1
|
Lasher B, Hendrix DA. bpRNA-CosMoS: a robust and efficient RNA structural comparison method using k-mer based cosine similarity. Bioinformatics 2025; 41:btaf108. [PMID: 40085007 PMCID: PMC12017588 DOI: 10.1093/bioinformatics/btaf108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/21/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
MOTIVATION RNA secondary structure is often essential to function. Recent work has led to the development of high-throughput experimental probing methods for structure determination. Although structure is more conserved than primary sequence, much of the bioinformatics pipelines to connect RNA structure to function rely on nucleotide sequence alignments rather than structural similarity. There is a need to develop methods for secondary structure comparisons that are also fast and efficient to navigate the vast amounts of structural data. K-mer based similarity approaches are valued for their computational efficiency and have been applied for protein, DNA, and RNA primary sequences. However, these approaches have yet to be implemented for RNA secondary structure. RESULTS Our method, bpRNA-CosMoS, fills this gap by using k-mers and length-weighted cosine similarity to compute similarity scores between RNA structures. bpRNA-CosMoS is built upon the bpRNA structure array, which represents the structural category of each nucleotide as a single-character structural code (e.g. hairpin=H, etc.). A structural comparison score is calculated through cosine similarity of the k-mer count vectors, generated from structure arrays. A major challenge with k-mer based methods is that they often ignore the length of the sequences being compared. We have overcome this with a length-weighted penalty that addresses cases of two RNAs of vastly different lengths. In addition, the use of "fuzzy counting" has added some optional flexibility to decrease the negative impact that small structural variations have on the similarity score. This results in a robust and efficient way to identify structural comparisons across large datasets. AVAILABILITY AND IMPLEMENTATION The code and application guidelines of bpRNA-CosMoS are made available at github (https://github.com/BLasher113/bpRNA-CosMoS) and Zenodo (10.5281/zenodo.14715285).
Collapse
Affiliation(s)
- Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, 2750 SW Campus Way, Corvallis, Oregon 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, 2750 SW Campus Way, Corvallis, Oregon 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Kelley Egineering Center, 1148, 2461 SW Campus Way, Corvallis, Oregon 97331, USA
| |
Collapse
|
2
|
Guanzon DA, Pienkoß S, Brandenburg V, Röder J, Scheller D, Dietze A, Wimbert A, Twittenhoff C, Narberhaus F. Two temperature-responsive RNAs act in concert: the small RNA CyaR and the mRNA ompX. Nucleic Acids Res 2025; 53:gkaf041. [PMID: 39907110 PMCID: PMC11795201 DOI: 10.1093/nar/gkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial pathogens, such as Yersinia pseudotuberculosis, encounter temperature fluctuations during host infection and upon return to the environment. These temperature shifts impact RNA structures globally. While previous transcriptome-wide studies have focused on RNA thermometers in the 5'-untranslated region of virulence-related messenger RNAs, our investigation revealed temperature-driven structural rearrangements in the small RNA CyaR (cyclic AMP-activated RNA). At 25°C, CyaR primarily adopts a conformation that occludes its seed region, but transitions to a liberated state at 37°C. By RNA sequencing and in-line probing experiments, we identified the Shine-Dalgarno sequence of ompX as a direct target of CyaR. Interestingly, the ompX transcript itself exhibits RNA thermometer-like properties, facilitating CyaR base pairing at elevated temperatures. This interaction impedes ribosome binding to ompX and accelerates degradation of the ompX transcript. Furthermore, we observed induced proteolytic turnover of the OmpX protein at higher temperatures. Collectively, our study uncovered multilayered post-transcriptional mechanisms governing ompX expression, resulting in lower OmpX levels at 37°C compared with 25°C.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- Yersinia pseudotuberculosis/genetics
- Yersinia pseudotuberculosis/pathogenicity
- Temperature
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Nucleic Acid Conformation
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- RNA Stability
Collapse
Affiliation(s)
- David A Guanzon
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Stephan Pienkoß
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Jennifer Röder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Scheller
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Alisa Dietze
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andrea Wimbert
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Roncarati D, Vannini A, Scarlato V. Temperature sensing and virulence regulation in pathogenic bacteria. Trends Microbiol 2025; 33:66-79. [PMID: 39164134 DOI: 10.1016/j.tim.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Lu S, Tang Y, Yin S, Sun L. RNA structure: implications in viral infections and neurodegenerative diseases. ADVANCED BIOTECHNOLOGY 2024; 2:3. [PMID: 39883271 PMCID: PMC11740852 DOI: 10.1007/s44307-024-00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2025]
Abstract
RNA is an intermediary between DNA and protein, a catalyzer of biochemical reactions, and a regulator of genes and transcripts. RNA structures are essential for complicated functions. Recent years have witnessed rapid advancements in RNA secondary structure probing techniques. These technological strides provided comprehensive insights into RNA structures, which significantly contributed to our understanding of diverse cellular regulatory processes, including gene regulation, epigenetic regulation, and post-transactional regulation. Meanwhile, they have facilitated the creation of therapeutic tools for tackling human diseases. Despite their therapeutic applications, RNA structure probing methods also offer a promising avenue for exploring the mechanisms of human diseases, potentially providing the key to overcoming existing research constraints and obtaining the in-depth information necessary for a deeper understanding of disease mechanisms.
Collapse
Affiliation(s)
- Suiru Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Taishan College, Shandong University, Qingdao, 266237, China
| | - Yongkang Tang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shaozhen Yin
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lei Sun
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China.
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
- Taishan College, Shandong University, Qingdao, 266237, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
6
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
7
|
Jolley EA, Yakhnin H, Tack DC, Babitzke P, Bevilacqua PC. Transcriptome-wide probing reveals RNA thermometers that regulate translation of glycerol permease genes in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1365-1378. [PMID: 37217261 PMCID: PMC10573289 DOI: 10.1261/rna.079652.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Scheller D, Becker F, Wimbert A, Meggers D, Pienkoß S, Twittenhoff C, Knoke LR, Leichert LI, Narberhaus F. The oxidative stress response, in particular the katY gene, is temperature-regulated in Yersinia pseudotuberculosis. PLoS Genet 2023; 19:e1010669. [PMID: 37428814 PMCID: PMC10358904 DOI: 10.1371/journal.pgen.1010669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression. Here, we systematically analyzed the transcriptional and translational regulation of ROS defense genes by RNA-sequencing, qRT-PCR, translational reporter gene fusions, enzymatic RNA structure probing and toeprinting assays. Transcription of four ROS defense genes was upregulated at 37°C. The trxA gene is transcribed into two mRNA isoforms, of which the most abundant short one contains a functional RNAT. Biochemical assays validated temperature-responsive RNAT-like structures in the 5'-UTRs of sodB, sodC and katA. However, they barely conferred translational repression in Y. pseudotuberculosis at 25°C suggesting partially open structures available to the ribosome in the living cell. Around the translation initiation region of katY we discovered a novel, highly efficient RNAT that was primarily responsible for massive induction of KatY at 37°C. By phenotypic characterization of catalase mutants and through fluorometric real-time measurements of the redox-sensitive roGFP2-Orp1 reporter in these strains, we revealed KatA as the primary H2O2 scavenger. Consistent with the upregulation of katY, we observed an improved protection of Y. pseudotuberculosis at 37°C. Our findings suggest a multilayered regulation of the oxidative stress response in Yersinia and an important role of RNAT-controlled katY expression at host body temperature.
Collapse
Affiliation(s)
- Daniel Scheller
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Franziska Becker
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Andrea Wimbert
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Dominik Meggers
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Stephan Pienkoß
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Christian Twittenhoff
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Lisa R Knoke
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Franz Narberhaus
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| |
Collapse
|
9
|
Kolberg T, von Löhneysen S, Ozerova I, Wellner K, Hartmann R, Stadler P, Mörl M. Led-Seq: ligation-enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Res 2023; 51:e63. [PMID: 37114986 PMCID: PMC10287922 DOI: 10.1093/nar/gkad312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals. However, these methods address only one side of the RT stop or misincorporation position. Here, we describe Led-Seq, a new approach based on lead-induced cleavage of unpaired RNA positions, where both resulting cleavage products are investigated. The RNA fragments carrying 2', 3'-cyclic phosphate or 5'-OH ends are selectively ligated to oligonucleotide adapters by specific RNA ligases. In a deep sequencing analysis, the cleavage sites are identified as ligation positions, avoiding possible false positive signals based on premature RT stops. With a benchmark set of transcripts in Escherichia coli, we show that Led-Seq is an improved and reliable approach based on metal ion-induced phosphodiester hydrolysis to investigate RNA structures in vivo.
Collapse
Affiliation(s)
- Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Sarah von Löhneysen
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Roland K Hartmann
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Dumetz F, Enright AJ, Zhao J, Kwok CK, Merrick CJ. The in vivo RNA structurome of the malaria parasite Plasmodium falciparum, a protozoan with an A/U-rich transcriptome. PLoS One 2022; 17:e0270863. [PMID: 36048819 PMCID: PMC9436142 DOI: 10.1371/journal.pone.0270863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, a protozoan parasite and causative agent of human malaria, has one of the most A/T-biased genomes sequenced to date. This may give the genome and the transcriptome unusual structural features. Recent progress in sequencing techniques has made it possible to study the secondary structures of RNA molecules at the transcriptomic level. Thus, in this study we produced the in vivo RNA structurome of a protozoan parasite with a highly A/U-biased transcriptome. We showed that it is possible to probe the secondary structures of P. falciparum RNA molecules in vivo using two different chemical probes, and obtained structures for more than half of all transcripts in the transcriptome. These showed greater stability (lower free energy) than the same structures modelled in silico, and structural features appeared to influence translation efficiency and RNA decay. Finally, we compared the P. falciparum RNA structurome with the predicted RNA structurome of an A/U-balanced species, P. knowlesi, finding a bias towards lower overall transcript stability and more hairpins and multi-stem loops in P. falciparum. This unusual protozoan RNA structurome will provide a basis for similar studies in other protozoans and also in other unusual genomes.
Collapse
Affiliation(s)
- Franck Dumetz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jieyu Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | | |
Collapse
|
11
|
Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress. Proc Natl Acad Sci U S A 2022; 119:e2201237119. [PMID: 35696576 PMCID: PMC9231505 DOI: 10.1073/pnas.2201237119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA structure plays roles in myriad cellular events including transcription, translation, and RNA processing. Genome-wide analyses of RNA secondary structure in vivo by chemical probing have revealed critical structural features of mRNAs and long ncRNAs. Here, we examine the in vivo secondary structure of a small RNA class, tRNAs. Study of tRNA structure is challenging because tRNAs are heavily modified and strongly structured. We introduce "tRNA structure-seq," a new workflow that accurately determines in vivo secondary structures of tRNA. The workflow combines dimethyl sulfate (DMS) probing, ultra-processive RT, and mutational profiling (MaP), which provides mutations opposite DMS and natural modifications thereby allowing multiple modifications to be identified in a single read. We applied tRNA structure-seq to E. coli under control and stress conditions. A leading folding algorithm predicts E. coli tRNA structures with only ∼80% average accuracy from sequence alone. Strikingly, tRNA structure-seq, by providing experimental restraints, improves structure prediction under in vivo conditions to ∼95% accuracy, with more than 14 tRNAs predicted completely correctly. tRNA structure-seq also quantifies the relative levels of tRNAs and their natural modifications at single nucleotide resolution, as validated by LC-MS/MS. Our application of tRNA structure-seq yields insights into tRNA structure in living cells, revealing that it is not immutable but has dynamics, with partial unfolding of secondary and tertiary tRNA structure under heat stress that is correlated with a loss of tRNA abundance. This method is applicable to other small RNAs, including those with natural modifications and highly structured regions.
Collapse
|
12
|
RNA thermometer-coordinated assembly of the Yersinia injectisome. J Mol Biol 2022; 434:167667. [PMID: 35667470 DOI: 10.1016/j.jmb.2022.167667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.
Collapse
|
13
|
Olzog VJ, Freist LI, Goldmann R, Fallmann J, Weinberg CE. Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq. Biol Chem 2022; 403:705-715. [PMID: 35025187 DOI: 10.1515/hsz-2021-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others. Here, we develop an alternative strategy in which 5' OH RNAs are specifically ligated by RtcB ligase, which first guanylates the 3' phosphate of the adapter and then ligates it directly to RNAs with 5' OH ends. Our results demonstrate that adapter ligation to highly structured ribozyme fragments is much more efficient using the thermostable RtcB ligase from Pyrococcus horikoshii than the broadly applied Escherichia coli enzyme. Moreover, we investigated DNA, RNA and modified RNA adapters for their suitability in RtcB ligation reactions. We used the optimized RtcB-mediated ligation to produce RNA-seq libraries and captured a spiked 3' twister ribozyme fragment from E. coli total RNA. This RNA-seq-based method is applicable to detect ribozyme fragments as well as other cellular RNAs with 5' OH termini from total RNA.
Collapse
Affiliation(s)
- V Janett Olzog
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Lena I Freist
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Goldmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christina E Weinberg
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
14
|
Becskei A, Rahaman S. The life and death of RNA across temperatures. Comput Struct Biotechnol J 2022; 20:4325-4336. [PMID: 36051884 PMCID: PMC9411577 DOI: 10.1016/j.csbj.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature is an environmental condition that has a pervasive effect on cells along with all the molecules and reactions in them. The mechanisms by which prototypical RNA molecules sense and withstand heat have been identified mostly in bacteria and archaea. The relevance of these phenomena is, however, broader, and similar mechanisms have been recently found throughout the tree of life, from sex determination in reptiles to adaptation of viral RNA polymerases, to genetic disorders in humans. We illustrate the temperature dependence of RNA metabolism with examples from the synthesis to the degradation of mRNAs, and review recently emerged questions. Are cells exposed to greater temperature variations and gradients than previously surmised? How do cells reconcile the conflicting thermal stability requirements of primary and tertiary structures of RNAs? To what extent do enzymes contribute to the temperature compensation of the reaction rates in mRNA turnover by lowering the energy barrier of the catalyzed reactions? We conclude with the ecological, forensic applications of the temperature-dependence of RNA degradation and the biotechnological aspects of mRNA vaccine production.
Collapse
|
15
|
Pienkoß S, Javadi S, Chaoprasid P, Nolte T, Twittenhoff C, Dersch P, Narberhaus F. The gatekeeper of Yersinia type III secretion is under RNA thermometer control. PLoS Pathog 2021; 17:e1009650. [PMID: 34767606 PMCID: PMC8612567 DOI: 10.1371/journal.ppat.1009650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/24/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis, delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37°C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5’-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37°C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs. Temperature serves as reliable external cue for pathogenic bacteria to recognize the entry into or exit from a warm-blooded host. At the molecular level, a temperature of 37°C induces various virulence-related processes that manipulate host cell physiology. Here, we demonstrate the temperature-dependent synthesis of the secretion regulator YopN in the foodborne pathogen Yersinia pseudotuberculosis, a close relative of Yersinia pestis. YopN blocks secretion of effector proteins through the type III secretion system unless host cell contact is established. Temperature-specific regulation relies on an RNA structure in the 5’-untranslated region of the yopN mRNA, referred to as RNA thermometer, which allows ribosome binding and thus translation initiation only at an infection-relevant temperature of 37°C. A mutated variant of the thermosensor resulting in a closed conformation prevented synthesis of the molecular gatekeeper YopN and led to permanent secretion and defective translocation of virulence factors into host cells. We suggest that the RNA thermometer plays a critical role in adjusting the optimal cellular concentration of a surveillance factor that maintains the controlled translocation of virulence factors.
Collapse
Affiliation(s)
| | - Soheila Javadi
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Paweena Chaoprasid
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Thomas Nolte
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Christian Twittenhoff
- Microbial Biology, Ruhr University Bochum, Bochum, Germany.,Rottendorf Pharma GmbH, Ennigerloh, Germany
| | - Petra Dersch
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | | |
Collapse
|
16
|
Olzog VJ, Gärtner C, Stadler PF, Fallmann J, Weinberg CE. cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with 2',3' cyclic phosphates and 5' hydroxyl ends. RNA Biol 2021; 18:818-831. [PMID: 34906034 PMCID: PMC8782182 DOI: 10.1080/15476286.2021.1999105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Self-cleaving ribozymes are catalytically active RNAs that cleave themselves into a 5′-fragment with a 2′,3′-cyclic phosphate and a 3′-fragment with a 5′-hydroxyl. They are widely applied for the construction of synthetic RNA devices and RNA-based therapeutics. However, the targeted discovery of self-cleaving ribozymes remains a major challenge. We developed a transcriptome-wide method, called cyPhyRNA-seq, to screen for ribozyme cleavage fragments in total RNA extract. This approach employs the specific ligation-based capture of ribozyme 5′-fragments using a variant of the Arabidopsis thaliana tRNA ligase we engineered. To capture ribozyme 3′-fragments, they are enriched from total RNA by enzymatic treatments. We optimized and enhanced the individual steps of cyPhyRNA-seq in vitro and in spike-in experiments. Then, we applied cyPhyRNA-seq to total RNA isolated from the bacterium Desulfovibrio vulgaris and detected self-cleavage of the three predicted type II hammerhead ribozymes, whose activity had not been examined to date. cyPhyRNA-seq can be used for the global analysis of active self-cleaving ribozymes with the advantage to capture both ribozyme cleavage fragments from total RNA. Especially in organisms harbouring many self-cleaving RNAs, cyPhyRNA-seq facilitates the investigation of cleavage activity. Moreover, this method has the potential to be used to discover novel self-cleaving ribozymes in different organisms.
![]()
Collapse
Affiliation(s)
- V Janett Olzog
- Department of Life Science, Institute for Biochemistry, Leipzig, Germany
| | - Christiane Gärtner
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, University of Vienna, Santa Fe, New Mexico, USA
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
17
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
18
|
Radecki P, Uppuluri R, Deshpande K, Aviran S. Accurate detection of RNA stem-loops in structurome data reveals widespread association with protein binding sites. RNA Biol 2021; 18:521-536. [PMID: 34606413 PMCID: PMC8677038 DOI: 10.1080/15476286.2021.1971382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
RNA molecules are known to fold into specific structures which often play a central role in their functions and regulation. In silico folding of RNA transcripts, especially when assisted with structure profiling (SP) data, is capable of accurately elucidating relevant structural conformations. However, such methods scale poorly to the swaths of SP data generated by transcriptome-wide experiments, which are becoming more commonplace and advancing our understanding of RNA structure and its regulation at global and local levels. This has created a need for tools capable of rapidly deriving structural assessments from SP data in a scalable manner. One such tool we previously introduced that aims to process such data is patteRNA, a statistical learning algorithm capable of rapidly mining big SP datasets for structural elements. Here, we present a reformulation of patteRNA's pattern recognition scheme that sees significantly improved precision without major compromises to computational overhead. Specifically, we developed a data-driven logistic classifier which interprets patteRNA's statistical characterizations of SP data in addition to local sequence properties as measured with a nearest neighbour thermodynamic model. Application of the classifier to human structurome data reveals a marked association between detected stem-loops and RNA binding protein (RBP) footprints. The results of our application demonstrate that upwards of 30% of RBP footprints occur within loops of stable stem-loop elements. Overall, our work arrives at a rapid and accurate method for automatically detecting families of RNA structure motifs and demonstrates the functional relevance of identifying them transcriptome-wide.
Collapse
Affiliation(s)
- Pierce Radecki
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA
| | - Rahul Uppuluri
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA
| | - Kaustubh Deshpande
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA
| | - Sharon Aviran
- Biomedical Engineering Department and Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
20
|
Radecki P, Uppuluri R, Aviran S. Rapid structure-function insights via hairpin-centric analysis of big RNA structure probing datasets. NAR Genom Bioinform 2021; 3:lqab073. [PMID: 34447931 PMCID: PMC8384053 DOI: 10.1093/nargab/lqab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
The functions of RNA are often tied to its structure, hence analyzing structure is of significant interest when studying cellular processes. Recently, large-scale structure probing (SP) studies have enabled assessment of global structure-function relationships via standard data summarizations or local folding. Here, we approach structure quantification from a hairpin-centric perspective where putative hairpins are identified in SP datasets and used as a means to capture local structural effects. This has the advantage of rapid processing of big (e.g. transcriptome-wide) data as RNA folding is circumvented, yet it captures more information than simple data summarizations. We reformulate a statistical learning algorithm we previously developed to significantly improve precision of hairpin detection, then introduce a novel nucleotide-wise measure, termed the hairpin-derived structure level (HDSL), which captures local structuredness by accounting for the presence of likely hairpin elements. Applying HDSL to data from recent studies recapitulates, strengthens and expands on their findings which were obtained by more comprehensive folding algorithms, yet our analyses are orders of magnitude faster. These results demonstrate that hairpin detection is a promising avenue for global and rapid structure-function analysis, furthering our understanding of RNA biology and the principal features which drive biological insights from SP data.
Collapse
Affiliation(s)
- Pierce Radecki
- Biomedical Engineering Department and Genome Center, University of California at Davis, Davis, CA 95616, USA
| | - Rahul Uppuluri
- Biomedical Engineering Department and Genome Center, University of California at Davis, Davis, CA 95616, USA
| | - Sharon Aviran
- Biomedical Engineering Department and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Wang XW, Liu CX, Chen LL, Zhang QC. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol 2021; 17:755-766. [PMID: 34172967 DOI: 10.1038/s41589-021-00805-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.
Collapse
Affiliation(s)
- Xi-Wen Wang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
22
|
Scheller D, Twittenhoff C, Becker F, Holler M, Narberhaus F. OmpA, a Common Virulence Factor, Is Under RNA Thermometer Control in Yersinia pseudotuberculosis. Front Microbiol 2021; 12:687260. [PMID: 34220779 PMCID: PMC8245352 DOI: 10.3389/fmicb.2021.687260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The outer membrane protein OmpA is a virulence factor in many mammalian pathogens. In previous global RNA structure probing studies, we found evidence for a temperature-modulated RNA structure in the 5'-untranslated region (5'-UTR) of the Yersinia pseudotuberculosis ompA transcript suggesting that opening of the structure at host-body temperature might relieve translational repression. Here, we support this hypothesis by quantitative reverse transcription PCR, translational reporter gene fusions, enzymatic RNA structure probing, and toeprinting assays. While ompA transcript levels decreased at 37°C compared to 25°C, translation of the transcript increased with increasing temperature. Biochemical experiments show that this is due to melting of the RNA structure, which permits ribosome binding to the 5'-UTR. A point mutation that locks the RNA structure in a closed conformation prevents translation by impairing ribosome access. Our findings add another common virulence factor to the growing list of pathogen-associated genes that are under RNA thermometer control.
Collapse
Affiliation(s)
- Daniel Scheller
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | | - Franziska Becker
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Marcel Holler
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods 2021; 196:56-67. [PMID: 33662561 DOI: 10.1016/j.ymeth.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Exonic circular RNAs (circRNAs) are RNA molecules that are covalently closed by back-splicing via canonical splicing machinery. Despite overlapping sequences, exon circularization generates RNA secondary structures through intramolecular base-pairing that are different from the linear transcript. Here we review factors that may affect circRNA structure and how structure affects circRNA function and regulation. We highlight considerations for RNA sequencing and expression measurement to ensure highly structured circRNAs are accurately represented by the data and discuss issues that need to be addressed in generating circRNAs to recapitulate their endogenous structures. We conclude our review by discussing experimental strategies on revealing the varied roles of RNA structure in circRNA biogenesis, function and decay.
Collapse
|