) expressed in fusion with a novel C/D snoRNA, showing that this mode of snoRNA expression is found in distant plant species.
Collapse
Affiliation(s)
| | - Fredy Barneche
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Romain Guyot
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | | | | | - Steffen Schiffer
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Anita Marchfelder
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| | - Manuel Echeverría
- Laboratoire Génome et Développement des Plantes, UMR CNRS 5096, Université de Perpignan, 66860 Perpignan cedex, France,
Molecular Biology Department, University of Geneva-Sciences II, 30 Quai Ernest Ansermet, 1211-Geneva, Institut of Plant Biology, University of Zurich, Zollikerstrasse 19, 8008-Zurich, Switzerland and Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany Corresponding author e-mail:
K.Kruszka, F.Barneche and R.Guyot contributed equally to this work
| |
Collapse
|
45
|
Brown JWS, Echeverria M, Qu LH, Lowe TM, Bachellerie JP, Hüttenhofer A, Kastenmayer JP, Green PJ, Shaw P, Marshall DF. Plant snoRNA database. Nucleic Acids Res 2003; 31:432-5. [PMID: 12520043 PMCID: PMC165456 DOI: 10.1093/nar/gkg009] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Plant snoRNA database (http://www.scri.sari.ac.uk/plant_snoRNA/) provides information on small nucleolar RNAs from Arabidopsis and eighteen other plant species. Information includes sequences, expression data, methylation and pseudouridylation target modification sites, initial gene organization (polycistronic, single gene and intronic) and the number of gene variants. The Arabidopsis information is divided into box C/D and box H/ACA snoRNAs, and within each of these groups, by target sites in rRNA, snRNA or unknown. Alignments of orthologous genes and gene variants from different plant species are available for many snoRNA genes. Plant snoRNA genes have been given a standard nomenclature, designed wherever possible, to provide a consistent identity with yeast and human orthologues.
Collapse
Affiliation(s)
- John W S Brown
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Brown JWS, Echeverria M, Qu LH. Plant snoRNAs: functional evolution and new modes of gene expression. TRENDS IN PLANT SCIENCE 2003; 8:42-9. [PMID: 12523999 DOI: 10.1016/s1360-1385(02)00007-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a well-characterized family of non-coding RNAs whose main function is rRNA modification. The diversity and complexity of this gene family continues to expand with the discovery of snoRNAs with non-rRNA or unknown targets. Plants contain more snoRNAs than other eukaryotes and have developed novel expression and processing strategies. The increased number of modifications, which will influence ribosome function, and the novel modes of expression might reflect the environmental conditions to which plants are exposed. Polyploidy and chromosomal rearrangements have generated multiple copies of snoRNA genes, allowing the generation of new snoRNAs for selection. The large snoRNA family in plants is an ideal model for investigation of mechanisms of evolution of gene families in plants.
Collapse
MESH Headings
- Base Sequence
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Plants/genetics
- Plants/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/physiology
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- John W S Brown
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | |
Collapse
|
47
|
Marker C, Zemann A, Terhörst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Hüttenhofer A. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 2002; 12:2002-13. [PMID: 12477388 DOI: 10.1016/s0960-9822(02)01304-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Genomes from all organisms known to date express two types of RNA molecules: messenger RNAs (mRNAs), which are translated into proteins, and non-messenger RNAs, which function at the RNA level and do not serve as templates for translation. RESULTS We have generated a specialized cDNA library from Arabidopsis thaliana to investigate the population of small non-messenger RNAs (snmRNAs) sized 50-500 nt in a plant. From this library, we identified 140 candidates for novel snmRNAs and investigated their expression, abundance, and developmental regulation. Based on conserved sequence and structure motifs, 104 snmRNA species can be assigned to novel members of known classes of RNAs (designated Class I snmRNAs), namely, small nucleolar RNAs (snoRNAs), 7SL RNA, U snRNAs, as well as a tRNA-like RNA. For the first time, 39 novel members of H/ACA box snoRNAs could be identified in a plant species. Of the remaining 36 snmRNA candidates (designated Class II snmRNAs), no sequence or structure motifs were present that would enable an assignment to a known class of RNAs. These RNAs were classified based on their location on the A. thaliana genome. From these, 29 snmRNA species located to intergenic regions, 3 located to intronic sequences of protein coding genes, and 4 snmRNA candidates were derived from annotated open reading frames. Surprisingly, 15 of the Class II snmRNA candidates were shown to be tissue-specifically expressed, while 12 are encoded by the mitochondrial or chloroplast genome. CONCLUSIONS Our study has identified 140 novel candidates for small non-messenger RNA species in the plant A. thaliana and thereby sets the stage for their functional analysis.
Collapse
Affiliation(s)
- Claudia Marker
- Institute of Experimental Pathology, ZMBE, Von-Esmarch-Str 56, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hüttenhofer A, Brosius J, Bachellerie JP. RNomics: identification and function of small, non-messenger RNAs. Curr Opin Chem Biol 2002; 6:835-43. [PMID: 12470739 DOI: 10.1016/s1367-5931(02)00397-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the past few years, our knowledge about small non-mRNAs (snmRNAs) has grown exponentially. Approaches including computational and experimental RNomics have led to a plethora of novel snmRNAs, especially small nucleolar RNAs (snoRNAs). Members of this RNA class guide modification of ribosomal and spliceosomal RNAs. Novel targets for snoRNAs were identified such as tRNAs and potentially mRNAs, and several snoRNAs were shown to be tissue-specifically expressed. In addition, previously unknown classes of snmRNAs have been discovered. MicroRNAs and small interfering RNAs of about 21-23 nt, were shown to regulate gene expression by binding to mRNAs via antisense elements. Regulation of gene expression is exerted by degradation of mRNAs or translational regulation. snmRNAs play a variety of roles during regulation of gene expression. Moreover, the function of some snmRNAs known for decades, has been finally elucidated. Many other RNAs were identified by RNomics studies lacking known sequence and structure motifs. Future challenges in the field of RNomics include identification of the novel snmRNA's biological roles in the cell.
Collapse
Affiliation(s)
- Alexander Hüttenhofer
- Institute of Experimental Pathology, ZMBE, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| | | | | |
Collapse
|
49
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
50
|
Liang D, Zhou H, Zhang P, Chen YQ, Chen X, Chen CL, Qu LH. A novel gene organization: intronic snoRNA gene clusters from Oryza sativa. Nucleic Acids Res 2002; 30:3262-72. [PMID: 12136108 PMCID: PMC135747 DOI: 10.1093/nar/gkf426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the analysis of structural features and conserved elements, 27 novel snoRNA genes have been identified from rice. All of them belong to the C/D box-containing snoRNA family except for one that belongs to the H/ACA box type. The newly found genes fall into six clusters that comprise at least three snoRNA genes, and in one case as many as nine genes. Interestingly, four of the six clusters are located within the largest intron of a protein coding gene. The majority of intronic snoRNA gene clusters are simply formed by multiple copies of the same species of snoRNA gene that possess the identical functional elements. This implies a possible mechanism of duplication for the origin of repeating snoRNA coding regions in one intron. However, a few intronic snoRNA gene clusters consisting of different snoRNAs species were also observed. Polycistronic precursors from two independently transcribed clusters were demonstrated by RT-PCR and individual snoRNAs processed from the polycistronic precursors were positively determined by reverse transcription assay. Analyses of the intergenic spacers in the clusters showed that, in addition to a very high AT content, the processing signals in rice snoRNA polycistronic transcripts might be different from those of yeast. Our results demonstrate that, in both plants and mammals, numerous snoRNAs can be produced simultaneously from an mRNA precursor of a host gene despite the different arrangements. The intronic snoRNA gene cluster is a novel gene organization, which is so far unique to plants. The conservation of intronic snoRNA gene clusters in plants was further demonstrated by the study of a similar snoRNA gene organization in the first intron of a Hsp70 gene from wild rice and Zizania caduciflora.
Collapse
Affiliation(s)
- Dan Liang
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|