1
|
Castro R, Granja PL, Rodrigues J, Pêgo AP, Tomás H. Bioinspired hybrid DNA/dendrimer-based films with supramolecular chirality. J Mater Chem B 2025; 13:4671-4680. [PMID: 40130482 DOI: 10.1039/d4tb02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bioinspired hybrid DNA/dendrimer films were obtained by heating long double-stranded DNA (dsDNA) above its melting temperature and, while in the denatured state, mixing it with poly(amidoamine) (PAMAM) dendrimers, followed by controlled cooling. The formation of these new types of films was found to be dependent on several parameters, including the initial heating temperature, pH, buffer composition, dendrimer generation, amine/phosphate (N/P) ratio, and cooling speed. In addition to the PAMAM dendrimers (generations 3, 4, and 5), films could also be produced with branched poly(ethylenimine) with a molecular weight of 25 kDa. The results indicated that these films were formed not only through electrostatic interactions established between the negatively charged DNA molecules and the positive dendrimers, as expected, but also through random rehybridization of the single-stranded DNA (ssDNA) during the cooling process. The resulting films are water-insoluble, transparent when thin, highly elastic when air-dried, exceptionally stable over extended periods, cytocompatible, and easily scalable. Notably, the slow cooling process allowed for the establishment of at least a partially ordered structure in the films, as revealed by circular dichroism, providing evidence of supramolecular chirality. It is envisioned that these films may have significant potential in biomedical applications, such as drug/gene delivery systems, platforms for cell-free DNA transcription and components in biosensors.
Collapse
Affiliation(s)
- Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Paula Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-343 Porto, Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
2
|
Nishide G, Lim K, Kobayashi A, Qiu Y, Hazawa M, Ando T, Okada Y, Wong R. Spatiotemporal dynamics of protamine-DNA condensation revealed by high-speed atomic force microscopy. Nucleic Acids Res 2025; 53:gkaf152. [PMID: 40138714 PMCID: PMC11930356 DOI: 10.1093/nar/gkaf152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Protamines (PRMs) play a crucial role in sperm chromatin condensation, replacing histones to form nucleo-PRM structures, specifically PRM-DNA complexes. Despite their importance in reproduction, the detailed mechanisms underlying PRM-mediated DNA condensation have remained elusive. In this study, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the real-time binding dynamics of PRM to DNA under physiological conditions. Our HS-AFM observations reveal that PRM insertion initiating the formation of DNA coils. Further, we observed a heterogeneous spatial distribution of PRM-induced DNA looping. With continuous PRM addition, DNA progresses through a series of folding transitions, forming coiled-like structures that evolve into clockwise spirals, rod-shaped intermediates, and ultimately toroid-like nanostructures. Based on these real-time observations, we propose the CARD (Coil-Assembly-Rod-Doughnut) model to describe the stepwise process of toroid formation during DNA condensation. Our findings underscore the versatility of HS-AFM in capturing the spatiotemporal dynamics of PRM-DNA interactions and provide critical insights into the molecular mechanisms driving PRM-induced chromatin compaction. This study advances our understanding of sperm chromatin architecture and offers a framework for future research into chromatin organization, reproductive biology, and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yujia Qiu
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
| | - Richard W Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
3
|
Ahlawat V, Dhiman A, Mudiyanselage HE, Zhou HX. Protamine-Mediated Tangles Produce Extreme Deoxyribonucleic Acid Compaction. J Am Chem Soc 2024; 146:30668-30677. [PMID: 39469863 PMCID: PMC11540724 DOI: 10.1021/jacs.4c12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form tangles that withstand forces strong enough (∼55 pN) for strand separation and shorten the contour length by up to 40% even at high forces, as well as bends and loops that rupture at 10-40 pN forces. Strand separation nucleates tangles, implicating protamine interactions with DNA bases. Molecular dynamics simulations show that Arg sidechains of protamine each form hydrogen bonds with multiple bases, frequently in the form of a wedge between the two strands of DNA. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.
Collapse
Affiliation(s)
- Vikhyaat Ahlawat
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, United States
| | - Anshika Dhiman
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
| | | | - Huan-Xiang Zhou
- Department of Chemistry University of Illinois Chicago, Chicago IL 60607, United States
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, United States
| |
Collapse
|
4
|
Robertson MJ, Chambers C, Spanner EA, de Graaf SP, Rickard JP. The Assessment of Sperm DNA Integrity: Implications for Assisted Reproductive Technology Fertility Outcomes across Livestock Species. BIOLOGY 2024; 13:539. [PMID: 39056730 PMCID: PMC11273975 DOI: 10.3390/biology13070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Sperm DNA integrity is increasingly considered a useful measure of semen quality in mammalian reproduction. However, the definition of DNA integrity, the ideal means by which it should be measured, and its predictive value for fertility remain a topic of much discussion. With an emphasis on livestock species, this review discusses the assays that have been developed to measure DNA integrity as well as their correlation with in vitro and in vivo fertility.
Collapse
Affiliation(s)
| | | | | | | | - Jessica P. Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (M.J.R.); (S.P.d.G.)
| |
Collapse
|
5
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Xie S, Yue C, Ye S, Li Z. Probing the hierarchical dynamics of DNA-sperm nuclear transition protein complexes through fuzzy interaction and mesoscale condensation. Phys Chem Chem Phys 2024; 26:10408-10418. [PMID: 38502252 DOI: 10.1039/d3cp05957j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.
Collapse
Affiliation(s)
- Shangqiang Xie
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Congran Yue
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Sheng Ye
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhenlu Li
- School of Life Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
7
|
Katopodi T, Petanidis S, Grigoriadou E, Anestakis D, Charalampidis C, Chatziprodromidou I, Floros G, Eskitzis P, Zarogoulidis P, Koulouris C, Sevva C, Papadopoulos K, Roulia P, Mantalovas S, Dagher M, Karakousis AV, Varsamis N, Vlassopoulos K, Theodorou V, Mystakidou CM, Katsios NI, Farmakis K, Kosmidis C. Immune Specific and Tumor-Dependent mRNA Vaccines for Cancer Immunotherapy: Reprogramming Clinical Translation into Tumor Editing Therapy. Pharmaceutics 2024; 16:455. [PMID: 38675116 PMCID: PMC11053579 DOI: 10.3390/pharmaceutics16040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Extensive research into mRNA vaccines for cancer therapy in preclinical and clinical trials has prepared the ground for the quick development of immune-specific mRNA vaccines during the COVID-19 pandemic. Therapeutic cancer vaccines based on mRNA are well tolerated, and are an attractive choice for future cancer immunotherapy. Ideal personalized tumor-dependent mRNA vaccines could stimulate both humoral and cellular immunity by overcoming cancer-induced immune suppression and tumor relapse. The stability, structure, and distribution strategies of mRNA-based vaccines have been improved by technological innovations, and patients with diverse tumor types are now being enrolled in numerous clinical trials investigating mRNA vaccine therapy. Despite the fact that therapeutic mRNA-based cancer vaccines have not yet received clinical approval, early clinical trials with mRNA vaccines as monotherapy and in conjunction with checkpoint inhibitors have shown promising results. In this review, we analyze the most recent clinical developments in mRNA-based cancer vaccines and discuss the optimal platforms for the creation of mRNA vaccines. We also discuss the development of the cancer vaccines' clinical research, paying particular attention to their clinical use and therapeutic efficacy, which could facilitate the design of mRNA-based vaccines in the near future.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Eirini Grigoriadou
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.K.); (E.G.)
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | | | | | - George Floros
- Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Charilaos Koulouris
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Christina Sevva
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Konstantinos Papadopoulos
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Panagiota Roulia
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Stylianos Mantalovas
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Marios Dagher
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | - Alexandros Vasileios Karakousis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| | | | - Konstantinos Vlassopoulos
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Vasiliki Theodorou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Chrysi Maria Mystakidou
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (V.T.); (C.M.M.)
| | - Nikolaos Iason Katsios
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Farmakis
- Pediatric Surgery Clinic, General Hospital of Thessaloniki “G. Gennimatas”, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece; (P.Z.); (C.K.); (C.S.); (K.P.); (S.M.); (M.D.); (A.V.K.); (C.K.)
| |
Collapse
|
8
|
Ahlawat V, Zhou HX. Multiple modes of DNA compaction by protamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570784. [PMID: 38106194 PMCID: PMC10723432 DOI: 10.1101/2023.12.08.570784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In sperm cells, protamine replaces histones to compact DNA 10-20 times more than in somatic cells. To characterize the extreme compaction, we employed confocal microscopy and optical tweezers to determine the conformations and stability of protamine-bound λ-DNA. Confocal images show increasing compaction of λ-DNA at increasing protamine concentration. In the presence of protamine, single λ-DNA molecules form bends and loops that unravel at 10-40 pN forces as well as coils that shorten the contour length by up to 40% and withstand forces strong enough (~55 pN) for strand separation. Strand separation nucleates coils, indicating protamine insertion into DNA bases. Protamine may participate in both local and higher-order chromatin organization, leading to extreme compaction and global transcription silencing.
Collapse
Affiliation(s)
- Vikhyaat Ahlawat
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, United States
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, United States
| |
Collapse
|
9
|
McMillan RB, Bediako H, Devenica LM, Velasquez A, Hardy IP, Ma YE, Roscoe DM, Carter AR. Protamine folds DNA into flowers and loop stacks. Biophys J 2023; 122:4288-4302. [PMID: 37803830 PMCID: PMC10645571 DOI: 10.1016/j.bpj.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 μM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 μM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Isabel P Hardy
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Yuxing E Ma
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Donna M Roscoe
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
10
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
11
|
Yan B, Fan H, Ji H, Li S, Hu H, Gu X, Jia S, Liu Y, Guo J, Yang Z, Zhou L, Xiao X, Li L, Mao Z. DNA strand displacement and TdT-Mediated DNA extension for swift, convenient, and quantitative evaluation of sperm DNA integrity and its clinical implications. Anal Chim Acta 2023; 1280:341821. [PMID: 37858544 DOI: 10.1016/j.aca.2023.341821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
DNA integrity is crucial for the clinical pregnancy outcome and offspring health, while detection methods currently used (comet assay, TUNNEL assay, SCSA, etc.) can only provide the ratio of positive sperms at the cellular level and are unable to quantitatively detect the breakpoints at the DNA molecular level. Herein, we developed a detection system based on terminal deoxynucleotidyl transferase and DNA strand displacement fluorescent probe, which could efficiently and conveniently measure the number of 3'-OH (equivalent to the number of breakpoints). We further investigated the use of this technique in assisted reproduction after completing the principle verification, system optimization, and research on analytical performance. The detection system was shown to have a good linear range from 0.01 nM to 4 nM, using single-stranded DNA with 3'-OH end as the calibrator. The system underwent thorough optimization for stability and accuracy. In comparison to the widely accepted index DFI detected by SCSA, the new system demonstrated reasonable correlation and better prediction efficiency. Its applicability was also proven through its use in assisted reproductive technology procedures.
Collapse
Affiliation(s)
- Bei Yan
- Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Heng Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanxu Ji
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China
| | - Siqi Li
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiuli Gu
- Wuhan Huake Reproductive Hospital, Wuhan, 430030, China
| | - Shaotong Jia
- Human Sperm Bank, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Ying Liu
- Wuhan Biobank, Wuhan, 430070, China
| | - Jing Guo
- Wuhan Biobank, Wuhan, 430070, China
| | | | | | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230031, China.
| | - Longjie Li
- School of Life Science and Technology, Wuhan Poly-technic University, Wuhan, 430023, China; Wuhan Huchuang United Technology Co., Ltd, Wuhan, 430070, China.
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China.
| |
Collapse
|
12
|
Zhang X, Peng J, Wu M, Sun A, Wu X, Zheng J, Shi W, Gao G. Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility. Nat Commun 2023; 14:2629. [PMID: 37149634 PMCID: PMC10164148 DOI: 10.1038/s41467-023-38357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Genetic studies elucidate a link between testis-specific serine/threonine kinases (TSSKs) and male infertility in mammals, but the underlying mechanisms are unclear. Here, we identify a TSSK homolog in Drosophila, CG14305 (termed dTSSK), whose mutation impairs the histone-to-protamine transition during spermiogenesis and causes multiple phenotypic defects in nuclear shaping, DNA condensation, and flagellar organization in spermatids. Genetic analysis demonstrates that kinase catalytic activity of dTSSK, which is functionally conserved with human TSSKs, is essential for male fertility. Phosphoproteomics identify 828 phosphopeptides/449 proteins as potential substrates of dTSSK enriched primarily in microtubule-based processes, flagellar organization and mobility, and spermatid differentiation and development, suggesting that dTSSK phosphorylates various proteins to orchestrate postmeiotic spermiogenesis. Among them, the two substrates, protamine-like protein Mst77F/Ser9 and transition protein Mst33A/Ser237, are biochemically validated to be phosphorylated by dTSSK in vitro, and are genetically demonstrated to be involved in spermiogenesis in vivo. Collectively, our findings demonstrate that broad phosphorylation mediated by TSSKs plays an indispensable role in spermiogenesis.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Menghua Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Zheng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wangfei Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
13
|
Electrostatic anti-CD33-antibody-protamine nanocarriers as platform for a targeted treatment of acute myeloid leukemia. J Hematol Oncol 2022; 15:171. [PMID: 36457063 PMCID: PMC9716776 DOI: 10.1186/s13045-022-01390-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a fatal clonal hematopoietic malignancy, which results from the accumulation of several genetic aberrations in myeloid progenitor cells, with a worldwide 5-year survival prognosis of about 30%. Therefore, the development of more effective therapeutics with novel mode of action is urgently demanded. One common mutated gene in the AML is the DNA-methyltransferase DNMT3A whose function in the development and maintenance of AML is still unclear. To specifically target "undruggable" oncogenes, we initially invented an RNAi-based targeted therapy option that uses the internalization capacity of a colorectal cancer specific anti-EGFR-antibody bound to cationic protamine and the anionic siRNA. Here, we present a new experimental platform technology of molecular oncogene targeting in AML. METHODS Our AML-targeting system consists of an internalizing anti-CD33-antibody-protamine conjugate, which together with anionic molecules such as siRNA or ibrutinib-Cy3.5 and cationic free protamine spontaneously assembles into vesicular nanocarriers in aqueous solution. These nanocarriers were analyzed concerning their physical properties and relevant characteristics in vitro in cell lines and in vivo in xenograft tumor models and patient-derived xenograft leukemia models with the aim to prepare them for translation into clinical application. RESULTS The nanocarriers formed depend on a balanced electrostatic combination of the positively charged cationic protamine-conjugated anti-CD33 antibody, unbound cationic protamine and the anionic cargo. This nanocarrier transports its cargo safely into the AML target cells and has therapeutic activity against AML in vitro and in vivo. siRNAs directed specifically against two common mutated genes in the AML, the DNA-methyltransferase DNMT3A and FLT3-ITD lead to a reduction of clonal growth in vitro in AML cell lines and inhibit tumor growth in vivo in xenotransplanted cell lines. Moreover, oncogene knockdown of DNMT3A leads to increased survival of mice carrying leukemia patient-derived xenografts. Furthermore, an anionic derivative of the approved Bruton's kinase (BTK) inhibitor ibrutinib, ibrutinib-Cy3.5, is also transported by this nanocarrier into AML cells and decreases colony formation. CONCLUSIONS We report important results toward innovative personalized, targeted treatment options via electrostatic nanocarrier therapy in AML.
Collapse
|
14
|
Fresacher-Scheiber K, Ruseska I, Siboni H, Reiser M, Falsone F, Grill L, Zimmer A. Modified Stability of microRNA-Loaded Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091829. [PMID: 36145577 PMCID: PMC9504241 DOI: 10.3390/pharmaceutics14091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
microRNAs represent promising drugs to treat and prevent several diseases, such as diabetes mellitus. microRNA delivery brings many obstacles to overcome, and one strategy to bypass them is the manufacturing of self-assembled microRNA protein nanoparticles. In this work, a microRNA was combined with the cell-penetrating peptide protamine, forming so-called proticles. Previous studies demonstrated a lack of microRNA dissociation from proticles. Therefore, the goal of this study was to show the success of functionalizing binary proticles with citric acid in order to reduce the binding strength between the microRNA and protamine and further enable sufficient dissociation. Thus, we outline the importance of the present protons provided by the acid in influencing colloidal stability, achieving a constant particle size, and monodispersing the particle size distribution. The use of citric acid also provoked an increase in drug loading. Against all expectations, the AFM investigations demonstrated that our nanoparticles were loose complexes mainly consisting of water, and the addition of citric acid led to a change in shape. Moreover, a successful reduction in binding affinity and nanoparticulate stability are highlighted. Low cellular toxicity and a constant cellular uptake are demonstrated, and as uptake routes, active and passive pathways are discussed.
Collapse
Affiliation(s)
- Katja Fresacher-Scheiber
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ivana Ruseska
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Henrik Siboni
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
- Institute of Chemistry, Department of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Martin Reiser
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Fabio Falsone
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Leonhard Grill
- Institute of Chemistry, Department of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-8881
| |
Collapse
|
15
|
Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front Endocrinol (Lausanne) 2022; 13:895502. [PMID: 35813619 PMCID: PMC9258737 DOI: 10.3389/fendo.2022.895502] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.
Collapse
Affiliation(s)
- Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Okada Y. Sperm chromatin structure: Insights from in vitro to in situ experiments. Curr Opin Cell Biol 2022; 75:102075. [PMID: 35344802 DOI: 10.1016/j.ceb.2022.102075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
The sperm genome is tightly packed into a minimal volume of sperm nuclei. Sperm chromatin is highly condensed by protamines (PRMs) after histone-protamine replacement, and the majority of the sperm genome forms a nucleo-protamine structure, namely, the PRM-DNA complex. The outline of sperm chromatin structure was proposed 30 years ago, and the details have been explored by approaches from several independent research fields including male reproduction and infertility, DNA biopolymer, and most recently, genome-wide sequence-based approaches. In this review, the history of research on sperm chromatin structure is briefly described, and the progress of recent related studies is summarized to obtain a more integrated view for the sperm chromatin, an extremely compacted "black box."
Collapse
Affiliation(s)
- Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
17
|
Lebold KM, Best RB. Tuning Formation of Protein-DNA Coacervates by Sequence and Environment. J Phys Chem B 2022; 126:2407-2419. [PMID: 35317553 DOI: 10.1021/acs.jpcb.2c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high concentration of nucleic acids and positively charged proteins in the cell nucleus provides many possibilities for complex coacervation. We consider a prototypical mixture of nucleic acids together with the polycationic C-terminus of histone H1 (CH1). Using a minimal coarse-grained model that captures the shape, flexibility, and charge distributions of the molecules, we find that coacervates are readily formed at physiological ionic strengths, in agreement with experiment, with a progressive increase in local ordering at low ionic strength. Variation of the positions of charged residues in the protein tunes phase separation: for well-mixed or only moderately blocky distributions of charge, there is a modest increase of local ordering with increasing blockiness that is also associated with an increased propensity to phase separate. This ordering is also associated with a slowdown of rotational and translational diffusion in the dense phase. However, for more extreme blockiness (and consequently higher local charge density), we see a qualitative change in the condensed phase to become a segregated structure with a dramatically increased ordering of the DNA. Naturally occurring proteins with these sequence properties, such as protamines in sperm cells, are found to be associated with very dense packing of nucleic acids.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Chen C, Liu Q, Yuan Y, Cai X, Ding X, Li B, Yang Y, Wang B, Wang G, Leong DT, Qian H. Protein-mediated DNA self-assembly by controlling the surface charge in a molecular crowding environment. Biomater Sci 2022; 10:2006-2013. [PMID: 35289345 DOI: 10.1039/d1bm02017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing and building artificial nanodevices and nanoarchitectures in living systems are extremely intriguing subjects in nanotechnology and synthetic biology. Taking advantage of cellular machinery and endogenous biomacromolecules, such as proteins,...
Collapse
Affiliation(s)
- Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Qian Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Yuan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Xiaolian Cai
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotong Ding
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Boxuan Li
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
19
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
20
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
21
|
McMillan RB, Kuntz VD, Devenica LM, Bediako H, Carter AR. DNA looping by protamine follows a nonuniform spatial distribution. Biophys J 2021; 120:2521-2531. [PMID: 34023297 PMCID: PMC8390855 DOI: 10.1016/j.bpj.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
DNA looping plays an important role in cells in both regulating and protecting the genome. Often, studies of looping focus on looping by prokaryotic transcription factors like lac repressor or by structural maintenance of chromosomes proteins such as condensin. Here, however, we are interested in a different looping method whereby condensing agents (charge ≥+3) such as protamine proteins neutralize the DNA, causing it to form loops and toroids. We considered two previously proposed mechanisms for DNA looping by protamine. In the first mechanism, protamine stabilizes spontaneous DNA fluctuations, forming randomly distributed loops along the DNA. In the second mechanism, protamine binds and bends the DNA to form a loop, creating a distribution of loops that is biased by protamine binding. To differentiate between these mechanisms, we imaged both spontaneous and protamine-induced loops on short-length (≤1 μm) DNA fragments using atomic force microscopy. We then compared the spatial distribution of the loops to several model distributions. A random looping model, which describes the mechanism of spontaneous DNA folding, fit the distribution of spontaneous loops, but it did not fit the distribution of protamine-induced loops. Specifically, it failed to predict a peak in the spatial distribution of loops at an intermediate location along the DNA. An electrostatic multibinding model, which was created to mimic the bind-and-bend mechanism of protamine, was a better fit of the distribution of protamine-induced loops. In this model, multiple protamines bind to the DNA electrostatically within a particular region along the DNA to coordinate the formation of a loop. We speculate that these findings will impact our understanding of protamine’s in vivo role for looping DNA into toroids and the mechanism of DNA condensation by condensing agents more broadly.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|