1
|
Sacharowski SP, Kubala S, Cwiek P, Steciuk J, Gratkowska-Zmuda D, Oksinska P, Bucior E, Rolicka AT, Ciesla M, Nowicka K, Alseekh S, Tohge T, Giavalisco P, Zugaj DL, Stolze SC, Harzen A, Franzen R, Huettel B, Grzesiuk E, Hajirezaei MR, Nakagami H, Koncz C, Fernie AR, Sarnowski TJ. BAF60/SWP73 subunits define subclasses of SWI/SNF chromatin remodelling complexes in Arabidopsis. THE NEW PHYTOLOGIST 2025. [PMID: 40404167 DOI: 10.1111/nph.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/07/2025] [Indexed: 05/24/2025]
Abstract
Evolutionarily conserved switch-defective/sucrose nonfermentable (SWI/SNF) ATP-dependent chromatin remodelling complexes (CRCs) alter nucleosome positioning and chromatin states, affecting gene expression to regulate important processes such as proper development and hormonal signalling pathways. We employed transcript profiling, chromatin immunoprecipitation (ChIP), mass spectrometry, yeast two-hybrid and bimolecular fluorescence complementation protein-protein interaction studies, along with hormone and metabolite profiling and phenotype assessments, to distinguish the SWP73A and SWP73B subunit functions in Arabidopsis. We identified a novel subclass of SWI/SNF CRCs defined by the presence of the SWP73A subunit. Therefore, we propose a refined classification of SWI/SNF CRCs in Arabidopsis, introducing BRM-associated SWI/SNF (BAS)-A (containing SWP73A) and BAS-B (containing SWP73B) subclasses. The SWP73A- and SWP73B-carrying SWI/SNF CRCs exhibit differential properties, demonstrated by distinct chromatin binding patterns and divergent effects on hormone biosynthesis and metabolism. We additionally found that SWP73A plays a specific role in the regulation of auxin signalling, root development, metabolism and germination that cannot be fully compensated by SWP73B. We recognised that some atypical subclasses of SWI/SNF CRCs may be likely formed in mutant lines with inactivated SWP73 subunits. Our study reveals that the duplication of the SWP73 subunit genes contributes to unique and shared functions of SWI/SNF CRC subclasses in the regulation of various processes in Arabidopsis.
Collapse
Affiliation(s)
- Sebastian P Sacharowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Szymon Kubala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Pawel Cwiek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Dominika Gratkowska-Zmuda
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Paulina Oksinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ernest Bucior
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Anna T Rolicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Monika Ciesla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Klaudia Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Dorota L Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Sara C Stolze
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Rainer Franzen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, D-50820, Köln, Germany
| | - Elzbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Seeland, OT Gatersleben, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Csaba Koncz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
2
|
Wang Q, Si C, Tang Q, Zhai Y, He Y, Li J, Feng X, Wang L, Zhou L, Wang L, Chen S, Chen F, Jiang J. The B-box protein CmBBX8 recruits chromatin modifiers CmFDM2/CmSWI3B to induce flowering in summer chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17182. [PMID: 39630875 DOI: 10.1111/tpj.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The transition from vegetative to reproductive growth is essential for the flowering process of plants. In summer chrysanthemum, CmBBX8 exploits prominence function in floral transition by activating the expression of CmFTL1. However, how CmBBX8 induces CmFTL1 during the photoperiod inductive cycles remains unknown. Here, we show that CmBBX8 interacts with the SGS3-like protein CmFDM2, and the CmFDM2 overexpression strains presented early flowering, while knockdown strains delayed flowering. Additionally, CmFDM2 could bind to the CmFTL1 promoter and activate the expression of CmFTL1, and associate with chromatin remodeling factor CmSWI3B, and CmBBX8 induces flowering dependent on CmFDM2 and CmSWI3B. CmFDM2 also partially depends on CmSWI3B. The CmSWI3B knockdown strains exhibited a significant late flowering phenotype. Interestingly, CmBBX8 also interacts with CmSWI3B. Moreover, the level of H3K27me3 at the CmFTL1 locus was reduced when CmBBX8 and CmFDM2/CmSWI3B occupied the locus to promote chrysanthemum flowering during the photoperiod inductive cycles, which was accompanied by the increasing level of CmFTL1 transcripts. Thus, our work provides novel insights into the gradually increasing level of CmFTL1 for the floral transition through CmBBX8 recruiting chromatin modifiers CmFDM2/CmSWI3B.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chaona Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingling Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Bulgakov VP. Chromatin modifications and memory in regulation of stress-related polyphenols: finding new ways to control flavonoid biosynthesis. Crit Rev Biotechnol 2024; 44:1478-1494. [PMID: 38697923 DOI: 10.1080/07388551.2024.2336529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
The influence of epigenetic factors on plant defense responses and the balance between growth and defense is becoming a central area in plant biology. It is believed that the biosynthesis of secondary metabolites can be regulated by epigenetic factors, but this is not associated with the formation of a "memory" to the previous biosynthetic status. This review shows that some epigenetic effects can result in epigenetic memory, which opens up new areas of research in secondary metabolites, in particular flavonoids. Plant-controlled chromatin modifications can lead to the generation of stress memory, a phenomenon through which information regarding past stress cues is retained, resulting in a modified response to recurring stress. How deeply are the mechanisms of chromatin modification and memory generation involved in the control of flavonoid biosynthesis? This article collects available information from the literature and interactome databases to address this issue. Visualization of the interaction of chromatin-modifying proteins with the flavonoid biosynthetic machinery is presented. Chromatin modifiers and "bookmarks" that may be involved in the regulation of flavonoid biosynthesis through memory have been identified. Through different mechanisms of chromatin modification, plants can harmonize flavonoid metabolism with: stress responses, developmental programs, light-dependent processes, flowering, and longevity programs. The available information points to the possibility of developing chromatin-modifying technologies to control flavonoid biosynthesis.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
4
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Wang W, Sung S. Chromatin sensing: integration of environmental signals to reprogram plant development through chromatin regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4332-4345. [PMID: 38436409 PMCID: PMC11263488 DOI: 10.1093/jxb/erae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Chromatin regulation in eukaryotes plays pivotal roles in controlling the developmental regulatory gene network. This review explores the intricate interplay between chromatin regulators and environmental signals, elucidating their roles in shaping plant development. As sessile organisms, plants have evolved sophisticated mechanisms to perceive and respond to environmental cues, orchestrating developmental programs that ensure adaptability and survival. A central aspect of this dynamic response lies in the modulation of versatile gene regulatory networks, mediated in part by various chromatin regulators. Here, we summarized current understanding of the molecular mechanisms through which chromatin regulators integrate environmental signals, influencing key aspects of plant development.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, TX 78712, USA
| |
Collapse
|
6
|
Chen X, He C, Xu H, Zeng G, Huang Q, Deng Z, Qin X, Shen X, Hu Y. Characterization of the SWI/SNF complex and nucleosome organization in sorghum. FRONTIERS IN PLANT SCIENCE 2024; 15:1430467. [PMID: 38988640 PMCID: PMC11234113 DOI: 10.3389/fpls.2024.1430467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
The switch defective/sucrose non-fermentable (SWI/SNF) multisubunit complex plays an important role in the regulation of gene expression by remodeling chromatin structure. Three SWI/SNF complexes have been identified in Arabidopsis including BAS, SAS, and MAS. Many subunits of these complexes are involved in controlling plant development and stress response. However, the function of these complexes has hardly been studied in other plant species. In this study, we identified the subunits of the SWI/SNF complex in sorghum and analyzed their evolutionary relationships in six grass species. The grass species conserved all the subunits as in Arabidopsis, but gene duplication occurred diversely in different species. Expression pattern analysis in sorghum (Sorghum bicolor) showed that most of the subunit-encoding genes were expressed constitutively, although the expression level was different. Transactivation assays revealed that SbAN3, SbGIF3, and SbSWI3B possessed transactivation activity, which suggests that they may interact with the pre-initiation complex (PIC) to activate transcription. We chose 12 subunits in sorghum to investigate their interaction relationship by yeast two-hybrid assay. We found that these subunits displayed distinct interaction patterns compared to their homologs in Arabidopsis and rice. This suggests that different SWI/SNF complexes may be formed in sorghum to perform chromatin remodeling functions. Through the integrated analysis of MNase-seq and RNA-seq data, we uncovered a positive relationship between gene expression levels and nucleosome phasing. Furthermore, we found differential global nucleosome enrichments between leaves and roots, as well as in response to PEG treatment, suggesting that dynamics of nucleosome occupancy, which is probably mediated by the SWI/SNF complex, may play important roles in sorghum development and stress response.
Collapse
Affiliation(s)
- Xiaofei Chen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Huan Xu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Gongjian Zeng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Quanjun Huang
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Zhuying Deng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xiner Qin
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xiangling Shen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yongfeng Hu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
7
|
Lin X, Yuan T, Guo H, Guo Y, Yamaguchi N, Wang S, Zhang D, Qi D, Li J, Chen Q, Liu X, Zhao L, Xiao J, Wagner D, Cui S, Zhao H. The regulation of chromatin configuration at AGAMOUS locus by LFR-SYD-containing complex is critical for reproductive organ development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:478-496. [PMID: 37478313 DOI: 10.1111/tpj.16385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.
Collapse
Affiliation(s)
- Xiaowei Lin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hong Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Nobutoshi Yamaguchi
- Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Shuge Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongxia Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongmei Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayu Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Chen
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinye Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Long Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, 19104-6084, Pennsylvania, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
8
|
Guo J, Cai G, Li YQ, Zhang YX, Su YN, Yuan DY, Zhang ZC, Liu ZZ, Cai XW, Guo J, Li L, Chen S, He XJ. Comprehensive characterization of three classes of Arabidopsis SWI/SNF chromatin remodelling complexes. NATURE PLANTS 2022; 8:1423-1439. [PMID: 36471048 DOI: 10.1038/s41477-022-01282-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Although SWI/SNF chromatin remodelling complexes are known to regulate diverse biological functions in plants, the classification, compositions and functional mechanisms of the complexes remain to be determined. Here we comprehensively characterized SWI/SNF complexes by affinity purification and mass spectrometry in Arabidopsis thaliana, and found three classes of SWI/SNF complexes, which we termed BAS, SAS and MAS (BRM-, SYD- and MINU1/2-associated SWI/SNF complexes). By investigating multiple developmental phenotypes of SWI/SNF mutants, we found that three classes of SWI/SNF complexes have both overlapping and specific functions in regulating development. To investigate how the three classes of SWI/SNF complexes differentially regulate development, we mapped different SWI/SNF components on chromatin at the whole-genome level and determined their effects on chromatin accessibility. While all three classes of SWI/SNF complexes regulate chromatin accessibility at proximal promoter regions, SAS is a major SWI/SNF complex that is responsible for mediating chromatin accessibility at distal promoter regions and intergenic regions. Histone modifications are related to both the association of SWI/SNF complexes with chromatin and the SWI/SNF-dependent chromatin accessibility. Three classes of SWI/SNF-dependent accessibility may enable different sets of transcription factors to access chromatin. These findings lay a foundation for further investigation of the function of three classes of SWI/SNF complexes in plants.
Collapse
Affiliation(s)
- Jing Guo
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Guang Cai
- National Institute of Biological Sciences, Beijing, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing, China
| | - Yi-Xuan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, China
| | - Jing Guo
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Yamaguchi N. Editorial: Epigenetics in Plant Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864945. [PMID: 35295634 PMCID: PMC8919189 DOI: 10.3389/fpls.2022.864945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
|
10
|
Wang Z, Cao H, Zhang C, Chen F, Liu Y. The SNF5-type protein BUSHY regulates seed germination via the gibberellin pathway and is dependent on HUB1 in Arabidopsis. PLANTA 2022; 255:34. [PMID: 35006338 DOI: 10.1007/s00425-021-03767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
The SNF5-type protein BUSHY plays a role in the regulation of seed germination via the gibberellin pathway dependent on HUB1 in Arabidopsis thaliana. SWITCH/SUCROSE NONFERMENTING (SWI/SNF) complexes play diverse roles in plant development. Some components have roles in embryo development and seed maturation, however, whether the SNF5-type protein BUSHY (BSH), one of the components, plays a role in Arabidopsis seed related traits is presently unclear. In our study, we show that a loss-of-function mutation in BSH causes increased seed germination in Arabidopsis. BSH transcription was induced by the gibberellin (GA) inhibitor paclobutrazol (PAC) in the seed, and BSH regulates the expression of GA pathway genes, such as Gibberellin 3-Oxidase 1 (GA3OX1), Gibberellic Acid-Stimulated Arabidopsis 4 (GASA4), and GASA6 during seed germination. A genetic analysis showed that seed germination was distinctly improved in the bshga3ox1ga3ox2 triple mutant, indicating that BSH acts partially downstream of GA3OX1 and GA3OX2. Moreover, the regulation of seed germination by BSH in response to PAC is dependent on HUB1. These results provide new insights and clues to understand the mechanisms of phytohormones in the regulation of seed germination.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Lin X, Yuan C, Zhu B, Yuan T, Li X, Yuan S, Cui S, Zhao H. LFR Physically and Genetically Interacts With SWI/SNF Component SWI3B to Regulate Leaf Blade Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:717649. [PMID: 34456957 PMCID: PMC8385146 DOI: 10.3389/fpls.2021.717649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Leaves start to develop at the peripheral zone of the shoot apical meristem. Thereafter, symmetric and flattened leaf laminae are formed. These events are simultaneously regulated by auxin, transcription factors, and epigenetic regulatory factors. However, the relationships among these factors are not well known. In this study, we conducted protein-protein interaction assays to show that our previously reported Leaf and Flower Related (LFR) physically interacted with SWI3B, a component of the ATP-dependent chromatin remodeling SWI/SNF complex in Arabidopsis. The results of truncated analysis and transgenic complementation showed that the N-terminal domain (25-60 amino acids) of LFR was necessary for its interaction with SWI3B and was crucial for LFR functions in Arabidopsis leaf development. Genetic results showed that the artificial microRNA knockdown lines of SWI3B (SWI3B-amic) had a similar upward-curling leaf phenotype with that of LFR loss-of-function mutants. ChIP-qPCR assay was conducted to show that LFR and SWI3B co-targeted the promoters of YABBY1/FILAMENTOUS FLOWER (YAB1/FIL) and IAA carboxyl methyltransferase 1 (IAMT1), which were misexpressed in lfr and SWI3B-amic mutants. In addition, the association between LFR and the FIL and IAMT1 loci was partly hampered by the knockdown of SWI3B. These data suggest that LFR interacts with the chromatin-remodeling complex component, SWI3B, and influences the transcriptional expression of the important transcription factor, FIL, and the auxin metabolism enzyme, IAMT1, in flattened leaf lamina development.
Collapse
Affiliation(s)
- Xiaowei Lin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Can Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Bonan Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tingting Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaorong Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shan Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
12
|
Linking Brassinosteroid and ABA Signaling in the Context of Stress Acclimation. Int J Mol Sci 2020; 21:ijms21145108. [PMID: 32698312 PMCID: PMC7404222 DOI: 10.3390/ijms21145108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The important regulatory role of brassinosteroids (BRs) in the mechanisms of tolerance to multiple stresses is well known. Growing data indicate that the phenomenon of BR-mediated drought stress tolerance can be explained by the generation of stress memory (the process known as ‘priming’ or ‘acclimation’). In this review, we summarize the data on BR and abscisic acid (ABA) signaling to show the interconnection between the pathways in the stress memory acquisition. Starting from brassinosteroid receptors brassinosteroid insensitive 1 (BRI1) and receptor-like protein kinase BRI1-like 3 (BRL3) and propagating through BR-signaling kinases 1 and 3 (BSK1/3) → BRI1 suppressor 1 (BSU1) ―‖ brassinosteroid insensitive 2 (BIN2) pathway, BR and ABA signaling are linked through BIN2 kinase. Bioinformatics data suggest possible modules by which BRs can affect the memory to drought or cold stresses. These are the BIN2 → SNF1-related protein kinases (SnRK2s) → abscisic acid responsive elements-binding factor 2 (ABF2) module; BRI1-EMS-supressor 1 (BES1) or brassinazole-resistant 1 protein (BZR1)–TOPLESS (TPL)–histone deacetylase 19 (HDA19) repressor complexes, and the BZR1/BES1 → flowering locus C (FLC)/flowering time control protein FCA (FCA) pathway. Acclimation processes can be also regulated by BR signaling associated with stress reactions caused by an accumulation of misfolded proteins in the endoplasmic reticulum.
Collapse
|
13
|
Yang J, Chang Y, Qin Y, Chen D, Zhu T, Peng K, Wang H, Tang N, Li X, Wang Y, Liu Y, Li X, Xie W, Xiong L. A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. THE NEW PHYTOLOGIST 2020; 227:65-83. [PMID: 32129897 DOI: 10.1111/nph.16518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 05/28/2023]
Abstract
Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.
Collapse
Affiliation(s)
- Jun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghua Qin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- South-Central University for Nationalities, Wuhan, 430074, China
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology (AG Kaufmann) Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tao Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Tang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yusen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Zhao Z, Li T, Peng X, Wu K, Yang S. Identification and Characterization of Tomato SWI3-Like Proteins: Overexpression of SlSWIC Increases the Leaf Size in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:ijms20205121. [PMID: 31623074 PMCID: PMC6829904 DOI: 10.3390/ijms20205121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
As the subunits of the SWI/SNF (mating-type switching (SWI) and sucrose nonfermenting (SNF)) chromatin-remodeling complexes (CRCs), Swi3-like proteins are crucial to chromatin remodeling in yeast and human. Growing evidence indicate that AtSWI3s are also essential for development and response to hormones in Arabidopsis. Nevertheless, the biological functions of Swi3-like proteins in tomato (Solanum lycopersicum) have not been investigated. Here we identified four Swi3-like proteins from tomato, namely SlSWI3A, SlSWI3B, SlSWI3C, and SlSWI3D. Subcellular localization analysis revealed that all SlSWI3s are localized in the nucleus. The expression patterns showed that all SlSWI3s are ubiquitously expressed in all tissues and organs, and SlSWI3A and SlSWI3B can be induced by cold treatment. In addition, we found that SlSWI3B can form homodimers with itself and heterodimers with SlSWI3A and SlSWI3C. SlSWI3B can also interact with SlRIN and SlCHR8, two proteins involved in tomato reproductive development. Overexpression of SlSWI3C increased the leaf size in transgenic Arabidopsis with increased expression of GROWTH REGULATING FACTORs, such as GRF3, GRF5, and GRF6. Taken together, our results indicate that SlSWI3s may play important roles in tomato growth and development.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510650, China.
| | - Xiuling Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proc Natl Acad Sci U S A 2019; 116:15288-15296. [PMID: 31285327 DOI: 10.1073/pnas.1900308116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage decreases genome stability and alters genetic information in all organisms. Conserved protein complexes have been evolved for DNA repair in eukaryotes, such as the structural maintenance complex 5/6 (SMC5/6), a chromosomal ATPase involved in DNA double-strand break (DSB) repair. Several factors have been identified for recruitment of SMC5/6 to DSBs, but this complex is also associated with chromosomes under normal conditions; how SMC5/6 dissociates from its original location and moves to DSB sites is completely unknown. In this study, we determined that SWI3B, a subunit of the SWI/SNF complex, is an SMC5-interacting protein in Arabidopsis thialiana Knockdown of SWI3B or SMC5 results in increased DNA damage accumulation. During DNA damage, SWI3B expression is induced, but the SWI3B protein is not localized at DSBs. Notably, either knockdown or overexpression of SWI3B disrupts the DSB recruitment of SMC5 in response to DNA damage. Overexpression of a cotranscriptional activator ADA2b rescues the DSB localization of SMC5 dramatically in the SWI3B-overexpressing cells but only weakly in the SWI3B knockdown cells. Biochemical data confirmed that ADA2b attenuates the interaction between SWI3B and SMC5 and that SWI3B promotes the dissociation of SMC5 from chromosomes. In addition, overexpression of SMC5 reduces DNA damage accumulation in the SWI3B knockdown plants. Collectively, these results indicate that the presence of an appropriate level of SWI3B enhances dissociation of SMC5 from chromosomes for its further recruitment at DSBs during DNA damage in plant cells.
Collapse
|
16
|
Han W, Han D, He Z, Hu H, Wu Q, Zhang J, Jiang J, Qin G, Cui Y, Lai J, Yang C. The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:127-132. [PMID: 29650150 DOI: 10.1016/j.plantsci.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 05/26/2023]
Abstract
The SWI/SNF complex is crucial to chromatin remodeling in various biological processes in different species, but the distinct functions of its components in plant development remain unclear. Here we uncovered the role of SWI3B, a subunit of the Arabidopsis thaliana SWI/SNF complex, via RNA interference. Knockdown of SWI3B resulted in an upward-curling leaf phenotype. Further investigation showed that the RNA level of IAA carboxyl methyltransferase 1 (IAMT1), encoding an enzyme involved in auxin metabolism, was dramatically elevated in the knockdown (SWI3B-RNAi) plants. In addition, activation of IAMT1 produced a leaf-curling phenotype similar to that of the SWI3B-RNAi lines. Database analysis suggested that the last intron of IAMT contains a site of polymerase V (Pol V) stabilized nucleosome, which may be associated with SWI3B. Data from a micrococcal nuclease (MNase) digestion assay showed that nucleosome occupancy around this site was downregulated in the leaves of SWI3B-RNAi plants. In addition, knockdown of IAMT1 in the SWI3B-RNAi background repressed the abnormal leaf development. Thus, SWI3B-mediated chromatin remodeling is critical in regulating the expression of IAMT1 in leaf development.
Collapse
Affiliation(s)
- Wenxing Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhipeng He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Juanjuan Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, Western University, London, Ontario, Canada
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
17
|
Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E1536-E1543. [PMID: 28154133 DOI: 10.1073/pnas.1610452114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have shown essential functions of O-linked N-acetylglucosamine (O-GlcNAc) modification in plants. However, the proteins and sites subject to this posttranslational modification are largely unknown. Here, we report a large-scale proteomic identification of O-GlcNAc-modified proteins and sites in the model plant Arabidopsis thaliana Using lectin weak affinity chromatography to enrich modified peptides, followed by mass spectrometry, we identified 971 O-GlcNAc-modified peptides belonging to 262 proteins. The modified proteins are involved in cellular regulatory processes, including transcription, translation, epigenetic gene regulation, and signal transduction. Many proteins have functions in developmental and physiological processes specific to plants, such as hormone responses and flower development. Mass spectrometric analysis of phosphopeptides from the same samples showed that a large number of peptides could be modified by either O-GlcNAcylation or phosphorylation, but cooccurrence of the two modifications in the same peptide molecule was rare. Our study generates a snapshot of the O-GlcNAc modification landscape in plants, indicating functions in many cellular regulation pathways and providing a powerful resource for further dissecting these functions at the molecular level.
Collapse
|
18
|
Yu X, Jiang L, Wu R, Meng X, Zhang A, Li N, Xia Q, Qi X, Pang J, Xu ZY, Liu B. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development. Sci Rep 2016; 6:38504. [PMID: 27917953 PMCID: PMC5137073 DOI: 10.1038/srep38504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China.,School of Bioengineering, Jilin College of Agricultural Science &Technology, Jilin 132301, P. R. China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Rui Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Qiong Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
19
|
Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:2108-22. [PMID: 27083783 DOI: 10.1111/pce.12756] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Abstract
Studies in yeast and animals have revealed that histone deacetylases (HDACs) often act as components of multiprotein complexes, including chromatin remodelling complexes (CRCs). However, interactions between HDACs and CRCs in plants have yet to be demonstrated. Here, we present evidence for the interaction between Arabidopsis HD2C deacetylase and a BRM-containing SWI/SNF CRC. Moreover, we reveal a novel function of HD2C as a regulator of the heat stress response. HD2C transcript levels were strongly induced in plants subjected to heat treatment, and the expression of selected heat-responsive genes was up-regulated in heat-stressed hd2c mutant, suggesting that HD2C acts to down-regulate heat-activated genes. In keeping with the HDAC activity of HD2C, the altered expression of HD2C-regulated genes coincided in most cases with increased histone acetylation at their loci. Microarray transcriptome analysis of hd2c and brm mutants identified a subset of commonly regulated heat-responsive genes, and the effect of the brm hd2c double mutation on the expression of these genes was non-additive. Moreover, heat-treated 3-week-old hd2c, brm and brm hd2c mutants displayed similar rates of growth retardation. Taken together, our findings suggest that HD2C and BRM act in a common genetic pathway to regulate the Arabidopsis heat stress response.
Collapse
Affiliation(s)
- Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Rafał Archacki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Antoni Palusiński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Maciej Kotliński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Katarzyna Sosnowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Jan Kuciński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jacek Olędzki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, 02-106, Warsaw, Poland
| | - Aleksandra Misicka
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 00-927, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Marta Kamila Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland.
| |
Collapse
|
20
|
Sarnowska E, Gratkowska DM, Sacharowski SP, Cwiek P, Tohge T, Fernie AR, Siedlecki JA, Koncz C, Sarnowski TJ. The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. TRENDS IN PLANT SCIENCE 2016; 21:594-608. [PMID: 26920655 DOI: 10.1016/j.tplants.2016.01.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
SWI/SNF-type ATP-dependent chromatin remodeling complexes (CRCs) are evolutionarily conserved multiprotein machineries controlling DNA accessibility by regulating chromatin structure. We summarize here recent advances highlighting the role of SWI/SNF in the regulation of hormone signaling pathways and their crosstalk in Arabidopsis thaliana. We discuss the functional interdependences of SWI/SNF complexes and key elements regulating developmental and hormone signaling pathways by indicating intriguing similarities and differences in plants and humans, and summarize proposed mechanisms of SWI/SNF action on target loci. We postulate that, given their viability, several plant SWI/SNF mutants may serve as an attractive model for searching for conserved functions of SWI/SNF CRCs in hormone signaling, cell cycle control, and other regulatory pathways.
Collapse
Affiliation(s)
| | | | | | - Pawel Cwiek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Csaba Koncz
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy, Temesvári Körút 62, 6724 Szeged, Hungary
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Folta A, Bargsten JW, Bisseling T, Nap JP, Mlynarova L. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:581-91. [PMID: 25974127 PMCID: PMC11388966 DOI: 10.1111/pbi.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.
Collapse
Affiliation(s)
- Adam Folta
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Joachim W Bargsten
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan-Peter Nap
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| | - Ludmila Mlynarova
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
22
|
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S, Truman W, Littlejohn G, Prusinska J, Mead A, Steinbrenner J, Hickman R, Rand D, Wild DL, Ott S, Buchanan-Wollaston V, Smirnoff N, Beynon J, Denby K, Grant M. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000. THE PLANT CELL 2015; 27:3038-64. [PMID: 26566919 PMCID: PMC4682296 DOI: 10.1105/tpc.15.00471] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 05/17/2023]
Abstract
Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.
Collapse
Affiliation(s)
- Laura A Lewis
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Krzysztof Polanski
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Marta de Torres-Zabala
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Siddharth Jayaraman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Laura Bowden
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Jonathan Moore
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Christopher A Penfold
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Dafyd J Jenkins
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Claire Hill
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Laura Baxter
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Satish Kulasekaran
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - William Truman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - George Littlejohn
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Justyna Prusinska
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Richard Hickman
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - David Rand
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - David L Wild
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Vicky Buchanan-Wollaston
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Nick Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jim Beynon
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Katherine Denby
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Murray Grant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
23
|
Han SK, Wu MF, Cui S, Wagner D. Roles and activities of chromatin remodeling ATPases in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:62-77. [PMID: 25977075 DOI: 10.1111/tpj.12877] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 05/18/2023]
Abstract
Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Miin-Feng Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Sacharowski SP, Gratkowska DM, Sarnowska EA, Kondrak P, Jancewicz I, Porri A, Bucior E, Rolicka AT, Franzen R, Kowalczyk J, Pawlikowska K, Huettel B, Torti S, Schmelzer E, Coupland G, Jerzmanowski A, Koncz C, Sarnowski TJ. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. THE PLANT CELL 2015; 27:1889-906. [PMID: 26106148 PMCID: PMC4531355 DOI: 10.1105/tpc.15.00233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 05/03/2023]
Abstract
Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control.
Collapse
Affiliation(s)
- Sebastian P Sacharowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Dominika M Gratkowska
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | | | - Paulina Kondrak
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Iga Jancewicz
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Aimone Porri
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Ernest Bucior
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Anna T Rolicka
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Rainer Franzen
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Justyna Kowalczyk
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Katarzyna Pawlikowska
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, D-50820 Köln, Germany
| | - Stefano Torti
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Elmon Schmelzer
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - George Coupland
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland Universtity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology, Department of Plant Molecular Biology, 02-106 Warsaw, Poland
| | - Csaba Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, D-50829 Köln, Germany Institute of Plant Biology, Biological Research Center of Hungarian Academy, H-6724 Szeged, Hungary
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics PAS, Department of Protein Biosynthesis, 02-106 Warsaw, Poland
| |
Collapse
|
25
|
Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S. Abscisic acid and abiotic stress tolerance - different tiers of regulation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:486-96. [PMID: 24655384 DOI: 10.1016/j.jplph.2013.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 05/21/2023]
Abstract
Abiotic stresses affect plant growth, metabolism and sustainability in a significant way and hinder plant productivity. Plants combat these stresses in myriad ways. The analysis of the mechanisms underlying abiotic stress tolerance has led to the identification of a highly complex, yet tightly regulated signal transduction pathway consisting of phosphatases, kinases, transcription factors and other regulatory elements. It is becoming increasingly clear that also epigenetic processes cooperate in a concerted manner with ABA-mediated gene expression in combating stress conditions. Dynamic stress-induced mechanisms, involving changes in the apoplastic pool of ABA, are transmitted by a chain of phosphatases and kinases, resulting in the expression of stress inducible genes. Processes involving DNA methylation and chromatin modification as well as post transcriptional, post translational and epigenetic control mechanisms, forming multiple tiers of regulation, regulate this gene expression. With recent advances in transgenic technology, it has now become possible to engineer plants expressing stress-inducible genes under the control of an inducible promoter, enhancing their ability to withstand adverse conditions. This review briefly discusses the synthesis of ABA, components of the ABA signal transduction pathway and the plants' responses at the genetic and epigenetic levels. It further focuses on the role of RNAs in regulating stress responses and various approaches to develop stress-tolerant transgenic plants.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; G(o) Unit, Okinawa Institute of Science and Technology, 1919-1, Onnason, Okinawa, Japan
| | - Purva Bhalothia
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India
| | - Prashali Bansal
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Mahesh Kumar Basantani
- Division of Endocrinology, University of Pittsburgh, 200 Lothrop Street, BST E1140, Pittsburgh, PA 15261, USA
| | - Vandana Bharti
- Department of Biotechnology, St. Columba's College, Vinoba Bhave University, Hazaribagh, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
26
|
Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han SK, Jégu T, Archacki R, Van Leene J, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. THE PLANT CELL 2014; 26:210-29. [PMID: 24443518 PMCID: PMC3963571 DOI: 10.1105/tpc.113.115907] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 05/18/2023]
Abstract
The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
Collapse
Affiliation(s)
- Liesbeth Vercruyssen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ken S. Heyndrickx
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Teddy Jégu
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris-Sud XI, 91405 Orsay, France
| | - Rafal Archacki
- Laboratory of Plant Molecular Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Megan Andriankaja
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Thomas Abeel
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research and Biochemistry, VIB, 90 00 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris-Sud XI, 91405 Orsay, France
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
27
|
Yuan L, Liu X, Luo M, Yang S, Wu K. Involvement of histone modifications in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:892-901. [PMID: 24034164 DOI: 10.1111/jipb.12060] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/17/2013] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.
Collapse
Affiliation(s)
- Lianyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
28
|
Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:305-17. [PMID: 23893173 PMCID: PMC3762652 DOI: 10.1104/pp.113.223933] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.
Collapse
|
29
|
Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P. Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1337-56. [PMID: 23435733 DOI: 10.1007/s00122-013-2056-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/20/2013] [Indexed: 05/20/2023]
Abstract
Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.
Collapse
Affiliation(s)
- Elena Cadic
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol Cell 2012; 49:298-309. [PMID: 23246435 PMCID: PMC3560041 DOI: 10.1016/j.molcel.2012.11.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/24/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
RNA-mediated transcriptional silencing prevents deleterious effects of transposon activity and controls the expression of protein-coding genes. It involves long noncoding RNAs (lncRNAs). In Arabidopsis thaliana, some of those lncRNAs are produced by a specialized RNA Polymerase V (Pol V). The mechanism by which lncRNAs affect chromatin structure and mRNA production remains mostly unknown. Here we identify the SWI/SNF ATP-dependent nucleosome-remodeling complex as a component of the RNA-mediated transcriptional silencing pathway. We found that SWI3B, an essential subunit of the SWI/SNF complex, physically interacts with a lncRNA-binding protein, IDN2. SWI/SNF subunits contribute to lncRNA-mediated transcriptional silencing. Moreover, Pol V mediates stabilization of nucleosomes on silenced regions. We propose that Pol V-produced lncRNAs mediate transcriptional silencing by guiding the SWI/SNF complex and establishing positioned nucleosomes on specific genomic loci. We further propose that guiding ATP-dependent chromatin-remodeling complexes may be a more general function of lncRNAs.
Collapse
|
31
|
Chen K, Wilson MA, Hirsch C, Watson A, Liang S, Lu Y, Li W, Dent SYR. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor. Genome Res 2012; 23:312-22. [PMID: 23124522 PMCID: PMC3561872 DOI: 10.1101/gr.141952.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The yeast Cyc8 (also known as Ssn6)–Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Cyc8–Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of CYC8 or TUP1 and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of CYC8 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at −1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Cyc8 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of CYC8 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Cyc8–Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.
Collapse
Affiliation(s)
- Kaifu Chen
- Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Comparative Analysis of SWIRM Domain-Containing Proteins in Plants. Comp Funct Genomics 2012; 2012:310402. [PMID: 22924025 PMCID: PMC3424641 DOI: 10.1155/2012/310402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/16/2012] [Accepted: 06/24/2012] [Indexed: 12/16/2022] Open
Abstract
Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins in Oryza sativa are widely expressed, especially in pistils. In addition, OsCHB701 and OsHDMA701 were downregulated by cold stress, whereas OsHDMA701 and OsHDMA702 were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress.
Collapse
|
33
|
Abstract
The realization that non-coding RNAs and antisense transcription are pervasive in many genomes has emphasized our relatively poor understanding of what limits transcription and how initiation and termination are linked to processing and turnover of the RNA. In genomes where the density of genes is high it is clearly important to efficiently terminate transcription to prevent read-through into adjacent genes. In a recent paper published in PNAS, we showed that two RNA binding proteins in Arabidopsis thaliana, FCA and FPA, play important roles in limiting intergenic transcription in the A. thaliana genome. Their absence leads to transcriptional read-through over many kilobases (kb), which influences expression, and in some cases chromatin modifications, of associated genes.
Collapse
Affiliation(s)
- Cagla Sonmez
- Department of Cell and Developmental Biology; John Innes Centre, Norwich, UK
| | | |
Collapse
|
34
|
Raut VV, Pandey SM, Sainis JK. Histone octamer trans-transfer: a signature mechanism of ATP-dependent chromatin remodelling unravelled in wheat nuclear extract. ANNALS OF BOTANY 2011; 108:1235-46. [PMID: 21896571 PMCID: PMC3197459 DOI: 10.1093/aob/mcr232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND SCOPE In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored. METHODS Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as (32)Pi released using liquid scintillation counting. KEY RESULTS ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity. CONCLUSIONS ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants.
Collapse
Affiliation(s)
- Vishal V. Raut
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | | | - Jayashree K. Sainis
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- For correspondence. E-mail
| |
Collapse
|
35
|
Kumar S, Jiang S, Jami SK, Hill RD. Cloning and characterization of barley caryopsis FCA. PHYSIOLOGIA PLANTARUM 2011; 143:93-106. [PMID: 21645000 DOI: 10.1111/j.1399-3054.2011.01490.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The RNA binding protein, flowering control locus A, (FCA) regulates flowering in rice and Arabidopsis. FCA interacts with FY to auto-regulate its own transcripts as well as to control flowering by downregulating flowering locus C (FLC). We report the cloning and characterization of the gamma (γ) isoform of FCA from barley (Hordeum vulgare cv. McLeod). The deduced protein contained two RNA recognition motifs (RRMs), a glycine-rich region at the N-terminal end, a polyglutamine region immediately downstream of a WW domain. Barley FCA had greater protein sequence homology to wheat and rice FCA than to its Arabidopsis homolog. In developing barley embryos, FCA transcripts could be detected from 2 days after pollination (DAP) up to 40 DAP. FCA transcript levels in mature barley embryo were more abundant in non-germinated than in germinated seeds, with the levels declining as germination progressed. ABA inhibition of germination inhibited the decline of barley embryo FCA. Transient co-expression of FCA or a truncated FCA (lacking RRM) with maize VP1 promoter or wheat Em gene promoter in barley aleurone protoplasts led to increased VP1 and Em gene promoter activity. Barley FCA or truncated FCA localized in the nucleus suggested its role in gene regulation.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | | | | | | |
Collapse
|
36
|
Depège-Fargeix N, Javelle M, Chambrier P, Frangne N, Gerentes D, Perez P, Rogowsky PM, Vernoud V. Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:293-305. [PMID: 20819789 DOI: 10.1093/jxb/erq267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
OCL1 (OUTER CELL LAYER1) encodes a maize HD-ZIP class IV transcription factor (TF) characterized by the presence of a homeo DNA-binding domain (HD), a dimerization leucine zipper domain (ZIP), and a steroidogenic acute regulatory protein (StAR)-related lipid transfer domain (START) involved in lipid transport in animals but the function of which is still unknown in plants. By combining yeast and plant trans-activation assays, the transcriptional activation domain of OCL1 was localized to 85 amino acids in the N-terminal part of the START domain. Full-length OCL1 devoid of this activation domain is unable to trans-activate a reporter gene under the control of a minimal promoter fused to six repeats of the L1 box, a cis-element present in target genes of HD-ZIP IV TFs in Arabidopsis. In addition, ectopic expression of OCL1 leads to pleiotropic phenotypic aberrations in transgenic maize plants, the most conspicuous one being a strong delay in flowering time which is correlated with the misexpression of molecular markers for floral transition such as ZMM4 (Zea Mays MADS-box4) or DLF1 (DELAYED FLOWERING1). As suggested by the interaction in planta between OCL1 and SWI3C1, a bona fide subunit of the SWI/SNF complex, OCL1 may modulate transcriptional activity of its target genes by interaction with a chromatin remodelling complex.
Collapse
Affiliation(s)
- Nathalie Depège-Fargeix
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, IFR128 BioSciences Lyon Gerland, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dutkowski J, Tiuryn J. Phylogeny-guided interaction mapping in seven eukaryotes. BMC Bioinformatics 2009; 10:393. [PMID: 19948065 PMCID: PMC2793266 DOI: 10.1186/1471-2105-10-393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/30/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The assembly of reliable and complete protein-protein interaction (PPI) maps remains one of the significant challenges in systems biology. Computational methods which integrate and prioritize interaction data can greatly aid in approaching this goal. RESULTS We developed a Bayesian inference framework which uses phylogenetic relationships to guide the integration of PPI evidence across multiple datasets and species, providing more accurate predictions. We apply our framework to reconcile seven eukaryotic interactomes: H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. cerevisiae and A. thaliana. Comprehensive GO-based quality assessment indicates a 5% to 44% score increase in predicted interactomes compared to the input data. Further support is provided by gold-standard MIPS, CYC2008 and HPRD datasets. We demonstrate the ability to recover known PPIs in well-characterized yeast and human complexes (26S proteasome, endosome and exosome) and suggest possible new partners interacting with the putative SWI/SNF chromatin remodeling complex in A. thaliana. CONCLUSION Our phylogeny-guided approach compares favorably to two standard methods for mapping PPIs across species. Detailed analysis of predictions in selected functional modules uncovers specific PPI profiles among homologous proteins, establishing interaction-based partitioning of protein families. Provided evidence also suggests that interactions within core complex subunits are in general more conserved and easier to transfer accurately to other organisms, than interactions between these subunits.
Collapse
|
38
|
Archacki R, Sarnowski TJ, Halibart-Puzio J, Brzeska K, Buszewicz D, Prymakowska-Bosak M, Koncz C, Jerzmanowski A. Genetic analysis of functional redundancy of BRM ATPase and ATSWI3C subunits of Arabidopsis SWI/SNF chromatin remodelling complexes. PLANTA 2009; 229:1281-1292. [PMID: 19301030 DOI: 10.1007/s00425-009-0915-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/26/2009] [Indexed: 05/27/2023]
Abstract
In yeast and mammals, ATP-dependent chromatin remodelling complexes of the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologues of conserved subunits of SWI/SNF-type complexes, including Snf2-type ATPases and SWI3-type proteins, participate in analogous processes in Arabidopsis. Recent studies indicate a remarkable similarity between phenotypic effects of mutations in the SWI3 homologue ATSWI3C and bromodomain-ATPase BRM genes. To verify the extent of functional similarity between BRM and ATSWI3C, we have constructed atswi3c brm double mutants and compared their phenotypic traits to those of simultaneously grown single atswi3c and brm mutants. In addition to inheritance of characteristic developmental abnormalities shared by atswi3c and brm mutants, some additive brm-specific traits were also observed in the atswi3c brm double mutants. Unlike atswi3c, the brm mutation results in the enhancement of abnormal carpel development and pollen abortion leading to complete male sterility. Despite the overall similarity of brm and atswi3c phenotypes, a critical requirement for BRM in the differentiation of reproductive organs suggests that its regulatory functions do not entirely overlap those of ATSWI3C. The detection of two different transcript isoforms indicates that BRM is regulated by alternative splicing that creates an in-frame premature translation stop codon in its SNF2-like ATPase coding domain. The analysis of Arabidopsis mutants in nonsense-mediated decay suggests an involvement of this pathway in the control of alternative BRM transcript level.
Collapse
Affiliation(s)
- Rafal Archacki
- Laboratory of Plant Molecular Biology, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. THE PLANT CELL 2008; 20:2972-88. [PMID: 19033529 PMCID: PMC2613670 DOI: 10.1105/tpc.107.056705] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) has an important role for plant growth, development, and stress adaptation. HYPERSENSITIVE TO ABA1 (HAB1) is a protein phosphatase type 2C that plays a key role as a negative regulator of ABA signaling; however, the molecular details of HAB1 action in this process are not known. A two-hybrid screen revealed that SWI3B, an Arabidopsis thaliana homolog of the yeast SWI3 subunit of SWI/SNF chromatin-remodeling complexes, is a prevalent interacting partner of HAB1. The interaction mapped to the N-terminal half of SWI3B and required an intact protein phosphatase catalytic domain. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the interaction of HAB1 and SWI3B in the nucleus of plant cells. swi3b mutants showed a reduced sensitivity to ABA-mediated inhibition of seed germination and growth and reduced expression of the ABA-responsive genes RAB18 and RD29B. Chromatin immunoprecipitation experiments showed that the presence of HAB1 in the vicinity of RD29B and RAB18 promoters was abolished by ABA, which suggests a direct involvement of HAB1 in the regulation of ABA-induced transcription. Additionally, our results uncover SWI3B as a novel positive regulator of ABA signaling and suggest that HAB1 modulates ABA response through the regulation of a putative SWI/SNF chromatin-remodeling complex.
Collapse
Affiliation(s)
- Angela Saez
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
40
|
Casati P, Walbot V. Maize lines expressing RNAi to chromatin remodeling factors are similarly hypersensitive to UV-B radiation but exhibit distinct transcriptome responses. Epigenetics 2008; 3:216-29. [PMID: 18719398 PMCID: PMC2551322 DOI: 10.4161/epi.3.4.6631] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNAi knockdown lines targeting two putative chromatin factors (a methyl-CpG-binding domain protein MBD101 and a chromatin remodeling complex protein CHC101) exhibit identical phenotypic consequences after UV-B exposure including necrosis in adult leaves and seedling death. Here we report that these RNAi lines exhibit substantially different transcriptome changes assessed on a 44 K Agilent oligonucleotide array platform compared to each other and to UV-B tolerant non-transgenic siblings both before and after 8 h of UV-B exposure. Adult maize leaves express approximately 26,000 transcript types under greenhouse growth conditions; after 8 h of UV-B exposure 267 transcripts exhibit an expression change in the B73 control line. Most of these transcript abundance changes in B73 after UV-B treatment are not found in the two RNAi knockdown lines: 119 upregulated transcript types and 128 downregulated types are uniquely modulated in B73. The mbd101 RNAi line shows many more line-specific transcript changes (897 up, 68 down) than either B73 or the chc101 line (72 up, 103 down). By functional analysis, the largest category of genes with predicted functions affected by UV-B is the DNA/chromatin binding group. Differential activation of suites of transcription factors in the control and transgenic lines are the likely explanation for the divergent transcriptome profiles.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, USA 94305−5020.
| |
Collapse
|
41
|
Liu F, Quesada V, Crevillén P, Bäurle I, Swiezewski S, Dean C. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 2007; 28:398-407. [PMID: 17996704 DOI: 10.1016/j.molcel.2007.10.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/12/2007] [Accepted: 10/04/2007] [Indexed: 01/23/2023]
Abstract
A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.
Collapse
Affiliation(s)
- Fuquan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
42
|
Baurle I, Smith L, Baulcombe DC, Dean C. Widespread Role for the Flowering-Time Regulators FCA and FPA in RNA-Mediated Chromatin Silencing. Science 2007; 318:109-12. [DOI: 10.1126/science.1146565] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Ríos G, Gagete AP, Castillo J, Berbel A, Franco L, Rodrigo MI. Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:427-35. [PMID: 17481910 DOI: 10.1016/j.plaphy.2007.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 03/16/2007] [Indexed: 05/15/2023]
Abstract
Snf5-like proteins are components of multiprotein chromatin remodeling complexes involved in the ATP-dependent alteration of DNA-histone contacts. Mostly described in yeast and animals, the only plant SNF5-like gene characterized so far has been BSH from Arabidopsis thaliana (L.) Heynh. We report the cloning and characterization of expression of a SNF5-like gene from pea (Pisum sativum L. cv. Lincoln), which has been designated PsSNF5. Southern analysis showed a single copy of the gene in the pea genome. The cDNA contained a 723bp open reading frame encoding a 240 amino acid protein of 27.4kDa with a potential nuclear localization signal. PsSNF5 protein sequence closely resembled BSH, with which it showed an overall amino acid identity of 78.5%. Two-hybrid experiments showed that PsSNF5 is functionally interchangeable with Arabidopsis BSH in the interactions with other components of the remodeling complex. Phylogenetic analysis demonstrated that PsSNF5 clustered with translated expressed sequence tags from other Leguminosae, hypothetically coding for new Snf5-like proteins. RT-PCR expression analysis demonstrated that the PsSNF5 gene is constitutively expressed in all the tissues examined, with minor differences in expression level in different tissues. Nevertheless, expression analysis revealed that PsSNF5 was up-regulated in the last stages of embryo development, when water content decreases. Moreover, abscisic acid and drought stress induced PsSNF5 accumulation in germinating embryos and vegetative tissues, suggesting that chromatin remodeling induced by PsSNF5-containing complexes might contribute to the response to that phytohormone.
Collapse
Affiliation(s)
- Gabino Ríos
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Jerzmanowski A. SWI/SNF chromatin remodeling and linker histones in plants. ACTA ACUST UNITED AC 2007; 1769:330-45. [PMID: 17292979 DOI: 10.1016/j.bbaexp.2006.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 12/15/2006] [Accepted: 12/31/2006] [Indexed: 12/13/2022]
Abstract
In yeast and mammals, ATP-dependent chromatin remodeling complexes belonging to the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologs of conserved subunits of SWI/SNF-type complexes, including several putative ATPases and other core subunits, have been identified in plants. Here I summarize recent insights in structural organization and functional diversification of putative plant SWI/SNF-type chromatin remodeling complexes and discuss in a broader evolutionary perspective the similarities and differences between plant and yeast/animal SWI/SNF remodeling. I also summarize the current view of localization in nucleosome and dynamic behaviour in chromatin of linker (H1) histones and discuss significance of recent findings indicating that in both plants and mammals histone H1 is involved in determining patterns of DNA methylation at selected loci.
Collapse
Affiliation(s)
- Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
45
|
Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D. Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. THE PLANT CELL 2007; 19:403-16. [PMID: 17293567 PMCID: PMC1867337 DOI: 10.1105/tpc.106.048272] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chromatin remodeling is emerging as a central mechanism for patterning and differentiation in multicellular eukaryotes. SWI/SNF chromatin remodeling ATPases are conserved in the animal and plant kingdom and regulate transcriptional programs in response to endogenous and exogenous cues. In contrast with their metazoan orthologs, null mutants in two Arabidopsis thaliana SWI/SNF ATPases, BRAHMA (BRM) and SPLAYED (SYD), are viable, facilitating investigation of their role in the organism. Previous analyses revealed that syd and brm null mutants exhibit both similar and distinct developmental defects, yet the functional relationship between the two closely related ATPases is not understood. Another central question is whether these proteins act as general or specific transcriptional regulators. Using global expression studies, double mutant analysis, and protein interaction assays, we find overlapping functions for the two SWI/SNF ATPases. This partial diversification may have allowed expansion of the SWI/SNF ATPase regulatory repertoire, while preserving essential ancestral functions. Moreover, only a small fraction of all genes depends on SYD or BRM for expression, indicating that these SWI/SNF ATPases exhibit remarkable regulatory specificity. Our studies provide a conceptual framework for understanding the role of SWI/SNF chromatin remodeling in regulation of Arabidopsis development.
Collapse
Affiliation(s)
- Staver Bezhani
- Department of Biology, University of Pensylvania, Philadelphia, Penslvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hurtado L, Farrona S, Reyes JC. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2006; 62:291-304. [PMID: 16845477 DOI: 10.1007/s11103-006-9021-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/16/2006] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana BRAHMA (BRM, also called AtBRM) is a SNF2 family protein homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex involved in chromatin remodeling during transcription. Here we show that, in contrast to its Drosophila counterpart, BRM is not an essential gene. Thus, homozygous BRM loss of function mutants are viable but exhibit numerous defects including dwarfism, altered leaf and root development and several reproduction defects. The analysis of the progeny of self-fertilized heterozygous brm plants and reciprocal crosses between heterozygous and wild type plants indicated that disruption of BRM reduced both male and female gametophyte transmission. This was consistent with the presence of aborted ovules in the self-fertilized heterozygous flowers that contained arrested embryos predominantly at the two terminal cells stage. Furthermore, brm homozygous mutants were completely sterile. Flowers of brm loss-of-function mutants have several developmental abnormalities, including homeotic transformations in the second and third floral whorls. In accordance with these results, brm mutants present reduced levels of APETALA2, APETALA3, PISTILLATA and NAC-LIKE, ACTIVATED BY AP3/PI. We have previously shown that BRM strongly interacts with AtSWI3C. Now we extend our interaction studies demonstrating that BRM interacts weakly with AtSWI3B but not with AtSWI3A or AtSWI3D. In agreement with these results, the phenotype described in this study for brm plants is very similar to that previously described for the AtSWI3C mutant plants, suggesting that both proteins participate in the same genetic pathway or form a molecular complex.
Collapse
Affiliation(s)
- Lidia Hurtado
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla, Spain
| | | | | |
Collapse
|
47
|
Kaur J, Sebastian J, Siddiqi I. The Arabidopsis-mei2-like genes play a role in meiosis and vegetative growth in Arabidopsis. THE PLANT CELL 2006; 18:545-59. [PMID: 16473967 PMCID: PMC1383632 DOI: 10.1105/tpc.105.039156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis-mei2-Like (AML) genes comprise a five-member gene family related to the mei2 gene, which is a master regulator of meiosis in Schizosaccharomyces pombe and encodes an RNA binding protein. We have analyzed the AML genes to assess their role in plant meiosis and development. All five AML genes were expressed in both vegetative and reproductive tissues. Analysis of AML1-AML5 expression at the cellular level indicated a closely similar expression pattern. In the inflorescence, expression was concentrated in the shoot apical meristem, young buds, and reproductive organ primordia. Within the reproductive organs, strong expression was observed in meiocytes and developing gametes. Functional analysis using RNA interference (RNAi) and combinations of insertion alleles revealed a role for the AML genes in meiosis, with RNAi lines and specific multiple mutant combinations displaying sterility and a range of defects in meiotic chromosome behavior. Defects in seedling growth were also observed at low penetrance. These results indicate that the AML genes play a role in meiosis as well as in vegetative growth and reveal conservation in the genetic mechanisms controlling meiosis in yeast and plants.
Collapse
Affiliation(s)
- Jagreet Kaur
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | |
Collapse
|
48
|
Grasser KD. Emerging role for transcript elongation in plant development. TRENDS IN PLANT SCIENCE 2005; 10:484-90. [PMID: 16150628 DOI: 10.1016/j.tplants.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII), once regarded as the simple extension of the initiated mRNA, is a complex and highly regulated phase of the transcription cycle. Many factors have been identified that contribute to the dynamic control of the elongation stage of transcription. There are elongation factors that modulate the activity of RNAPII and other factors that facilitate the transcription through chromatin. Recent studies of mutants defective in elongation factors have revealed the importance of proper transcript elongation for the development of higher eukaryotes. Here, the essentials of transcript elongation are briefly summarized to discuss its role in developmental processes.
Collapse
Affiliation(s)
- Klaus D Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| |
Collapse
|
49
|
Sarnowski TJ, Ríos G, Jásik J, Swiezewski S, Kaczanowski S, Li Y, Kwiatkowska A, Pawlikowska K, Koźbiał M, Koźbiał P, Koncz C, Jerzmanowski A. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. THE PLANT CELL 2005; 17:2454-72. [PMID: 16055636 PMCID: PMC1197427 DOI: 10.1105/tpc.105.031203] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification. Whereas ATSWI3A and ATSWI3B form homodimers and heterodimers and interact with BSH/SNF5, ATSWI3C, and the flowering regulator FCA, ATSWI3D can only bind ATSWI3B in yeast two-hybrid assays. Mutations of ATSWI3A and ATSWI3B arrest embryo development at the globular stage. By a possible imprinting effect, the atswi3b mutations result in death for approximately half of both macrospores and microspores. Mutations in ATSWI3C cause semidwarf stature, inhibition of root elongation, leaf curling, aberrant stamen development, and reduced fertility. Plants carrying atswi3d mutations display severe dwarfism, alterations in the number and development of flower organs, and complete male and female sterility. These data indicate that, by possible contribution to the combinatorial assembly of different SWI/SNF complexes, the ATSWI3 proteins perform nonredundant regulatory functions that affect embryogenesis and both the vegetative and reproductive phases of plant development.
Collapse
Affiliation(s)
- Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JH, Cho YS, Yoon HS, Suh MC, Moon J, Lee I, Weigel D, Yun CH, Kim JK. Conservation and divergence of FCA function between Arabidopsis and rice. PLANT MOLECULAR BIOLOGY 2005; 58:823-838. [PMID: 16240176 DOI: 10.1007/s11103-005-8105-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 05/29/2005] [Indexed: 05/04/2023]
Abstract
Although several genes have been identified in rice which are functionally equivalent to the flowering time genes in Arabidopsis, primarily genes involved in the photoperiod pathway, little data is available regarding the genes that function in the autonomous pathway in rice. In order to acquire further insight into the control of heading dates in rice, we isolated and conducted an expression analysis on OsFCA, which exhibited 38% sequence homology with Arabidopsis FCA. The N-terminal region of the OsFCA protein appears to be unusually rich in glycine-residues, unlike the N-terminal region found in FCA. However, the genetic structure of OsFCA is, in general, similar to that of FCA. RT-PCR and in silico analyses also showed that alternative splicing and polyadenylation at intron3 were conserved in the genetic expression of OsFCA. We were able to detect alpha, beta, and gamma transcripts, but not the delta transcript, of the OsFCA gene. The beta and gamma transcripts of the OsFCA gene were detected via Northern analysis in the leaves, roots, and flowers of the plant. Flowers in younger stages exhibited higher transcript levels. These data suggest that intron3 may constitute a primary control point in the OsFCA pre-mRNA processing of rice. The overexpression of OsFCA cDNA, driven by the 35S promoter, was shown to partially rescue the late flowering phenotype of the fca mutant, suggesting that the functions of the OsFCA and the FCA are partially overlapped, despite the lack of an apparent FLC homologue in the rice genome. The constitutive expression of OsFCA resulted in no downregulation of FLC, but did result in the weak upregulation of SOC1 in the transgenic Arabidopsis. OsFCA overexpression did not result in a reduction of the gamma transcript levels of FCA in the transgenic Arabidopsis either, thereby suggesting that OsFCA had no effects on the autoregulation of Arabidopsis FCA. All of these results imply conservation and divergence in the functions of FCA between rice and Arabidopsis.
Collapse
Affiliation(s)
- Jeong-Hwan Lee
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Young-Sil Cho
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Hoon-Seok Yoon
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea
| | - Mi Chung Suh
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, 500-757, Gwangju, Korea
| | - Jihyun Moon
- School of Biological Sciences, Seoul National University, 151-742, Seoul, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, 151-742, Seoul, Korea
| | - Detlef Weigel
- Plant Biology Laboratory, Salk Institute, La Jolla, CA, 92037, USA
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Choong-Hyo Yun
- Genomics Division, National Institute of Agricultural Biotechnology, 441-707, Suwon, Korea
| | - Jeong-Kook Kim
- School of Life sciences and Biotechnology, Korea University, 136-701, Seoul, Korea.
| |
Collapse
|