1
|
Li H, Yuan X, Ren M, Liu J, Zheng Y, Lin Z, Chen Z, Yang Z, Su X, Shen H. PAMAM-Based DNA Fluorescence Nanoprobe for Rapid Whole Cellular APE1 Detection and Imaging. Anal Chem 2025; 97:6694-6701. [PMID: 40106447 DOI: 10.1021/acs.analchem.4c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/ref-1, APE1), a vital protein for DNA repair and cellular redox regulation, is frequently overexpressed in tumor cells, underscoring the importance of developing sensitive detection methods for early cancer diagnosis. However, the rapid detection and visualization of nuclear APE1 in tumor cells are still challenging. In this study, we successfully developed a novel DNA fluorescent nanoprobe based on polyamidoamine (PAMAM) for the rapid detection of cytoplasmic and nuclear APE1. The PAMAM surface was modified with arginine (Arg), named PR, and its hydrophobic core encapsulated the 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride (TA) dye to construct fluorescent nanoparticles (TPR). Furthermore, an APE1-responsive dsDNA (SP) was linked on the TPR surface, containing apurinic/apyrimidinic sites (AP sites) and the black hole quencher 2 (BHQ2) and ensuring that fluorescence remains off in the absence of APE1. TPR-SP exhibited a detection range of 0.125-25 U mL-1 and a detection limit as low as 0.03 U mL-1. Compared with the Arg-free nanoprobes (TP-SP), TPR-SP significantly accelerated endocytosis and nuclear penetration, reducing the APE1 detection time to one-quarter (from 2 to 0.5 h). Notably, the APE1 signal in the whole nucleus can also be significantly detected. Thus, the TPR nanoprobe achieves the rapid enrichment and amplification of fluorescence signals, leading to highly sensitive whole cellular APE1 detection. This innovative and efficient detection method greatly expands the technological means for early cancer detection.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mei Ren
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixin Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixin Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heyun Shen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Dall'Agnese G, Hannett NM, Overholt KJ, Platt JM, Henninger JE, Marcos-Vidal A, Othman Z, Salgado G, Antoniali G, Tell G. APE1 condensation in nucleoli of non-cancer cells depends on rRNA transcription and forming G-quadruplex RNA structures. Nucleic Acids Res 2025; 53:gkaf168. [PMID: 40103231 PMCID: PMC11915510 DOI: 10.1093/nar/gkaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
APE1 [apurinic/apyrimidinic (AP) endodeoxyribonuclease 1] is the main endonuclease of the base excision repair pathway acting on abasic (AP) sites in DNA. APE1 is an abundant nuclear protein, and improper expression or localization of this factor could lead to the accumulation of toxic DNA intermediates. Altered APE1 subcellular distribution and expression are associated with cancer development, suggesting the importance of a fine-tuning mechanism for APE1 activities. Recent works highlighted the presence of APE1 within nucleoli of cancer cells and the ability of APE1 to form biomolecular condensate. However, whether secondary structures of ribosomal RNA (rRNA) influence the nucleolar localization of APE1 remains poorly understood. Since protein overexpression can result in artificial nucleolar accumulation, it is imperative to have appropriate cellular models to study APE1 trafficking under physiological conditions. To address this issue, we generated a murine embryonic stem cell line expressing endogenous fluorescent-tagged APE1. Live-cell imaging demonstrates that APE1 nucleolar accumulation requires active rRNA transcription and is modulated by different genotoxicants. In vitro experiments showed that APE1 condensate formation depends on RNA-forming G-quadruplex structures and relies on critical lysine residues. This study sheds light on the mechanisms underlying APE1 trafficking to the nucleolus and the formation of RNA-dependent APE1 nucleolar condensates.
Collapse
Affiliation(s)
- Giuseppe Dall'Agnese
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Jonathan E Henninger
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, United States
| | - Asier Marcos-Vidal
- W.M. Keck Imaging Facility, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, United States
| | - Zahraa Othman
- ARNA Laboratory-Inserm U1212-CNRS UMR 5320, Bordeaux Biologie Santé-Université de Bordeaux, 146 Rue Léo Saignant, 33076 Bordeaux, France
| | - Gilmar Salgado
- ARNA Laboratory-Inserm U1212-CNRS UMR 5320, Bordeaux Biologie Santé-Université de Bordeaux, 146 Rue Léo Saignant, 33076 Bordeaux, France
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Liu Y, Yao Y, Sha J, Liang G, Sun X. Dual-Locked Enzyme-Activatable Fluorescence Probes for Precise Bioimaging. ACS Biomater Sci Eng 2025; 11:730-741. [PMID: 39841057 DOI: 10.1021/acsbiomaterials.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Real-time visualization of endogenous enzymes not only helps reveal the underlying biological principles but also provides pathological information for cancer/disease diagnosis and even treatment guidance. To this end, enzyme-activatable fluorescence probes are frequently fabricated that turn their fluorescence signals "on" exclusively at the enzyme-rich region, thus enabling noninvasive and real-time imaging of enzymes of interest at the molecular level with superior sensitivity and selectivity. However, in a complex biological context, commonly used single enzyme-activatable (i.e., single-locked) probes may suffer from "false positive" signals at healthy tissues and be insufficient to accurately indicate the occurrence of certain diseases. Therefore, dual-locked fluorescence probes have been promoted to address these issues. Using dual enzymes (or an enzyme with another stimulus) as "keys", they permit simultaneous detection of distinct biomarkers, offering significantly enhanced imaging precision toward certain biological events. Considering that recent reviews on these probes remain scarce, we thus provide this review. We summarize the recent progress, particularly highlighting the breakthroughs in the last three years, and discuss the challenges in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuchen Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Junhui Sha
- School of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
- Handan Norman Technology Company, Limited, Guantao 057750, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
5
|
Savitskaya VY, Novoselov KA, Dolinnaya NG, Monakhova MV, Snyga VG, Diatlova EA, Peskovatskova ES, Golyshev VM, Kitaeva MI, Eroshenko DA, Zvereva MI, Zharkov DO, Kubareva EA. Position-Dependent Effects of AP Sites Within an hTERT Promoter G-Quadruplex Scaffold on Quadruplex Stability and Repair Activity of the APE1 Enzyme. Int J Mol Sci 2025; 26:337. [PMID: 39796192 PMCID: PMC11720163 DOI: 10.3390/ijms26010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1). Although AP sites' repair in regular B-DNA has been studied extensively, their processing in G-quadruplexes (G4s) has received much less attention. Here, we used the hTERT promoter region that is capable of forming three stacked parallel G4s to understand how AP sites can influence higher-order quadruplex folding and stability and how a G4 affects the efficiency of human APE1-mediated AP site processing. We designed a series of synthetic single- and double-stranded DNA constructs of varying lengths containing a stable AP site analog in both G- and C-rich strands at positions corresponding to somatic driver mutations. Using circular dichroism, we studied the effect of the AP site on hTERT G4 structure and stability. Bio-layer interferometry and gel-based approaches were employed to characterize APE1 binding to the designed DNA substrates and AP site processing. It was shown that (i) an AP site leads to G4 destabilization, which depends on the lesion location in the G4 scaffold; (ii) APE1 binds tightly to hTERT G4 structure but exhibits greatly reduced cleavage activity at AP sites embedded in the quadruplex; and (iii) a clear correlation was revealed between AP site-induced hTERT G4 destabilization and APE1 activity. We can hypothesize that reduced repair of AP sites in the hTERT G4 is one of the reasons for the high mutation rate in this promoter region.
Collapse
Affiliation(s)
- Viktoriia Yu. Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Kirill A. Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Mayya V. Monakhova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Viktoriia G. Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Evgeniia A. Diatlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Elizaveta S. Peskovatskova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Victor M. Golyshev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
| | - Mariia I. Kitaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Daria A. Eroshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.Y.S.); (N.G.D.); (V.G.S.); (M.I.K.); (M.I.Z.)
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.D.); (V.M.G.); (D.A.E.); (D.O.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena A. Kubareva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
6
|
Hu M, Zhang Y, Zhang P, Liu K, Zhang M, Li L, Yu Z, Zhang X, Zhang W, Xu Y. Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors. Protein Pept Lett 2025; 32:18-33. [PMID: 39648425 DOI: 10.2174/0109298665338519241114103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 12/10/2024]
Abstract
With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular in situ testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kangbo Liu
- Henan Institute for Drug and Medical Device Inspection (Henan Vaccine Issuance Center), Zhengzhou, 450018, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
7
|
Ban Y, Ando Y, Terai Y, Matsumura R, Nakane K, Iwai S, Sato S, Yamamoto J. Profiling of i-motif-binding proteins reveals functional roles of nucleolin in regulation of high-order DNA structures. Nucleic Acids Res 2024; 52:13530-13543. [PMID: 39557413 DOI: 10.1093/nar/gkae1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Non-canonical DNA structures, such as the G-quadruplex (G4) and i-motif (iM), are formed at guanine- and cytosine-rich sequences, respectively, in living cells and involved in regulating various biological processes during the cell cycle. Therefore, the formation and resolution of these non-canonical structures must be dynamically regulated by physiological conditions or factors that can bind G4 and iM structures. Although many G4 binding proteins responsible for tuning the G4 structure have been discovered, the structural regulation of iM by iM-binding proteins remains enigmatic. In this study, we developed a protein-labeling DNA probe bearing an alkyne moiety through a reactive linker, for proximity-labeling of nucleic acid-binding proteins, and searched for new iM-binding proteins. Alkyne-modified proteins in the nuclear extract of HeLa cells were labeled with biotin via a click reaction and then captured with streptavidin-coated magnetic beads. This fingerprint-targeting enrichment, followed by proteome analyses, identified new candidate proteins that potentially bind to the iM structure, in addition to the reported iM-binding proteins. Among the newly identified candidates, we characterized a nucleolar protein, nucleolin, that binds to the iM structure and relaxes it, while nucleolin stabilizes the G4 structure.
Collapse
Affiliation(s)
- Yuki Ban
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuka Ando
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yuma Terai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Risa Matsumura
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Keita Nakane
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
Zhao H, Richardson C, Marriott I, Yang IH, Yan S. APE1 is a master regulator of the ATR-/ATM-mediated DNA damage response. DNA Repair (Amst) 2024; 144:103776. [PMID: 39461278 PMCID: PMC11611674 DOI: 10.1016/j.dnarep.2024.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and 3'-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christine Richardson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - In Hong Yang
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
9
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024; 31:1765-1772. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
10
|
Pramanik S, Chen Y, Bhakat KK. Base Excision Repair in Mitotic Cells and the Role of Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Post-Mitotic Transcriptional Reactivation of Genes. Int J Mol Sci 2024; 25:12735. [PMID: 39684445 DOI: 10.3390/ijms252312735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Endogenous DNA damage occurs throughout the cell cycle, with cells responding differently at various stages. The base excision repair (BER) pathway predominantly repairs damaged bases in the genome. While extensively studied in interphase cells, it is unknown if BER operates in mitosis and how apurinic/apyrimidinic (AP) sites, intermediates in the BER pathway that inhibit transcriptional elongation, are processed for post-mitotic gene reactivation. In this study, using an alkaline comet assay, we demonstrate that BER is inefficient in mitosis and that AP endonuclease 1 (APE1), a key BER enzyme, is required for the repair of damage post-mitosis. We previously demonstrated that APE1 is acetylated (AcAPE1) in the chromatin. Using high-resolution microscopy, we show that AcAPE1 remains associated with specific regions in the condensed chromatin in each of the phases of mitosis. This association presumably occurs via the binding of APE1 to the G-quadruplex structure, a non-canonical DNA structure predominantly present in the transcribed gene regions. Additionally, using a nascent RNA detection strategy, we demonstrate that the knockdown of APE1 delayed the rapid post-mitotic transcriptional reactivation of genes. Our findings highlight the functional importance of APE1 in the mitotic chromosomes to facilitate faster repair of endogenous damage and rapid post-mitotic gene reactivation in daughter cells.
Collapse
Affiliation(s)
- Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
12
|
He Q, Wang Y, Zhao F, Wei S, Li X, Zeng G. APE1: A critical focus in neurodegenerative conditions. Biomed Pharmacother 2024; 179:117332. [PMID: 39191031 DOI: 10.1016/j.biopha.2024.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The global growth of the aging population has resulted in an increased prevalence of neurodegenerative diseases, characterized by the progressive loss of central nervous system (CNS) structure and function. Given the high incidence and debilitating nature of neurodegenerative diseases, there is an urgent need to identify potential biomarkers and novel therapeutic targets thereof. Apurinic/apyrimidinic endonuclease 1 (APE1), has been implicated in several neurodegenerative diseases, as having a significant role. Abnormal APE1 expression has been observed in conditions including Alzheimer's disease, stroke, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and epilepsy. However, whether this dysregulation is protective or harmful remains unclear. This review aims to comprehensively review the current understanding of the involvement of APE1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Shigang Wei
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China
| | - Xingfu Li
- Department of Clinical Laboratory, The Honghe Autonomous Prefecture 3rd Hospital, Honghe 661021, China
| | - Guangqun Zeng
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China.
| |
Collapse
|
13
|
Wang H, Ye C, Lu Q, Jiang Z, Jiang C, Zhou C, Li N, Zhang C, Zhao G, Yue M, Li Y. Bacterial exonuclease III expands its enzymatic activities on single-stranded DNA. eLife 2024; 13:RP95648. [PMID: 38959062 PMCID: PMC11221836 DOI: 10.7554/elife.95648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Bacterial exonuclease III (ExoIII), widely acknowledged for specifically targeting double-stranded DNA (dsDNA), has been documented as a DNA repair-associated nuclease with apurinic/apyrimidinic (AP)-endonuclease and 3'→5' exonuclease activities. Due to these enzymatic properties, ExoIII has been broadly applied in molecular biosensors. Here, we demonstrate that ExoIII (Escherichia coli) possesses highly active enzymatic activities on ssDNA. By using a range of ssDNA fluorescence-quenching reporters and fluorophore-labeled probes coupled with mass spectrometry analysis, we found ExoIII cleaved the ssDNA at 5'-bond of phosphodiester from 3' to 5' end by both exonuclease and endonuclease activities. Additional point mutation analysis identified the critical residues for the ssDNase action of ExoIII and suggested the activity shared the same active center with the dsDNA-targeted activities of ExoIII. Notably, ExoIII could also digest the dsDNA structures containing 3'-end ssDNA. Considering most ExoIII-assisted molecular biosensors require the involvement of single-stranded DNA (ssDNA) or nucleic acid aptamer containing ssDNA, the activity will lead to low efficiency or false positive outcome. Our study revealed the multi-enzymatic activity and the underlying molecular mechanism of ExoIII on ssDNA, illuminating novel insights for understanding its biological roles in DNA repair and the rational design of ExoIII-ssDNA involved diagnostics.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chen Ye
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Qi Lu
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Na Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Caiqiao Zhang
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
14
|
Vemulapalli S, Hashemi M, Chen Y, Pramanik S, Bhakat KK, Lyubchenko YL. Nanoscale Interaction of Endonuclease APE1 with DNA. Int J Mol Sci 2024; 25:5145. [PMID: 38791183 PMCID: PMC11121393 DOI: 10.3390/ijms25105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is involved in DNA repair and transcriptional regulation mechanisms. This multifunctional activity of APE1 should be supported by specific structural properties of APE1 that have not yet been elucidated. Herein, we applied atomic force microscopy (AFM) to characterize the interactions of APE1 with DNA containing two well-separated G-rich segments. Complexes of APE1 with DNA containing G-rich segments were visualized, and analysis of the complexes revealed the affinity of APE1 to G-rich DNA sequences, and their yield was as high as 53%. Furthermore, APE1 is capable of binding two DNA segments leading to the formation of loops in the DNA-APE1 complexes. The analysis of looped APE1-DNA complexes revealed that APE1 can bridge G-rich segments of DNA. The yield of loops bridging two G-rich DNA segments was 41%. Analysis of protein size in various complexes was performed, and these data showed that loops are formed by APE1 monomer, suggesting that APE1 has two DNA binding sites. The data led us to a model for the interaction of APE1 with DNA and the search for the specific sites. The implication of these new APE1 properties in organizing DNA, by bringing two distant sites together, for facilitating the scanning for damage and coordinating repair and transcription is discussed.
Collapse
Affiliation(s)
- Sridhar Vemulapalli
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (S.V.); (M.H.)
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (S.V.); (M.H.)
- Department of Physics, Auburn University, Auburn, AL 36849-5318, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805, USA; (Y.C.); (S.P.)
| | - Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805, USA; (Y.C.); (S.P.)
| | - Kishor K. Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805, USA; (Y.C.); (S.P.)
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (S.V.); (M.H.)
| |
Collapse
|
15
|
Pan L, Boldogh I. The potential for OGG1 inhibition to be a therapeutic strategy for pulmonary diseases. Expert Opin Ther Targets 2024; 28:117-130. [PMID: 38344773 PMCID: PMC11111349 DOI: 10.1080/14728222.2024.2317900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Pulmonary diseases impose a daunting burden on healthcare systems and societies. Current treatment approaches primarily address symptoms, underscoring the urgency for the development of innovative pharmaceutical solutions. A noteworthy focus lies in targeting enzymes recognizing oxidatively modified DNA bases within gene regulatory elements, given their pivotal role in governing gene expression. AREAS COVERED This review delves into the intricate interplay between the substrate-specific binding of 8-oxoguanine DNA glycosylase 1 (OGG1) and epigenetic regulation, with a focal point on elucidating the molecular underpinnings and their biological implications. The absence of OGG1 distinctly attenuates the binding of transcription factors to cis elements, thereby modulating pro-inflammatory or pro-fibrotic transcriptional activity. Through a synergy of experimental insights gained from cell culture studies and murine models, utilizing prototype OGG1 inhibitors (O8, TH5487, and SU0268), a promising panorama emerges. These investigations underscore the absence of cytotoxicity and the establishment of a favorable tolerance profile for these OGG1 inhibitors. EXPERT OPINION Thus, the strategic targeting of the active site pocket of OGG1 through the application of small molecules introduces an innovative trajectory for advancing redox medicine. This approach holds particular significance in the context of pulmonary diseases, offering a refined avenue for their management.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
16
|
Mijit M, Kpenu E, Chowdhury NN, Gampala S, Wireman R, Liu S, Babb O, Georgiadis MM, Wan J, Fishel ML, Kelley MR. In vitro and In vivo evidence demonstrating chronic absence of Ref-1 Cysteine 65 impacts Ref-1 folding configuration, redox signaling, proliferation and metastasis in pancreatic cancer. Redox Biol 2024; 69:102977. [PMID: 38056311 PMCID: PMC10749280 DOI: 10.1016/j.redox.2023.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ref-1/APE1 (Redox Effector/Apurinic Endonuclease 1) is a multifunctional enzyme that serves as a redox factor for several transcription factors (TFs), e.g., NF-kB, HIF-1α, which in an oxidized state fail to bind DNA. Conversion of these TFs to a reduced state serves to regulate various biological responses such as cell growth, inflammation, and cellular metabolism. The redox activity involves a thiol exchange reaction for which Cys65 (C65) serves as the nucleophile. Using CRISPR editing in human pancreatic ductal adenocarcinoma (PDAC) cells, we changed C65 to Ala (C65A) in Ref-1 to evaluate alteration of Ref-1 redox dynamics as well as chronic loss of Ref-1 redox activity on cell signaling pathways, specifically those regulated by NF-kB and HIF-1α. The redox activity of Ref-1 requires partial unfolding to expose C65, which is buried in the folded structure. Labeling of Ref-1 with polyethylene glycol-maleimide (PEGm) provides a readout of reduced Cys residues in Ref-1 and thereby an assessment of partial unfolding in Ref-1. In comparing Ref-1WT vs Ref-1C65A cell lines, we found an altered distribution of oxidized versus reduced states of Ref-1. Accordingly, activation of NF-kB and HIF-1α in Ref-1C65A lines was significantly lower compared to Ref-1WT lines. The bioinformatic data revealed significant downregulation of metabolic pathways including OXPHOS in Ref-1C65A expressing clones compared to Ref-1WT line. Ref-1C65A also demonstrated reduced cell proliferation and use of tricarboxylic acid (TCA) substrates compared to Ref-1WT lines. A subcutaneous as well as PDAC orthotopic in vivo model demonstrated a significant reduction in tumor size, weight, and growth in the Ref-1C65A lines compared to the Ref-1WT lines. Moreover, mice implanted with Ref-1C65A redox deficient cells demonstrate significantly reduced metastatic burden to liver and lung compared to mice implanted with Ref-1 redox proficient cells. These results from the current study provide direct evidence that the chronic absence of Cys65 in Ref-1 results in redox inactivity of the protein in human PDAC cells, and subsequent biological results confirm a critical involvement of Ref-1 redox signaling and tumorigenic phenotype.
Collapse
Affiliation(s)
- M Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N N Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - S Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - O Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M M Georgiadis
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - J Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
18
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
20
|
Dai Y, Teng X, Zhang Q, Hou H, Li J. Advances and challenges in identifying and characterizing G-quadruplex-protein interactions. Trends Biochem Sci 2023; 48:894-909. [PMID: 37422364 DOI: 10.1016/j.tibs.2023.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.
Collapse
Affiliation(s)
- Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Qiushuang Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Life Science Academy, Beijing 102209, China; Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
21
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
22
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
23
|
Zhang ZH, Qian SH, Wei D, Chen ZX. In vivo dynamics and regulation of DNA G-quadruplex structures in mammals. Cell Biosci 2023; 13:117. [PMID: 37381029 DOI: 10.1186/s13578-023-01074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
G-quadruplex (G4) is a four-stranded helical DNA secondary structure formed by guanine-rich sequence folding, and G4 has been computationally predicted to exist in a wide range of species. Substantial evidence has supported the formation of endogenous G4 (eG4) in living cells and revealed its regulatory dynamics and critical roles in several important biological processes, making eG4 a regulator of gene expression perturbation and a promising therapeutic target in disease biology. Here, we reviewed the methods for prediction of potential G4 sequences (PQS) and detection of eG4s. We also highlighted the factors affecting the dynamics of eG4s and the effects of eG4 dynamics. Finally, we discussed the future applications of eG4 dynamics in disease therapy.
Collapse
Affiliation(s)
- Ze-Hao Zhang
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Hu Qian
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengguo Wei
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
24
|
Xiao CD, Jia MH, Zhong MQ, Xu Y, Yu ZT, He ZY, Lu X, Zhang Y, Zhou X, Fu LY, Shen XC. Unveiling the role of G-quadruplex structure in promoter region: Regulation of ABCA1 expression in macrophages possibly via NONO protein recruitment. Int J Biol Macromol 2023:125443. [PMID: 37353131 DOI: 10.1016/j.ijbiomac.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
ABCA1 has been found to be critical for cholesterol efflux in macrophages. Understanding the mechanism regulating ABCA1 expression is important for the prevention and treatment of atherosclerosis. In the present study, a G-quadruplex (G4) structure was identified in the ABCA1 promoter region. This G4 was shown to be essential for ABCA1 transcription. Stabilizing the G4 by ligands surprisingly upregulated ABCA1 expression in macrophages. Knocking out the G4 remarkably reduced ABCA1 expression, and abolished the increase of ABCA1 expression induced by the G4 ligand. By pull-down assays, the protein NONO was identified as an ABCA1 G4 binder. Overexpression or repression of NONO significantly induced upregulation and downregulation of ABCA1 expression, respectively. ChIP and EMSA experiments showed that the G4 ligand promoted the binding between the ABCA1 G4 and NONO, which led to more recruitment of NONO to the promoter region and enhanced ABCA1 transcription. Finally, the G4 ligand was shown to significantly reduce the accumulation of cholesterol in macrophages. This study showed a new insight into the regulation of gene expression by G4, and provided a new molecular mechanism regulating ABCA1 expression in macrophages. Furthermore, the study showed a possible novel application of the G4 ligand: preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Zu-Tao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zhi-Yong He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xu Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yan Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Xue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Lin-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China.
| |
Collapse
|
25
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Rohrer KA, Song H, Akbar A, Chen Y, Pramanik S, Wilder PJ, McIntyre EM, Chaturvedi NK, Bhakat KK, Rizzino A, Coulter DW, Ray S. STAT3 Inhibition Attenuates MYC Expression by Modulating Co-Activator Recruitment and Suppresses Medulloblastoma Tumor Growth by Augmenting Cisplatin Efficacy In Vivo. Cancers (Basel) 2023; 15:cancers15082239. [PMID: 37190167 DOI: 10.3390/cancers15082239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene. Targeting STAT3 function either by inducible genetic knockdown (KD) or with a clinically relevant small molecule inhibitor reduced tumorigenic attributes in MB cells, including survival, proliferation, anti-apoptosis, migration, stemness and expression of MYC and its targets. STAT3 inhibition attenuates MYC expression by affecting recruitment of histone acetyltransferase p300, thereby reducing enrichment of H3K27 acetylation in the MYC promoter. Concomitantly, it also decreases the occupancy of the bromodomain containing protein-4 (BRD4) and phosphoSer2-RNA Pol II (pSer2-RNAPol II) on MYC, resulting in reduced transcription. Importantly, inhibition of STAT3 signaling significantly attenuated MB tumor growth in subcutaneous and intracranial orthotopic xenografts, increased the sensitivity of MB tumors to cisplatin, and improved the survival of mice bearing high-risk MYC-amplified tumors. Together, the results of our study demonstrate that targeting STAT3 may be a promising adjuvant therapy and chemo-sensitizer to augment treatment efficacy, reduce therapy-related toxicity and improve quality of life in high-risk pediatric patients.
Collapse
Affiliation(s)
- Kyle A Rohrer
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Anum Akbar
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Phillip J Wilder
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
| | - Erin M McIntyre
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Li JJ, Du WF, Liu YN, Wang F, Tang LJ, Jiang JH. Protein-Scaffolded DNA Nanostructures for Imaging of Apurinic/Apyrimidinic Endonuclease 1 Activity in Live Cells. Anal Chem 2023; 95:3551-3555. [PMID: 36774652 DOI: 10.1021/acs.analchem.2c05504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Nucleic acids are valuable tools for intracellular biomarker detection and gene regulation. Here we propose a new type of protein (avidin)-scaffolded DNA nanostructure (ADN) for imaging the activity of apurinic/apyrimidinic endonuclease 1 (APE1) in live cells. ADN is designed by assembling an avidin-displayed abasic site containing DNA strands labeled with a fluorophore or a quencher via a complementary linker strand. ADN is nonemissive due to the close proximity of fluorophores and quenchers. APE1-mediated cleavage separates the fluorophores from the quenchers, delivering activated fluorescence. In vitro assays show that ADN is responsive to APE1 with high sensitivity and high specificity. ADN can efficiently enter the cells, and its capability to visualize and detect intracellular APE1 activities is demonstrated in drug-treated cells and different cell lines. The modular and easy preparation of our nanostructures would afford a valuable platform for imaging and detecting APE1 activities in live cells.
Collapse
Affiliation(s)
- Jun-Jie Li
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wen-Fang Du
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Yi-Ning Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
28
|
Gorini F, Ambrosio S, Lania L, Majello B, Amente S. The Intertwined Role of 8-oxodG and G4 in Transcription Regulation. Int J Mol Sci 2023; 24:ijms24032031. [PMID: 36768357 PMCID: PMC9916577 DOI: 10.3390/ijms24032031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
29
|
Tarpley M, Chen Y, Bhakat KK. Genome-Wide Binding Analysis of DNA Repair Protein APE1 in Tumor Cells by ChIP-Seq. Methods Mol Biol 2023; 2701:243-252. [PMID: 37574487 DOI: 10.1007/978-1-0716-3373-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The base excision repair (BER) is the primary damage repair pathway for repairing most of the endogenous DNA damage including oxidative base lesions, apurinic/apyrimidinic (AP) sites, and single-strand breaks (SSBs) in the genome. Repair of these damages in cells relies on sequential recruitment and coordinated actions of multiple DNA repair enzymes, which include DNA glycosylases (such as OGG1), AP-endonucleases (APE1), DNA polymerases, and DNA ligases. APE1 plays a key role in the BER pathway by repairing the AP sites and SSBs in the genome. Several methods have been developed to generate a map of endogenous AP sites or SSBs in the genome and the binding of DNA repair proteins. In this chapter, we describe detailed approaches to map genome-wide occupancy or enrichment of APE1 in human cells using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Further, we discuss standard bioinformatics approaches for analyzing ChIP-seq data to identify APE1 enrichment or binding peaks in the genome.
Collapse
Affiliation(s)
- Mason Tarpley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
30
|
Moazamian A, Gharagozloo P, Aitken RJ, Drevet JR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Sperm telomeres, oxidative stress, and infertility. Reproduction 2022; 164:F125-F133. [PMID: 35938805 DOI: 10.1530/rep-22-0189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.
Collapse
Affiliation(s)
- Aron Moazamian
- CellOxess LLC, Ewing, New Jersey, USA.,Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| | | | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| |
Collapse
|