1
|
Akagawa M, Sugasawa K, Ura K, Sassa A. Impact of an oxidative RNA lesion on in vitro replication catalyzed by SARS-CoV-2 RNA-dependent RNA polymerase. J Biol Chem 2025; 301:108512. [PMID: 40250563 DOI: 10.1016/j.jbc.2025.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/02/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
The production of reactive oxygen species in response to RNA virus infection results in the oxidation of viral genomic RNA within infected cells. These oxidative RNA lesions undergo replication catalyzed by the viral replisome. G to U transversion mutations are frequently observed in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and may be linked to the replication process catalyzed by RNA-dependent RNA polymerase (RdRp) past the oxidative RNA lesion 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG). To better understand the mechanism of viral RNA mutagenesis, it is crucial to elucidate the role of RdRp in replicating across oxidative lesions. In this study, we investigated the RNA synthesis catalyzed by the reconstituted SARS-CoV-2 RdRp past a single 8-oxo-rG. The RdRp-mediated primer extension was significantly inhibited by 8-oxo-rG on the template RNA. A steady-state multiple-turnover reaction demonstrated that the turnover rate of RdRp was significantly slow when replication was blocked by 8-oxo-rG, reflecting low bypass efficiency even with prolonged reaction time. Once RdRp was able to bypass 8-oxo-rG, it preferentially incorporated rCMP, with a lesser amount of rAMP opposite 8-oxo-rG. In contrast, RdRp demonstrated greater activity in extending from the mutagenic rA:8-oxo-rG terminus compared to the lower efficiency of extension from the rC:8-oxo-rG pair. Based on steady-state kinetic analyses for the incorporation of rNMPs opposite 8-oxo-rG and chain extension from rC:8-oxo-rG or rA:8-oxo-rG, the relative bypass frequency for rA:8-oxo-rG was found to be seven-fold higher than that for rC:8-oxo-rG. Therefore, the properties of RdRp indicated in this study may contribute to the mechanism of mutagenesis of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Masataka Akagawa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
2
|
Sulaiman X, Han Y, Liu S, Li K, Shang M, Yang L, White K, Zang Y, Shen J, Wan J. Enrichment of G-to-U Substitution in SARS-CoV-2 Functional Regions and Its Compensation via Concurrent Mutations. J Med Virol 2025; 97:e70353. [PMID: 40249051 PMCID: PMC12007394 DOI: 10.1002/jmv.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
We surveyed single nucleotide variant (SNV) patterns from 5 903 647 complete SARS-CoV-2 genomes. Among 10 012 SNVs, APOBEC-mediated C-to-U (C > U) deamination was the most prevalent, followed by G > U and other RNA editing-related substitutions including (A > G, U > C, G > A). However, C > U mutations were less frequent in functional regions, for example, S protein, intrinsic disordered regions, and nonsynonymous mutations, where G > U were over-represented. Notably, G-loss substitutions rarely appeared together. Instead, G-gain mutations tended to more frequently co-occur with others, with a marked preference in the S protein, suggesting a compensatory mechanism for G loss in G > U mutations. The temporal patterns revealed C > U frequency declined until late 2021 then resurged in early 2022. Conversely, G > U steadily decreased, with a pronounced drop in January 2022, coinciding with reduced COVID-19 severity. Vaccinated individuals exhibited a slightly but significantly higher C > U frequency and a notably lower G > U frequency compared to the unvaccinated group. Additionally, cancer patients had higher G > U frequency than general patients during the same period. Interestingly, none of the C > U SNVs were uniquely identified in 2724 environmental samples. These findings suggest novel functional roles of G > U in COVID-19 symptoms, potentially linked to oxidative stress and reactive oxygen species, while C > U remains the dominant substitution, likely driven by host immune-mediated RNA editing.
Collapse
Affiliation(s)
- Xierzhatijiang Sulaiman
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yan Han
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kailing Li
- Department of BioHealth InformaticsIndiana University School of Informatics and Computing at IUPUIIndianapolisIndianaUSA
| | | | - Lei Yang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric Research, Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth White
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yong Zang
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jikui Shen
- The Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of BioHealth InformaticsIndiana University School of Informatics and Computing at IUPUIIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
3
|
Budzko L, Mierzwa A, Figlerowicz M. AID/APOBEC: an expanding repertoire of targets and functions. Trends Biochem Sci 2025:S0968-0004(25)00048-9. [PMID: 40133172 DOI: 10.1016/j.tibs.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Deaminases belonging to the AID/APOBEC family are known as ssDNA and mRNA mutators involved in innate/adaptive immunity, mRNA editing, genome stabilization by restricting retrotransposons, and carcinogenesis. Recent studies suggest that the repertoire of AID/APOBEC targets is more diverse than previously thought and imply a broader biological impact of these proteins.
Collapse
Affiliation(s)
- Lucyna Budzko
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland; Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Aleksandra Mierzwa
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
4
|
Hensel Z. Secondary structure of the SARS-CoV-2 genome is predictive of nucleotide substitution frequency. eLife 2025; 13:RP98102. [PMID: 40019136 PMCID: PMC11870649 DOI: 10.7554/elife.98102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated 'mutational fitness' of substitutions, a measurement of the difference between a substitution's observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.
Collapse
Affiliation(s)
- Zach Hensel
- ITQB NOVA, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
5
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
6
|
Dong X, Matthews D, Gallo G, Darby A, Donovan-Banfield I, Goldswain H, MacGill T, Myers T, Orr R, Bailey D, Carroll M, Hiscox J. Using minor variant genomes and machine learning to study the genome biology of SARS-CoV-2 over time. Nucleic Acids Res 2025; 53:gkaf077. [PMID: 39970290 PMCID: PMC11838042 DOI: 10.1093/nar/gkaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
In infected individuals, viruses are present as a population consisting of dominant and minor variant genomes. Most databases contain information on the dominant genome sequence. Since the emergence of SARS-CoV-2 in late 2019, variants have been selected that are more transmissible and capable of partial immune escape. Currently, models for projecting the evolution of SARS-CoV-2 are based on using dominant genome sequences to forecast whether a known mutation will be prevalent in the future. However, novel variants of SARS-CoV-2 (and other viruses) are driven by evolutionary pressure acting on minor variant genomes, which then become dominant and form a potential next wave of infection. In this study, sequencing data from 96 209 patients, sampled over a 3-year period, were used to analyse patterns of minor variant genomes. These data were used to develop unsupervised machine learning clusters to identify amino acids that had a greater potential for mutation than others in the Spike protein. Being able to identify amino acids that may be present in future variants would better inform the design of longer-lived medical countermeasures and allow a risk-based evaluation of viral properties, including assessment of transmissibility and immune escape, thus providing candidates with early warning signals for when a new variant of SARS-CoV-2 emerges.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Giulia Gallo
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Alistair Darby
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - I’ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, MD 20993-0002, United States
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
- Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, United Kingdom
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, L69 7BE, Liverpool, United Kingdom
- A*STAR Infectious Diseases Labs (ID Labs), A*STAR, Singapore, 138648, Singapore
| |
Collapse
|
7
|
Yang Y, Zhang X, Chen T, Wu F, Huang YS, Qu Y, Xu M, Ma L, Liu M, Zhai W. An Expanding Universe of Mutational Signatures and Its Rapid Evolution in Single-Stranded RNA Viruses. Mol Biol Evol 2025; 42:msaf009. [PMID: 39823310 PMCID: PMC11796089 DOI: 10.1093/molbev/msaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments. We found that mutational spectra in different ssRNA viruses differ significantly and are mainly associated with their genetic divergence. Surprisingly, host environments contribute much less significantly to the mutational spectrum, challenging the prevailing view that the exogenous cellular environment is a major determinant of the mutational spectrum in viruses. To dissect the evolutionary forces shaping viral spectra, we selected two important scenarios, namely the inter-host evolution between different viral strains as well as the intra-host evolution. In both scenarios, we found mutational spectra change significantly through space and time, strongly correlating with levels of natural selection. Combining the mutations across all ssRNA viruses, we identified a suite of mutational signatures with varying degrees of similarity to somatic signatures in humans, indicating universal and divergent mutational processes across the tree of life. Taken together, we unraveled an unprecedented dynamic landscape of mutational processes in ssRNA viruses, pinpointing important evolutionary forces shaping fast evolution of mutational spectra in different species.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyuan Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu S Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Genecast Biotechnology Co., Ltd., Wuxi 214105, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Liu
- School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 511436, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
8
|
Wang S, Fixman B, Chen XS. Fluorescent shift assay for APOBEC-mediated RNA editing. Methods Enzymol 2025; 713:1-14. [PMID: 40250949 DOI: 10.1016/bs.mie.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is involved in diverse biological processes. The APOBEC deaminase family acts in various cellular processes mostly through inducing C-to-U mutation in single-stranded RNA (or DNA). However, comparing the activity of different RNA editing enzymes to one another is difficult due to the limited number of systems that can provide direct and efficient readout. In this report, a system in which RNA editing directly prompts a change in the subcellular localization of a modified eGFP structure is described in detail. This approach allows us to compare relative fluorescence intensity based on the RNA editing level. When observed through a fluorescence detection system, like a scanning confocal microscope, the cellular nucleus can be readily identified using a DNA-binding stain, such as DAPI or Hoechst, so that the accurate calculation of the ratio of nuclear to cytosolic eGFP intensity can be applied for an individual cell. This method provides a useful and flexible tool to examine and quantify RNA editing activity within cells, and it is not only limited to APOBEC proteins, but can also be applied more generally to other RNA editing enzymatic assays.
Collapse
Affiliation(s)
- Shanshan Wang
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Fixman
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
9
|
Simmonds P. C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic. mBio 2024; 15:e0249324. [PMID: 39475243 PMCID: PMC11633203 DOI: 10.1128/mbio.02493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has been characterized by rapid adaptive changes that confer immune escape and enhanced human-to-human transmissibility. Sequence change is additionally marked by an excess number of C→U transitions suggested as being due to host-mediated genome editing. To investigate how these influence the evolutionary trajectory of SARS-CoV-2, 2,000 high-quality, coding complete genome sequences of SARS-CoV-2 variants collected pre-September 2020 and from each subsequently appearing alpha, delta, BA.1, BA.2, BA.5, XBB, EG, HK, and JN.1 lineages were downloaded from NCBI Virus in April 2024. C→U transitions were the most common substitution during the diversification of SARS-CoV-2 lineages over the 4-year observation period. A net loss of C bases and accumulation of U's occurred at a constant rate of approximately 0.2%-0.25%/decade. C→U transitions occurred in over a quarter of all sites with a C (26.5%; range 20.0%-37.2%) around five times more than observed for the other transitions (5.3%-6.8%). In contrast to an approximately random distribution of other transitions across the genome, most C→U substitutions occurred at statistically preferred sites in each lineage. However, only the most C→U polymorphic sites showed evidence for a preferred 5'U context previously associated with APOBEC 3A editing. There was a similarly weak preference for unpaired bases suggesting much less stringent targeting of RNA than mediated by A3 deaminases in DNA editing. Future functional studies are required to determine editing preferences, impacts on replication fitness in vivo of SARS-CoV-2 and other RNA viruses, and impact on host tropism. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has shown a remarkable capacity to adapt and evade human immune responses and increase its human-to-human transmissibility. The genome of SARS-CoV-2 is also increasingly scarred by the effects of multiple C→U mutations from host genome editing as a cellular defense mechanism akin to restriction factors for retroviruses. Through the analysis of large data sets of SARS-CoV-2 isolate sequences collected throughout the pandemic period and beyond, we show that C→U transitions have driven a base compositional change over time amounting to a net loss of C bases and accumulation of U's at a rate of approximately 0.2%-0.25%/decade. Most C→U substitutions occurred in the absence of the preferred upstream-base context or targeting of unpaired RNA bases previously associated with the host RNA editing protein, APOBEC 3A. The analyses provide a series of testable hypotheses that can be experimentally investigated in the future.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Kazanov FM, Matveev EV, Ponomarev GV, Ivankov DN, Kazanov MD. Analysis of the abundance and diversity of RNA secondary structure elements in RNA viruses using the RNAsselem Python package. Sci Rep 2024; 14:28587. [PMID: 39562668 PMCID: PMC11577020 DOI: 10.1038/s41598-024-80240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Recent advancements in experimental and computational methods for RNA secondary structure detection have revealed the crucial role of RNA structural elements in diverse molecular processes within living cells. It has been demonstrated that the secondary structure of the entire viral genome is often responsible for performing crucial functions in the viral life cycle and also influences virus evolution. To investigate the role of viral RNA secondary structure, alongside experimental techniques, the use of bioinformatics tools is important for analyzing various secondary structure patterns, including hairpin loops, internal loops, multifurcations, external loops, bulges, stems, and pseudoknots. Here, we have introduced a Python package for analyzing RNA secondary structure elements in viral genomes, which includes the recognition of common secondary structure patterns, the generation of descriptive statistics for these structural elements, and the provision of their basic properties. We applied the developed package to analyze the secondary structures of complete viral genomes collected from the literature, aiming to gain insights into viral function and evolution. Both the package and the collection of secondary structures of viral genomes are available at http://github.com/KazanovLab/RNAsselem .
Collapse
Affiliation(s)
| | - Evgenii V Matveev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia
| | - Gennady V Ponomarev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Dmitry N Ivankov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Marat D Kazanov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia.
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
11
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
12
|
Mostefai F, Grenier JC, Poujol R, Hussin J. Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data. NAR Genom Bioinform 2024; 6:lqae145. [PMID: 39534500 PMCID: PMC11555433 DOI: 10.1093/nargab/lqae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding viral genome evolution during host infection is crucial for grasping viral diversity and evolution. Analyzing intra-host single nucleotide variants (iSNVs) offers insights into new lineage emergence, which is important for predicting and mitigating future viral threats. Despite next-generation sequencing's potential, challenges persist, notably sequencing artifacts leading to false iSNVs. We developed a workflow to enhance iSNV detection in large NGS libraries, using over 130 000 SARS-CoV-2 libraries to distinguish mutations from errors. Our approach integrates bioinformatics protocols, stringent quality control, and dimensionality reduction to tackle batch effects and improve mutation detection reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are represented within a two-dimensional space, enhancing clustering structure explanation based on genetic similarities. This workflow advances accurate intra-host mutation detection, facilitating a deeper understanding of viral diversity and evolution.
Collapse
Affiliation(s)
- Fatima Mostefai
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
| | | | - Raphaël Poujol
- Research Center, Montreal Heart Institute, Québec, Canada
| | - Julie Hussin
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
13
|
Roden CA, Gladfelter AS. Experimental Considerations for the Evaluation of Viral Biomolecular Condensates. Annu Rev Virol 2024; 11:105-124. [PMID: 39326881 DOI: 10.1146/annurev-virology-093022-010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biomolecular condensates are nonmembrane-bound assemblies of biological polymers such as protein and nucleic acids. An increasingly accepted paradigm across the viral tree of life is (a) that viruses form biomolecular condensates and (b) that the formation is required for the virus. Condensates can promote viral replication by promoting packaging, genome compaction, membrane bending, and co-opting of host translation. This review is primarily concerned with exploring methodologies for assessing virally encoded biomolecular condensates. The goal of this review is to provide an experimental framework for virologists to consider when designing experiments to (a) identify viral condensates and their components, (b) reconstitute condensation cell free from minimal components, (c) ask questions about what conditions lead to condensation, (d) map these questions back to the viral life cycle, and (e) design and test inhibitors/modulators of condensation as potential therapeutics. This experimental framework attempts to integrate virology, cell biology, and biochemistry approaches.
Collapse
Affiliation(s)
- Christine A Roden
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
14
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Begum MSTM, Bokani A, Rajib SA, Soleimanpour M, Maeda Y, Yoshimura K, Satou Y, Ebrahimi D, Ikeda T. Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication. Viruses 2024; 16:1141. [PMID: 39066304 PMCID: PMC11281575 DOI: 10.3390/v16071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.
Collapse
Affiliation(s)
- MST Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayub Bokani
- School of Engineering and Technology, CQ University, Sydney, NSW 2000, Australia
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nursing, Kibi International University, Takahashi 716-8508, Japan
| | | | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
16
|
Shen J, Xu X, Fan J, Chen H, Zhao Y, Huang W, Liu W, Zhang Z, Cui Q, Li Q, Niu Z, Jiang D, Cao G. APOBEC3-related mutations in the spike protein-encoding region facilitate SARS-CoV-2 evolution. Heliyon 2024; 10:e32139. [PMID: 38868014 PMCID: PMC11168432 DOI: 10.1016/j.heliyon.2024.e32139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Xinxin Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongsen Chen
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Weijin Huang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Qianqian Cui
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Qianqian Li
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Dongming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Bradley CC, Wang C, Gordon AJE, Wen AX, Luna PN, Cooke MB, Kohrn BF, Kennedy SR, Avadhanula V, Piedra PA, Lichtarge O, Shaw CA, Ronca SE, Herman C. Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence. Nat Microbiol 2024; 9:1382-1392. [PMID: 38649410 PMCID: PMC11384275 DOI: 10.1038/s41564-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10-5 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Pamela N Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shannon E Ronca
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Feigin Biosafety Level 3 Facility, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Department of Pediatrics Tropical Medicine, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Colson P, Chaudet H, Delerce J, Pontarotti P, Levasseur A, Fantini J, La Scola B, Devaux C, Raoult D. Role of SARS-CoV-2 mutations in the evolution of the COVID-19 pandemic. J Infect 2024; 88:106150. [PMID: 38570164 DOI: 10.1016/j.jinf.2024.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The SARS-CoV-2 pandemic and large-scale genomic surveillance provided an exceptional opportunity to analyze mutations that appeared over three years in viral genomes. Here we studied mutations and their epidemic consequences for SARS-CoV-2 genomes from our center. METHODS We analyzed 61,397 SARS-CoV-2 genomes we sequenced from respiratory samples for genomic surveillance. Mutations frequencies were calculated using Nextclade, Microsoft Excel, and an in-house Python script. RESULTS A total of 22,225 nucleotide mutations were identified, 220 (1.0%) being each at the root of ≥836 genomes, classifying mutations as 'hyperfertile'. Two seeded the European pandemic: P323L in RNA polymerase, associated with an increased mutation rate, and D614G in spike that improved fitness. Most 'hyperfertile' mutations occurred in areas not predicted with increased virulence. Their mean number was 8±6 (0-22) per 1000 nucleotides per gene. They were 3.7-times more frequent in accessory than informational genes (13.8 versus 3.7/1000 nucleotides). Particularly, they were 4.1-times more frequent in ORF8 than in the RNA polymerase gene. Interestingly, stop codons were present in 97 positions, almost only in accessory genes, including ORF8 (21/100 codons). CONCLUSIONS most 'hyperfertile' mutations did not predict emergence of a new epidemic, and some were stop codons indicating the existence of so-named 'non-virulence' genes.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Vecteurs, Infections Tropicales et Méditerranéennes (VITROME), 27 Boulevard Jean Moulin, 13005 Marseille, France; French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte Marthe, Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- "Aix-Marseille Université, INSERM UMR UA 16, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
19
|
Rogozin IB, Saura A, Poliakov E, Bykova A, Roche-Lima A, Pavlov YI, Yurchenko V. Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. Int J Mol Sci 2024; 25:3696. [PMID: 38612505 PMCID: PMC11011937 DOI: 10.3390/ijms25073696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
Collapse
Affiliation(s)
- Igor B. Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities—RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
20
|
Misawa K, Ootsuki R. A simple method for estimating time-irreversible nucleotide substitution rates in the SARS-CoV-2 genome. NAR Genom Bioinform 2024; 6:lqae009. [PMID: 39678027 PMCID: PMC11640943 DOI: 10.1093/nargab/lqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 12/17/2024] Open
Abstract
SARS-CoV-2 is the cause of the current worldwide pandemic of severe acute respiratory syndrome. The change of nucleotide composition of the SARS-CoV-2 genome is crucial for understanding the spread and transmission dynamics of the virus because viral nucleotide sequences are essential in identifying viral strains. Recent studies have shown that cytosine (C) to uracil (U) substitutions are overrepresented in SARS-CoV-2 genome sequences. These asymmetric substitutions between C and U indicate that traditional time-reversible substitution models cannot be applied to the evolution of SARS-CoV-2 sequences. Thus, we develop a new time-irreversible model of nucleotide substitutions to estimate the substitution rates in SARS-CoV-2 genomes. We investigated the number of nucleotide substitutions among the 7862 genomic sequences of SARS-CoV-2 registered in the Global Initiative on Sharing All Influenza Data (GISAID) that have been sampled from all over the world. Using the new method, the substitution rates in SARS-CoV-2 genomes were estimated. The C-to-U substitution rates of SARS-CoV-2 were estimated to be 1.95 × 10-3 ± 4.88 × 10-4 per site per year, compared with 1.48 × 10-4 ± 7.42 × 10-5 per site per year for all other types of substitutions.
Collapse
Affiliation(s)
- Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of
Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama
236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1
Nihonbashi, Chuo-ku, Tokyo 103-0027,
Japan
| | - Ryo Ootsuki
- Department of Natural Sciences, Faculty of Arts and Sciences,
1-23-1 Komazawa, Setagaya-ku,
Tokyo 154-8525, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan
Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
21
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
22
|
Colson P, Delerce J, Pontarotti P, Devaux C, La Scola B, Fantini J, Raoult D. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. J Med Virol 2024; 96:e29462. [PMID: 38363015 DOI: 10.1002/jmv.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | | | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
| |
Collapse
|
23
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Wei L. In silico and experimental approaches for validating RNA editing events in transcriptomes. RNA Biol 2024; 21:31-36. [PMID: 39582096 PMCID: PMC11591476 DOI: 10.1080/15476286.2024.2432729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional in silico and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2. These approaches include requiring strand-specific sequencing, analysis of hyperedited reads, linkage analysis, orthogonal methods like mass spectrometry, and the use of ADAR-deficient host cells. These findings may improve future analyses on the identification of RNA editing, especially in RNA viruses.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Mattiuz G, Di Giorgio S, Conticello SG. An elusive debate on the evidence for RNA editing in SARS-CoV-2. RNA Biol 2024; 21:1-2. [PMID: 38426405 PMCID: PMC10913694 DOI: 10.1080/15476286.2024.2321032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Salvatore Di Giorgio
- German Cancer Research Center (DKFZ) - Division of Immune Diversity, Foundation under Public Law, Heidelberg, Germany
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
26
|
Zhang K, Chen F, Shen HY, Zhang PP, Gao H, Peng H, Luo YS, Cheng ZS. Regulatory variants of APOBEC3 genes potentially associate with COVID-19 severity in populations with African ancestry. Sci Rep 2023; 13:22435. [PMID: 38105291 PMCID: PMC10725877 DOI: 10.1038/s41598-023-49791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Since November 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the worldwide pandemic of the coronavirus disease 2019 (COVID-19), the impact of which is huge to the lives of world populations. Many studies suggested that such situation will continue due to the endless mutations in SARS-CoV-2 genome that result in complexity of the efforts for the control of SARS-CoV-2, since the special enrichment of nucleotide substitution C>U in SARS-CoV-2 sequences were discovered mainly due to the editing by human host factors APOBEC3 genes. The observation of SARS-CoV-2 variants Beta (B.1.351) and Omicron (B.1.1.529) firstly spreading in South Africa promoted us to hypothesize that genetic variants of APOBEC3 special in African populations may be attributed to the higher mutation rate of SARS-CoV-2 variants in Africa. Current study was conducted to search for functional variants of APOBEC3 genes associate with COVID-19 hospitalization in African population. By integrating data from the 1000 Genomes Project, Genotype-Tissue Expression (GTEx), and Host Genetics Initiative (HGI) of COVID-19, we identified potential functional SNPs close to APOBEC3 genes that are associated with COVID-19 hospitalization in African but not with other populations. Our study provides new insights on the potential contribution of APOBEC3 genes on the evolution of SARS-CoV-2 mutations in African population, but further replication is needed to confirm our results.
Collapse
Affiliation(s)
- Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Fang Chen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Hu-Yan Shen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Ping-Ping Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Han Gao
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hong Peng
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yu-Si Luo
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- The Department of Emergency, Liupanshui Hospital of The Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China.
| | - Zhong-Shan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Hospital, MS1122, Memphis, TN, 38105, USA.
| |
Collapse
|
27
|
Kim K, Shi AB, Kelley K, Chen XS. Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. J Mol Biol 2023; 435:168198. [PMID: 37442413 PMCID: PMC10528890 DOI: 10.1016/j.jmb.2023.168198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The APOBEC3 family of human cytidine deaminases is involved in various cellular processes, including the innate and acquired immune system, mostly through inducing C-to-U in single-stranded DNA and/or RNA mutations. Although recent studies have examined RNA editing by APOBEC3A (A3A), its intracellular target specificity are not fully characterized. To address this gap, we performed in-depth analysis of cellular RNA editing using our recently developed sensitive cell-based fluorescence assay. Our findings demonstrate that A3A and an A3A-loop1-containing APOBEC3B (A3B) chimera are capable of RNA editing. We observed that A3A prefers to edit specific RNA substrates which are not efficiently deaminated by other APOBEC members. The editing efficiency of A3A is influenced by the RNA sequence contexts and distinct stem-loop secondary structures. Based on the identified RNA specificity features, we predicted potential A3A-editing targets in the encoding region of cellular mRNAs and discovered novel RNA transcripts that are extensively edited by A3A. Furthermore, we found a trend of increased synonymous mutations at the sites for more efficient A3A-editing, indicating evolutionary adaptation to the higher editing rate by A3A. Our results shed light on the intracellular RNA editing properties of A3A and provide insights into new RNA targets and potential impact of A3A-mediated RNA editing.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. https://twitter.com/KYUMINK1324
| | - Alan B Shi
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kori Kelley
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
McBride DS, Garushyants SK, Franks J, Magee AF, Overend SH, Huey D, Williams AM, Faith SA, Kandeil A, Trifkovic S, Miller L, Jeevan T, Patel A, Nolting JM, Tonkovich MJ, Genders JT, Montoney AJ, Kasnyik K, Linder TJ, Bevins SN, Lenoch JB, Chandler JC, DeLiberto TJ, Koonin EV, Suchard MA, Lemey P, Webby RJ, Nelson MI, Bowman AS. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat Commun 2023; 14:5105. [PMID: 37640694 PMCID: PMC10462754 DOI: 10.1038/s41467-023-40706-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
Collapse
Affiliation(s)
- Dillon S McBride
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Sofya K Garushyants
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven H Overend
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Devra Huey
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Amanda M Williams
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Seth A Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Sanja Trifkovic
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance Miller
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | | | - J Tyler Genders
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Columbus, OH, USA
| | - Andrew J Montoney
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Columbus, OH, USA
| | - Kevin Kasnyik
- Columbus and Franklin County Metro Parks, Westerville, OH, USA
| | - Timothy J Linder
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Sarah N Bevins
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Julianna B Lenoch
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Jeffrey C Chandler
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Wildlife Disease Diagnostic Laboratory, Fort Collins, CO, USA
| | - Thomas J DeLiberto
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, USA
| | - Eugene V Koonin
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Martha I Nelson
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| |
Collapse
|
29
|
Wu X, Shan K, Zan F, Tang X, Qian Z, Lu J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205445. [PMID: 37267926 PMCID: PMC10427376 DOI: 10.1002/advs.202205445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Ke‐jia Shan
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
30
|
Biancolella M, Colona VL, Luzzatto L, Watt JL, Mattiuz G, Conticello SG, Kaminski N, Mehrian-Shai R, Ko AI, Gonsalves GS, Vasiliou V, Novelli G, Reichardt JKV. COVID-19 annual update: a narrative review. Hum Genomics 2023; 17:68. [PMID: 37488607 PMCID: PMC10367267 DOI: 10.1186/s40246-023-00515-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, COVID-19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research on COVID-19, and we give an outlook on state-of-the-art therapeutical approaches, as the pandemic is gradually transitioning to an endemic situation. The sequencing and characterization of rare alleles in different populations has made it possible to identify numerous genes that affect either susceptibility to COVID-19 or the severity of the disease. These findings provide a beginning to new avenues and pan-ethnic therapeutic approaches, as well as to potential genetic screening protocols. The causative virus, SARS-CoV-2, is still in the spotlight, but novel threatening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We also note emphatically that to prevent future pandemics and other world-wide health crises, it is imperative to capitalize on what we have learnt from COVID-19: specifically, regarding its origins, the world's response, and insufficient preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination of effective response and the rapid implementation of containment measures.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- University of Florence, 50121, Florence, Italy
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | | | - Silvestro G Conticello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Institute of Clinical Physiology - National Council of Research (IFC-CNR), 56124, Pisa, Italy
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
- Instituto Gonçalo MonizFundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Gregg S Gonsalves
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, USA
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, 89557, Reno, NV, USA.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
31
|
Ratcliff J, Simmonds P. The roles of nucleic acid editing in adaptation of zoonotic viruses to humans. Curr Opin Virol 2023; 60:101326. [PMID: 37031485 PMCID: PMC10155873 DOI: 10.1016/j.coviro.2023.101326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.
Collapse
Affiliation(s)
- Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
33
|
Saldivar-Espinoza B, Garcia-Segura P, Novau-Ferré N, Macip G, Martínez R, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. The Mutational Landscape of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24109072. [PMID: 37240420 DOI: 10.3390/ijms24109072] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mutation research is crucial for detecting and treating SARS-CoV-2 and developing vaccines. Using over 5,300,000 sequences from SARS-CoV-2 genomes and custom Python programs, we analyzed the mutational landscape of SARS-CoV-2. Although almost every nucleotide in the SARS-CoV-2 genome has mutated at some time, the substantial differences in the frequency and regularity of mutations warrant further examination. C>U mutations are the most common. They are found in the largest number of variants, pangolin lineages, and countries, which indicates that they are a driving force behind the evolution of SARS-CoV-2. Not all SARS-CoV-2 genes have mutated in the same way. Fewer non-synonymous single nucleotide variations are found in genes that encode proteins with a critical role in virus replication than in genes with ancillary roles. Some genes, such as spike (S) and nucleocapsid (N), show more non-synonymous mutations than others. Although the prevalence of mutations in the target regions of COVID-19 diagnostic RT-qPCR tests is generally low, in some cases, such as for some primers that bind to the N gene, it is significant. Therefore, ongoing monitoring of SARS-CoV-2 mutations is crucial. The SARS-CoV-2 Mutation Portal provides access to a database of SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Nil Novau-Ferré
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Eurecat, Technology Centre of Catalonia, Unit of Nutrition and Health, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
34
|
De La Cruz-Montoya AH, Díaz Velásquez CE, Martínez-Gregorio H, Ruiz-De La Cruz M, Bustos-Arriaga J, Castro-Jiménez TK, Olguín-Hernández JE, Rodríguez-Sosa M, Terrazas-Valdes LI, Jiménez-Alvarez LA, Regino-Zamarripa NE, Ramírez-Martínez G, Cruz-Lagunas A, Peralta-Arrieta I, Armas-López L, Contreras-Garza BM, Palma-Cortés G, Cabello-Gutierrez C, Báez-Saldaña R, Zúñiga J, Ávila-Moreno F, Vaca-Paniagua F. Molecular transition of SARS-CoV-2 from critical patients during the first year of the COVID-19 pandemic in Mexico City. Front Cell Infect Microbiol 2023; 13:1155938. [PMID: 37260697 PMCID: PMC10227454 DOI: 10.3389/fcimb.2023.1155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.
Collapse
Affiliation(s)
- Aldo Hugo De La Cruz-Montoya
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miguel Ruiz-De La Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, Mexico
| | - José Bustos-Arriaga
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tannya Karen Castro-Jiménez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Jonadab Efraín Olguín-Hernández
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Ignacio Terrazas-Valdes
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Armando Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Nora Elemi Regino-Zamarripa
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Irlanda Peralta-Arrieta
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | - Gabriel Palma-Cortés
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Carlos Cabello-Gutierrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Renata Báez-Saldaña
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Laboratorio 12 de Enfermedades Pulmonares y Epigenómica del Cáncer, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
35
|
Dudley JP. APOBECs: Our fickle friends? PLoS Pathog 2023; 19:e1011364. [PMID: 37200235 DOI: 10.1371/journal.ppat.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Jaquelin P Dudley
- Department of Molecular Biosciences and LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
36
|
Stewart JA, Damania B. Human DNA tumor viruses evade uracil-mediated antiviral immunity. PLoS Pathog 2023; 19:e1011252. [PMID: 36996040 PMCID: PMC10062561 DOI: 10.1371/journal.ppat.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Jessica A. Stewart
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|