1
|
DeFranciscis V, Amabile G, Kortylewski M. Clinical applications of oligonucleotides for cancer therapy. Mol Ther 2025:S1525-0016(25)00172-8. [PMID: 40045578 DOI: 10.1016/j.ymthe.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Oligonucleotide therapeutics (ONTs) represent a rapidly evolving modality for cancer treatment, capitalizing on their ability to modulate gene expression with high specificity. With more than 20 nucleic acid-based therapies that gained regulatory approval, advances in chemical modifications, sequence optimization, and novel delivery systems have propelled ONTs from research tools to clinical realities. ONTs, including siRNAs, antisense oligonucleotides, saRNA, miRNA, aptamers, and decoys, offer promising solutions for targeting previously "undruggable" molecules, such as transcription factors, and enhancing cancer immunotherapy by overcoming tumor immune evasion. The promise of ONT application in cancer treatment is exemplified by the recent FDA approval of the first oligonucleotide-based treatment to myeloproliferative disease. At the same time, there are challenges in delivering ONTs to specific tissues, mitigating off-target effects, and improving cellular uptake and endosomal release. This review provides a comprehensive overview of ONTs in clinical trials, emerging delivery strategies, and innovative therapeutic approaches, emphasizing the role of ONTs in immunotherapy and addressing hurdles that hinder their clinical translation. By examining advances and remaining challenges, we highlight opportunities for ONTs to revolutionize oncology and enhance patient outcomes.
Collapse
Affiliation(s)
- Vittorio DeFranciscis
- National Research Council, Institute of Genetic and Biomedical Research, Milan, Italy
| | | | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Li H, Liu Y, Yuan H, Cai P, Wu T, Yang Z, Nie J, Zhang W, Huang Z, Liu N, Chen Y, Zhou Z. Development and Evaluation of Novel 68Ga/ 177Lu-Labeled PSMA Inhibitors with Enhanced Pharmacokinetics and Tumor Imaging for Prostate Cancer. Mol Pharm 2025; 22:1584-1597. [PMID: 39951557 DOI: 10.1021/acs.molpharmaceut.4c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Prostate-specific membrane antigen (PSMA) has been a key target for diagnosing and treating prostate cancer, particularly in high-grade, metastatic, and therapy-resistant tumors. This study presents a series of novel 68Ga- and 177Lu-labeled PSMA inhibitors, derived from the previously developed [68Ga]Ga-Flu-1. We explored the impact of PEG chains, lipophilic macrocycles, and dimerization on their in vivo properties. The 68Ga- and 177Lu-labeled inhibitors were assessed for biodistribution and tumor targeting in PC3-PIP tumor xenografts, leading to the identification of several promising candidates based on imaging and tumor-specific uptake. Positron emission tomography (PET) imaging revealed that the poly(ethylene glycol)-modified [68Ga]Ga-BisPSMA-P4 demonstrated rapid tumor penetration and excellent tumor-to-background contrast. In comparative biodistribution studies, the naphthalene ring-modified [68Ga]Ga-BisPSMA-Nph-P4 showed higher tumor uptake (∼60% ID/g at 1 h postinjection) and rapid renal clearance (∼25% ID/g at 2 h postinjection). Additionally, [177Lu]Lu-BisPSMA-Nph-P4 displayed superior retention, with significant uptake on day 7, highlighting its potential as a novel PSMA inhibitor for prostate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Hongmei Yuan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Ping Cai
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Tongtong Wu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhicong Yang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Jiaqi Nie
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Zhijun Zhou
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Jiangyang District, Luzhou, Sichuan 646000, China
- Institute of Nuclear Medicine, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou, Sichuan 646000, China
| |
Collapse
|
3
|
Ho YS, Cheng TC, Guo P. Targeted Delivery of Potent Chemical Drugs and RNAi to Drug-Resistant Breast Cancer Using RNA-Nanotechnology and RNA-Ligand Displaying Extracellular vesicles. RNA NANOMED 2024; 1:16-43. [PMID: 40125243 PMCID: PMC11927007 DOI: 10.59566/isrnn.2024.0101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This review describes a new technology to treat breast-cancer-drug-resistance by targeting the ABC as the multi-homo-subunit ATPase, enlightening by the Christmas-lighting budge with serial circuit and the asymmetrical homo-hexamer of the phi29 DNA packaging motor with sequential revolving mechanism. Chemotherapeutics has been widely used in breast cancer treatments, but drug resistance has raised a serious concern. RNA therapeutics has emerged as the third milestone in pharmaceutical drug development. RNA nanoparticles are dynamic, mild, and deformative, resulting in spontaneous, rapid, and efficient accumulation in tumor vasculature after IV injection. Their negative charge and favorable size bypass the nonspecific targeting of vital organs and normal cells. This motile and deformable nature also led to the fast passing of glomerular filters and their movement into the urine for rapid body clearance for those non-tumor-accumulated nanoparticles, resulting in undetectable toxicity. Extracellular vesicles have shown potential as a delivery system for RNAi and chemotherapeutic drugs in vivo, contributing to the efficacy of cancer remission. However, the lack of cell-targeting ligands on extracellular vesicles and the nonspecific entry into healthy cells has led to safety concerns. This review addresses how to apply RNA nanotechnology and RNA-ligand displaying extracellular vesicles for specific delivery to breast cancer. The particular focus is on using and combining the RNA and extracellular vesicle technology to deal with breast cancer drug resistance. The targeting capabilities and drug safety can be improved through extracellular vesicle engineering techniques, such as affixing ligands on the extracellular vesicle surface utilizing arrow-tail RNA nanoparticles, ultimately addressing off-target effects and toxicity. Using RNA ligands for specific targeting and the efficient membrane fusion of extracellular vesicles has enabled the development of ligand-displayed extracellular vesicles capable of delivering both RNAi and chemical drugs to cells with precision, effectively inhibiting tumor growth. The negative charge inherent in the vesicles results in electrostatic repulsion, reducing non-specific binding to healthy cells that contain negatively charged lipid membranes. By leveraging the principles of RNA nanotechnology, the engineering of extracellular vesicles offers a promising avenue for addressing breast cancer drug resistance. This review also discusses applying the series of circuit mechanisms in Christmas-decorating-lighting to develop effective therapeutics to combat breast cancer chemoresistance by targeting the ABC drug transporter and breast cancer surface receptors.
Collapse
Affiliation(s)
- Yuan Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Zhang Y, Fang X, Huang W, Li Q, Hu F, Liu H. Record Resolution of Nanometal Surface Energy Transfer Optical Nanoruler Projects 3D Spatial Configuration of Aptamers on a Living Cell Membrane. NANO LETTERS 2023; 23:11968-11974. [PMID: 38059895 DOI: 10.1021/acs.nanolett.3c04322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Decrypting the in situ three-dimensional spatial configuration of an aptamer is of considerable significance; however, suitable nanoscale resolution tools are lacking. Herein, we show that a new nanometal surface energy transfer (NSET) optical nanoruler has a record resolution, down to single-nucleobase levels. We labeled fluorophores on different T bases of XQ-2d, including 5', 3', 6T, 22T, 38T, and 52T positions. The NSET nanoruler in situ decrypted the base sequence-dependent distance projection on the nanogold surface, demonstrating that 5', 3', stem, and loop structures are symmetrical in three-dimensional spatial configuration. The orientation of the 5' and 3' stem was toward the antiCD71-binding site, whereas the loop was in the opposite direction at a considerable distance. Molecular docking simulation was performed to list all of the possible conformations; however, all base distance parameters projecting on the nanogold surface determined a single conformation of XQ-2d. The specific binding sites of XQ-2d were Lys477, Ser691, and Arg698 on the CD71 receptor.
Collapse
Affiliation(s)
- Yu Zhang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xingru Fang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenwen Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qi Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Fan Hu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
5
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
6
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
7
|
Das G, Ptacek J, Havlinova B, Nedvedova J, Barinka C, Novakova Z. Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen. ACS Pharmacol Transl Sci 2023; 6:1703-1714. [PMID: 37974624 PMCID: PMC10644396 DOI: 10.1021/acsptsci.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 11/19/2023]
Abstract
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated in vitro using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Barbora Havlinova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Jana Nedvedova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Cyril Barinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Zora Novakova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| |
Collapse
|
8
|
Tao Y, Jakobsson V, Chen X, Zhang J. Exploiting Albumin as a Versatile Carrier for Cancer Theranostics. Acc Chem Res 2023; 56:2403-2415. [PMID: 37625245 DOI: 10.1021/acs.accounts.3c00309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
9
|
Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Mikrochim Acta 2023; 190:255. [PMID: 37300603 DOI: 10.1007/s00604-023-05836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Aptamers are functional single-stranded oligonucleotide fragments isolated from randomized libraries by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), exhibiting excellent affinity and specificity toward targets. Compared with traditional antibody reagents, aptamers display many desirable properties, such as low variation and high flexibility, and they are suitable for artificial and large-scale synthesis. These advantages make aptamers have a broad application potential ranging from biosensors, bioimaging to therapeutics and other areas of application. However, the overall performance of aptamer pre-selected by SELEX screening is far from being satisfactory. To improve aptamer performance and applicability, various post-SELEX optimization methods have been developed in the last decade. In this review, we first discuss the key factors that influence the performance or properties of aptamers, and then we summarize the key strategies of post-SELEX optimization which have been successfully used to improve aptamer performance, such as truncation, extension, mutagenesis and modification, splitting, and multivalent integration. This review shall provide a comprehensive summary and discussion of post-SELEX optimization methods developed in recent years. Moreover, by discussing the mechanism of each approach, we highlight the importance of choosing the proper method to perform post-SELEX optimization.
Collapse
Affiliation(s)
- Hong Yu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yun Deng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xueqing Geng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
10
|
Uddin N, Binzel DW, Shu D, Fu TM, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharm Sin B 2023; 13:1383-1399. [PMID: 37139430 PMCID: PMC10149909 DOI: 10.1016/j.apsb.2022.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exosome is an excellent vesicle for in vivo delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity. Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable. Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands. RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface. The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion, thus lowering the side-effect and toxicity. In this review, we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands, small peptides or RNA aptamers, for specific cancer targeting to deliver anticancer therapeutics, highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks. Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.
Collapse
Affiliation(s)
- Nasir Uddin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry & Pharmacology, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Sun JX, Xu JZ, An Y, Ma SY, Liu CQ, Zhang SH, Luan Y, Wang SG, Xia QD. Future in precise surgery: Fluorescence-guided surgery using EVs derived fluorescence contrast agent. J Control Release 2023; 353:832-841. [PMID: 36496053 DOI: 10.1016/j.jconrel.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Surgery is the only cure for many solid tumors, but positive resection margins, damage to vital nerves, vessels and organs during surgery, and the range and extent of lymph node dissection are significant concerns which hinder the development of surgery. The emergence of fluorescence-guided surgery (FGS) means a farewell to the era when surgeons relied only on visual and tactile feedback, and it gives surgeons another eye to distinguish tumors from normal tissues for precise resection and helps to find a balance between complete tumor lesions removal and maximal organ function conservation. However, the existing synthetic fluorescence contrast agent has flaws in safety, specificity and biocompatibility to various extents. Extracellular vesicles (EVs) are a group of heterogeneous types of cell-derived membranous structures present in all biological fluids. EVs, especially engineered targeting EVs, play an increasingly important role in drug delivery because of their good biocompatibility, validated safety and targeting ability. Nevertheless, few studies have employed EVs loaded with fluorophores to construct fluorescence contrast agents and used them in FGS. Here, we systematically reviewed the current state of knowledge regarding FGS, fundamental characteristics of EVs, and the development of engineered targeting EVs, and put forward a novel strategy and procedures to produce EVs-based fluorescence contrast agent used in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Luan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| |
Collapse
|
12
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
13
|
Insights into Aptamer-Drug Delivery Systems against Prostate Cancer. Molecules 2022; 27:molecules27113446. [PMID: 35684384 PMCID: PMC9182114 DOI: 10.3390/molecules27113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is a common cancer in elderly males. Significant progress has been made in the drug therapies for prostate cancer in recent years. However, side effects are still problems that have not been overcome by the currently used anti-prostate cancer drugs. Novel technologies can be applied to reduce or even eliminate the side effects of drugs. An aptamer may be a sequence of nucleic acids or peptides that can specifically recognize proteins or cells. Taking advantage of this feature, scientists have designed aptamer-drug delivery systems for the development of anti-prostate cancer agents. Theoretically, these aptamer-drug delivery systems can specifically recognize prostate cancer cells and then induce cell death without attacking normal cells. We collected the relevant literature in this field and found that at least nine compounds have been prepared as aptamer-drug delivery systems to evaluate their precise anti-prostate cancer effects. However, the currently studied aptamer-drug delivery systems have not yet entered the market due to defects. Here, we analyze the published data, summarize the characteristics of these delivery systems, and propose ways to promote their application, thus promoting the development of the aptamer-drug delivery systems against prostate cancer.
Collapse
|
14
|
Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:83-116. [DOI: 10.1007/978-3-030-80371-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
16
|
Tai Z, Ma J, Ding J, Pan H, Chai R, Zhu C, Cui Z, Chen Z, Zhu Q. Aptamer-Functionalized Dendrimer Delivery of Plasmid-Encoding lncRNA MEG3 Enhances Gene Therapy in Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:10305-10320. [PMID: 33376323 PMCID: PMC7759727 DOI: 10.2147/ijn.s282107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The clinical management of patients with castration-resistant prostate cancer (CRPC) is difficult. However, novel treatment methods are gradually being introduced. Considering the adverse effects of traditional treatments, recent studies have investigated gene therapy as a method to combat CRPC; but, the application of long non-coding (lnc) RNA in gene therapy remains scarce, despite their promise. Therefore, it is imperative to develop a system that can efficiently deliver lncRNA for the treatment of CRPC. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA MEG3 (pMEG3) in CRPC cells. Materials and Methods An EpDT3 aptamer-linked poly(amidoamine) (PAMAM) dendrimer targeting EpCAM was used to deliver pMEG3 in CRPC cells. The PAMAM-PEG-EpDT3/pMEG3 nanoparticles (NPs) were tested using in vitro cellular assays including cellular uptake, entry, and CCK-8 measurement, and tumor growth inhibition, histological assessment, and safety evaluations in in vivo animal models. Results The EpDT3 aptamer promoted endocytosis of PAMAM and PAMAM-PEG-EpDT3/pMEG3 NPs in CRPC cells. PAMAM-PEG-EpDT3/pMEG3 NPs exhibited a significant anti-CRPC effect, both in vivo and in vitro, when compared to that of unfunctionalized PAMAM-PEG/pMEG3 NPs. Conclusion PAMAM-PEG-EpDT3/pMEG3 NPs can potentially improve gene therapy in CRPC cells.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Jianing Ding
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Congcong Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhen Cui
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
17
|
Structure-switching fluorescence aptasensor for sensitive detection of chloramphenicol. Mikrochim Acta 2020; 187:505. [PMID: 32815083 DOI: 10.1007/s00604-020-04471-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/02/2020] [Indexed: 01/09/2023]
Abstract
The performance of chloramphenicol aptamer, including binding thermodynamics, structure switching, and binding domain, was investigated by isothermal titration calorimetry, circular dichroism, and molecular docking. Then, a new fluorescence aptasensor was developed with signal amplification mediated by exonuclease I-catalyzed reaction and hybridization chain reaction (HCR) for chloramphenicol detection. In this system, the aptamer-binding domain is blocked by the initiator of HCR, the aptamer undergoes structure switching in the presence of chloramphenicol, and DNA dissociation occurs. The released aptamer is subsequently recognized and cleaved by Exo I to set free chloramphenicol. With the Exo I-assisted chloramphenicol recycling, an increasing number of initiators were exposed from the digestion of the initiator-aptamer complex. Then, the chain-like assembly of FAM labeled H1 and H2 through HCR was triggered by the initiator, generating a long DNA polymer. Under optimum conditions, the aptasensor exhibited a log-linear range from 0.001 to 100 nM of chloramphenicol and a detection limit of 0.3 pM. Additionally, the designed biosensing platform was applied to determine chloramphenicol in milk and lake water with high accuracy. The current approach provides a new avenue to develop sensitive aptasensors with the assistance of binding mechanism between aptamer and target compounds. Graphical abstract.
Collapse
|