1
|
Pardhe BD, Park H, Paudel P, Jeong J, Oh TJ, Choi KY, Ahn J. In-vitro optimization and active-site mutagenesis of CYP105D18 peroxygenase enhance the production of indigo. Enzyme Microb Technol 2025; 187:110634. [PMID: 40121950 DOI: 10.1016/j.enzmictec.2025.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Practical implementation of efficient biocatalysts for large-scale production of indigo remains challenging. Microbial cytochrome P450s may be useful for indigo production, but this has been rarely reported. We discovered that CYP105D18 catalysed H2O2-mediated C-3 hydroxylation of indole to synthesize indigo. A cell-free lysate from Escherichia coli containing CYP105D18 peroxygenase obtained after cell disruption was optimized for in vitro reaction. Next, 250 µM hydroxylamine was added to the cell-free lysate to inhibit other H2O2-utilizing enzymes that interfere with the CYP105D18 function. Furthermore, the active-site residues of CYP105D18, namely L87, A235, A282, and I386, involved in indole binding were mutated. L87F resulted in an approximately 12-fold increase in CYP105D18 activity. The catalytic efficiencies of the wild-type and L87F mutant were 0.01 and 0.12 mM-1min-1, respectively. Fed-batch fermentation using enriched autoinduction medium was used for higher production of E. coli cells containing CYP105D18 peroxygenase. The Cell-free lysate of disrupted cells yielded 710 mg/L of indigo in 20 min. This represents a simple enzymatic approach for indigo biosynthesis using cell-free lysate of E. coli overexpressing CYP105D18, H2O2, and catalase inhibitor without the need for multi enzyme systems and expensive cofactors. This single-enzyme system, used in a rapid process for indigo formation, could serve as an efficient approach for commercial bio-indigo production.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - HyunA Park
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Prakash Paudel
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan 31460, Republic of Korea
| | - Jaeho Jeong
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan 31460, Republic of Korea
| | - Kwon-Young Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea; Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; Applied Biological Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
3
|
Nomura K, Onda K, Murase H, Hashiya F, Ono Y, Terai G, Oka N, Asai K, Suzuki D, Takahashi N, Hiraoka H, Inagaki M, Kimura Y, Shimizu Y, Abe N, Abe H. Development of PCR primers enabling the design of flexible sticky ends for efficient concatenation of long DNA fragments. RSC Chem Biol 2024; 5:360-371. [PMID: 38576723 PMCID: PMC10989509 DOI: 10.1039/d3cb00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
We developed chemically modified PCR primers that allow the design of flexible sticky ends by introducing a photo-cleavable group at the phosphate moiety. Nucleic acid derivatives containing o-nitrobenzyl photo-cleavable groups with a tert-butyl group at the benzyl position were stable during strong base treatment for oligonucleotide synthesis and thermal cycling in PCR reactions. PCR using primers incorporating these nucleic acid derivatives confirmed that chain extension reactions completely stopped at position 1 before and after the site of the photo-cleavable group was introduced. DNA fragments of 2 and 3 kbp, with sticky ends of 50 bases, were successfully concatenated with a high yield of 77%. A plasmid was constructed using this method. Finally, we applied this approach to construct a 48.5 kbp lambda phage DNA, which is difficult to achieve using restriction enzyme-based methods. After 7 days, we were able to confirm the generation of DNA of the desired length. Although the efficiency is yet to be improved, the chemically modified PCR primer offers potential to complement enzymatic methods and serve as a DNA concatenation technique.
Collapse
Affiliation(s)
- Kohei Nomura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- CREST, Japan Science and Technology Agency 7 Gobancho Chiyoda-ku Tokyo 102-0076 Japan
| | - Yukiteru Ono
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science Faculty of Engineering, Gifu University Gifu 501-1193 Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Daisuke Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Naho Takahashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research Suita Osaka 565-0874 Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- CREST, Japan Science and Technology Agency 7 Gobancho Chiyoda-ku Tokyo 102-0076 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
| |
Collapse
|
4
|
Abstract
Machine learning-based design has gained traction in the sciences, most notably in the design of small molecules, materials, and proteins, with societal applications ranging from drug development and plastic degradation to carbon sequestration. When designing objects to achieve novel property values with machine learning, one faces a fundamental challenge: how to push past the frontier of current knowledge, distilled from the training data into the model, in a manner that rationally controls the risk of failure. If one trusts learned models too much in extrapolation, one is likely to design rubbish. In contrast, if one does not extrapolate, one cannot find novelty. Herein, we ponder how one might strike a useful balance between these two extremes. We focus in particular on designing proteins with novel property values, although much of our discussion is relevant to machine learning-based design more broadly.
Collapse
Affiliation(s)
- Clara Fannjiang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
6
|
Kitazawa Y, Iwabuchi N, Maejima K, Matsumoto O, Suzuki M, Matsuyama J, Koinuma H, Oshima K, Namba S, Yamaji Y. Random mutagenesis-based screening of the interface of phyllogen, a bacterial phyllody-inducing effector, for interaction with plant MADS-box proteins. FRONTIERS IN PLANT SCIENCE 2023; 14:1058059. [PMID: 37056494 PMCID: PMC10086140 DOI: 10.3389/fpls.2023.1058059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.
Collapse
Affiliation(s)
- Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Mejias-Gomez O, Madsen AV, Pedersen LE, Kristensen P, Goletz S. Eliminating OFF-frame clones in randomized gene libraries: An improved split β-lactamase enrichment system. N Biotechnol 2023; 75:13-20. [PMID: 36889578 DOI: 10.1016/j.nbt.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Large, randomized libraries are a key technology for many biotechnological applications. While genetic diversity is the main parameter most libraries direct their resources on, less focus is devoted to ensuring functional IN-frame expression. This study describes a faster and more efficient system based on a split β-lactamase complementation for removal of OFF-frame clones and increase of functional diversity, suitable for construction of randomized libraries. The gene of interest is inserted between two fragments of the β-lactamase gene, conferring resistance to β-lactam drugs only upon expression of an inserted IN-frame gene without stop codons or frameshifts. The preinduction-free system was capable of eliminating OFF-frame clones in starting mixtures of as little as 1% IN-frame clones and enriching to about 70% IN-frame clones, even when their starting rate was as low as 0.001%. The curation system was verified by constructing a single-domain antibody phage display library using trinucleotide phosphoramidites for randomizing a complementary determining region, while eliminating OFF-frame clones and maximizing functional diversity.
Collapse
Affiliation(s)
- Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas V Madsen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E Pedersen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Kofman C, Watkins AM, Kim D, Willi JA, Wooldredge A, Karim A, Das R, Jewett MC. Computationally-guided design and selection of high performing ribosomal active site mutants. Nucleic Acids Res 2022; 50:13143-13154. [PMID: 36484094 PMCID: PMC9825160 DOI: 10.1093/nar/gkac1036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding how modifications to the ribosome affect function has implications for studying ribosome biogenesis, building minimal cells, and repurposing ribosomes for synthetic biology. However, efforts to design sequence-modified ribosomes have been limited because point mutations in the ribosomal RNA (rRNA), especially in the catalytic active site (peptidyl transferase center; PTC), are often functionally detrimental. Moreover, methods for directed evolution of rRNA are constrained by practical considerations (e.g. library size). Here, to address these limitations, we developed a computational rRNA design approach for screening guided libraries of mutant ribosomes. Our method includes in silico library design and selection using a Rosetta stepwise Monte Carlo method (SWM), library construction and in vitro testing of combined ribosomal assembly and translation activity, and functional characterization in vivo. As a model, we apply our method to making modified ribosomes with mutant PTCs. We engineer ribosomes with as many as 30 mutations in their PTCs, highlighting previously unidentified epistatic interactions, and show that SWM helps identify sequences with beneficial phenotypes as compared to random library sequences. We further demonstrate that some variants improve cell growth in vivo, relative to wild type ribosomes. We anticipate that SWM design and selection may serve as a powerful tool for rRNA engineering.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Prescient Design, Genentech, South San Francisco, CA 94080, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Inceptive Nucleics, Inc., Palo Alto, CA 94304, USA
| | - Jessica A Willi
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra C Wooldredge
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Sigmund M, Xu G, Grandi E, Poelarends GJ. Enhancing the Peroxygenase Activity of a Cofactor-Independent Peroxyzyme by Directed Evolution Enabling Gram-Scale Epoxide Synthesis. Chemistry 2022; 28:e202201651. [PMID: 35861144 PMCID: PMC9804992 DOI: 10.1002/chem.202201651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 01/09/2023]
Abstract
Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2 O2 with water being the sole by-product. These biocatalysts can provide 'green' routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of α,β-unsaturated aldehydes with H2 O2 , is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding α,β-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an ∼150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of α,β-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.
Collapse
Affiliation(s)
- Marie‐Cathérine Sigmund
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusignlaan 19713 AVGroningenThe Netherlands
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusignlaan 19713 AVGroningenThe Netherlands
| | - Eleonora Grandi
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusignlaan 19713 AVGroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusignlaan 19713 AVGroningenThe Netherlands
| |
Collapse
|
10
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
11
|
OverFlap PCR: A reliable approach for generating plasmid DNA libraries containing random sequences without a template bias. PLoS One 2022; 17:e0262968. [PMID: 35939421 PMCID: PMC9359533 DOI: 10.1371/journal.pone.0262968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Over the decades, practical biotechnology researchers have aimed to improve naturally occurring proteins and create novel ones. It is widely recognized that coupling protein sequence randomization with various effect screening methodologies is one of the most powerful techniques for quickly, efficiently, and purposefully acquiring these desired improvements. Over the years, considerable advancements have been made in this field. However, developing PCR-based or template-guided methodologies has been hampered by resultant template sequence biases. Here, we present a novel whole plasmid amplification-based approach, which we named OverFlap PCR, for randomizing virtually any region of plasmid DNA without introducing a template sequence bias.
Collapse
|
12
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
13
|
Implementation of a Practical Teaching Course on Protein Engineering. BIOLOGY 2022; 11:biology11030387. [PMID: 35336761 PMCID: PMC8944992 DOI: 10.3390/biology11030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Proteins are the workhorses of the cell. With different combinations of the 20 common amino acids and some modifications of these amino acids, proteins have evolved with a staggering array of new functions and capabilities due to Protein Engineering techniques. The practical course presented was offered to undergraduate bioengineering and chemical students at the Faculty of Engineering of the University of Porto (Portugal) and consists of sequential laboratory sessions to learn the basic skills related to the expression and purification of recombinant proteins in bacterial hosts. These experiments were successfully applied by students as all working groups were able to isolate a model recombinant protein (the enhanced green fluorescent protein) from a cell lysate containing a mixture of proteins and other biomolecules produced by an Escherichia coli strain and evaluate the performance of the extraction and purification procedures they learned. Abstract Protein Engineering is a highly evolved field of engineering aimed at developing proteins for specific industrial, medical, and research applications. Here, we present a practical teaching course to demonstrate fundamental techniques used to express, purify and analyze a recombinant protein produced in Escherichia coli—the enhanced green fluorescent protein (eGFP). The methodologies used for eGFP production were introduced sequentially over six laboratory sessions and included (i) bacterial growth, (ii) sonication (for cell lysis), (iii) affinity chromatography and dialysis (for eGFP purification), (iv) bicinchoninic acid (BCA) and fluorometry assays for total protein and eGFP quantification, respectively, and (v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for qualitative analysis. All groups were able to isolate the eGFP from the cell lysate with purity levels up to 72%. Additionally, a mass balance analysis performed by the students showed that eGFP yields up to 46% were achieved at the end of the purification process following the adopted procedures. A sensitivity analysis was performed to pinpoint the most critical steps of the downstream processing.
Collapse
|
14
|
Chen W, She W, Li A, Zhai C, Ma L. Site-Directed Mutagenesis Method Mediated by Cas9. Methods Mol Biol 2022; 2461:165-174. [PMID: 35727450 DOI: 10.1007/978-1-0716-2152-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This study presents an in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants or site-saturation mutagenesis libraries in a PCR-independent manner. The plasmid DNA is double digested with Cas9 bearing specific single guide RNAs to remove the target nucleotides. Next, T5 exonuclease excises both 5'-ends of the linearized plasmid to generate homologous regions of approximately 15 nt. Subsequently, a short dsDNA of approximately 30-50 bp containing the desired mutation cyclizes the plasmid through base pairing and introduces the mutation into the plasmid. The gaps are repaired in Escherichia coli host cells after transformation. This method is highly efficient and accurate. Both single and multiple site-directed mutagenesis can be successfully performed, especially to large sized plasmids. This method demonstrates the great potential for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Wenwen She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
15
|
Protein design-scapes generated by microfluidic DNA assembly elucidate domain coupling in the bacterial histidine kinase CpxA. Proc Natl Acad Sci U S A 2021; 118:2017719118. [PMID: 33723045 PMCID: PMC8000134 DOI: 10.1073/pnas.2017719118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The randomization and screening of combinatorial DNA libraries is a powerful technique for understanding sequence-function relationships and optimizing biosynthetic pathways. Although it can be difficult to predict a priori which sequence combinations encode functional units, it is often possible to omit undesired combinations that inflate library size and screening effort. However, defined library generation is difficult when a complex scan through sequence space is needed. To overcome this challenge, we designed a hybrid valve- and droplet-based microfluidic system that deterministically assembles DNA parts in picoliter droplets, reducing reagent consumption and bias. Using this system, we built a combinatorial library encoding an engineered histidine kinase (HK) based on bacterial CpxA. Our library encodes designed transmembrane (TM) domains that modulate the activity of the cytoplasmic domain of CpxA and variants of the structurally distant "S helix" located near the catalytic domain. We find that the S helix sets a basal activity further modulated by the TM domain. Surprisingly, we also find that a given TM motif can elicit opposing effects on the catalytic activity of different S-helix variants. We conclude that the intervening HAMP domain passively transmits signals and shapes the signaling response depending on subtle changes in neighboring domains. This flexibility engenders a richness in functional outputs as HKs vary in response to changing evolutionary pressures.
Collapse
|
16
|
Menghiu G, Ostafe V, Prodanović R, Fischer R, Ostafe R. A High-Throughput Screening System Based on Fluorescence-Activated Cell Sorting for the Directed Evolution of Chitinase A. Int J Mol Sci 2021; 22:ijms22063041. [PMID: 33809788 PMCID: PMC8002391 DOI: 10.3390/ijms22063041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.
Collapse
Affiliation(s)
- Gheorghita Menghiu
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Advanced Environmental Research Laboratories, Department of Biology–Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology–Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Radivoje Prodanović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Rainer Fischer
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Institute for Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (G.M.); (R.F.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-317-765-496-4012
| |
Collapse
|
17
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|
18
|
Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, Savolainen O, Meskys R, Engqvist MKM, Zelezniak A. Expanding functional protein sequence spaces using generative adversarial networks. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00310-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Hiraga K, Mejzlik P, Marcisin M, Vostrosablin N, Gromek A, Arnold J, Wiewiora S, Svarba R, Prihoda D, Clarova K, Klempir O, Navratil J, Tupa O, Vazquez-Otero A, Walas MW, Holy L, Spale M, Kotowski J, Dzamba D, Temesi G, Russell JH, Marshall NM, Murphy GS, Bitton DA. Mutation Maker, An Open Source Oligo Design Platform for Protein Engineering. ACS Synth Biol 2021; 10:357-370. [PMID: 33433999 DOI: 10.1021/acssynbio.0c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein engineering is the discipline of developing useful proteins for applications in research, therapeutic, and industrial processes by modification of naturally occurring proteins or by invention of de novo proteins. Modern protein engineering relies on the ability to rapidly generate and screen diverse libraries of mutant proteins. However, design of mutant libraries is typically hampered by scale and complexity, necessitating development of advanced automation and optimization tools that can improve efficiency and accuracy. At present, automated library design tools are functionally limited or not freely available. To address these issues, we developed Mutation Maker, an open source mutagenic oligo design software for large-scale protein engineering experiments. Mutation Maker is not only specifically tailored to multisite random and directed mutagenesis protocols, but also pioneers bespoke mutagenic oligo design for de novo gene synthesis workflows. Enabled by a novel bundle of orchestrated heuristics, optimization, constraint-satisfaction and backtracking algorithms, Mutation Maker offers a versatile toolbox for gene diversification design at industrial scale. Supported by in silico simulations and compelling experimental validation data, Mutation Maker oligos produce diverse gene libraries at high success rates irrespective of genes or vectors used. Finally, Mutation Maker was created as an extensible platform on the notion that directed evolution techniques will continue to evolve and revolutionize current and future-oriented applications.
Collapse
Affiliation(s)
- Kaori Hiraga
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Petr Mejzlik
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Matej Marcisin
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Nikita Vostrosablin
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Anna Gromek
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Arnold
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Sebastian Wiewiora
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Rastislav Svarba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Prihoda
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Kamila Clarova
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ondrej Klempir
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Josef Navratil
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Ondrej Tupa
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | | | - Marcin W. Walas
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Lukas Holy
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Martin Spale
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Kotowski
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Dzamba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Gergely Temesi
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jay H. Russell
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Nicholas M. Marshall
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Grant S. Murphy
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Danny A. Bitton
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| |
Collapse
|
20
|
Suchsland R, Appel B, Virta P, Müller S. Synthesis of fully protected trinucleotide building blocks on a disulphide-linked soluble support. RSC Adv 2021; 11:3892-3896. [PMID: 35424330 PMCID: PMC8694130 DOI: 10.1039/d0ra10941j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, preparation of fully protected trinucleotide phosphoramidites as synthons for the codon-based synthesis of gene libraries as well as for the assembly of oligonucleotides from blockmers has gained much attention. We here describe the preparation of such trinucleotide synthons on a soluble support using a disulphide linker. Fully protected trinucleotides are synthesized on a tetrapodal soluble support using a disulphide linkage that upon reductive cleavage allows release of the trinucleotide with free 3′-OH group for further conversion to a phosphoramidite.![]()
Collapse
Affiliation(s)
- Ruth Suchsland
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| | - Bettina Appel
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| | - Pasi Virta
- University of Turku
- Department of Chemistry
- 20014 Turku
- Finland
| | - Sabine Müller
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| |
Collapse
|
21
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|
22
|
Tack DS, Romantseva EF, Tonner PD, Pressman A, Rammohan J, Strychalski EA. Measurements drive progress in directed evolution for precise engineering of biological systems. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 23:32-37. [PMID: 34611570 PMCID: PMC8489032 DOI: 10.1016/j.coisb.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise engineering of biological systems requires quantitative, high-throughput measurements, exemplified by progress in directed evolution. New approaches allow high-throughput measurements of phenotypes and their corresponding genotypes. When integrated into directed evolution, these quantitative approaches enable the precise engineering of biological function. At the same time, the increasingly routine availability of large, high-quality data sets supports the integration of machine learning with directed evolution. Together, these advances herald striking capabilities for engineering biology.
Collapse
Affiliation(s)
- Drew S Tack
- National Institute of Standards and Technology, Gaithersburg, MD, 20898, USA
| | | | - Peter D Tonner
- National Institute of Standards and Technology, Gaithersburg, MD, 20898, USA
| | - Abe Pressman
- National Institute of Standards and Technology, Gaithersburg, MD, 20898, USA
| | - Jayan Rammohan
- National Institute of Standards and Technology, Gaithersburg, MD, 20898, USA
| | | |
Collapse
|
23
|
Nguyen TD, Saito Y, Kameda T. CodonAdjust: a software for in silico design of a mutagenesis library with specific amino acid profiles. Protein Eng Des Sel 2020; 32:503-511. [PMID: 32705123 DOI: 10.1093/protein/gzaa013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 11/12/2022] Open
Abstract
In protein engineering, generation of mutagenesis libraries is a key step to study the functions of mutants. To generate mutants with a desired composition of amino acids (AAs), a codon consisting of a mixture of nucleotides is widely applied. Several computational methods have been proposed to calculate a codon nucleotide composition for generating a given amino acid profile based on mathematical optimization. However, these previous methods need to manually tune weights of amino acids in objective functions, which are time-consuming and, more importantly, lack publicly available software implementations. Here, we develop CodonAdjust, a software to adjust a codon nucleotide composition for mimicking a given amino acid profile. We propose different options of CodonAdjust, which provide various customizations in practical scenarios such as setting a guaranteeing threshold for the frequencies of amino acids without any manual tasks. We demonstrate the capability of CodonAdjust in the experiments on the complementarity-determining regions (CDRs) of antibodies and T-cell receptors (TCRs) as well as millions of amino acid profiles from Pfam. These results suggest that CodonAdjust is a productive software for codon design and may accelerate library generation. CodonAdjust is freely available at https://github.com/tiffany-nguyen/CodonAdjust. Paper edited by Dr. Jeffery Saven, Board Member for PEDS.
Collapse
Affiliation(s)
- Thuy Duong Nguyen
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.,AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
24
|
High-throughput screening of enzyme mutants by comparison of their activity ratios to an enzyme tag. Anal Biochem 2020; 588:113474. [PMID: 31614116 DOI: 10.1016/j.ab.2019.113474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
With Escherichia coli alkaline phosphatase (ECAP) as the tag fused to the N-terminus of Pseudomonas Aeruginosa arylsulfatase (PAAS) and its mutants via a flexible linker, the comparison of the activity ratios of an applicable enzyme and its mutants to a suitable enzyme tag in cell lysates of their fused forms was tested for high-throughput (HTP) screening of mutants. After both the induced expression of a fused form and alkaline lysis of the transformed cells in microplate wells, HTP assay of the activities of ECAP and PAAS/mutant was realized via spectrophotometric-dual-enzyme-simultaneous-assay to derive their activity ratio. The successful induced expression of fused forms required ECAP activities higher than 5.3 U/L in cell lysates. Of three representative fused PAAS/mutants in cell lysates, there were similar proteolytic fragments and the comparison of their activity ratios greatly enhanced the recognition of weakly positive mutants. After saturation mutagenesis at M72 of the fused PAAS, the activity ratios of PAAS/mutants to ECAP in cell lysates of their fused forms were proportional to specific activities of their non-fused counterparts in cell lysates by an immunoturbidimetric assay. Therefore, the proposed strategy was absorbing for both HTP screening of mutants and HTP elucidation of sequence-activity relationship of applicable enzymes.
Collapse
|
25
|
Rapid Affinity Maturation of Novel Anti-PD-L1 Antibodies by a Fast Drop of the Antigen Concentration and FACS Selection of Yeast Libraries. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6051870. [PMID: 31976323 PMCID: PMC6959147 DOI: 10.1155/2019/6051870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
The affinity engineering is a key step to increase the efficacy of therapeutic monoclonal antibodies and yeast surface display is the most widely used and powerful affinity maturation approach, achieving picomolar binding affinities. In this study, we provide an optimization of the yeast surface display methodology, applied to the generation of potentially therapeutic high affinity antibodies targeting the immune checkpoint PD-L1. In this approach, we coupled a 10-cycle error-prone mutagenesis of heavy chain complementarity determining region 3 of an anti‐PD-L1 scFv, previously identified by phage display, with high-throughput sequencing, to generate scFv-yeast libraries with high mutant frequency and diversity. In addition, we set up a novel, faster and effective selection scheme by fluorescence-activated cell sorting, based on a fast drop of the antigen concentration between the first and the last selection cycles, unlike the gradual decrease typical of current selection protocols. In this way we isolated 6 enriched mutated scFv-yeast clones overall, showing an affinity improvement for soluble PD-L1 protein compared to the parental scFv. As a proof of the potency of the novel approach, we confirmed that the antibodies converted from all the mutated scFvs retained the affinity improvement. Remarkably, the best PD-L1 binder among them also bound with a higher affinity to PD-L1 expressed in its native conformation on human-activated lymphocytes, and it was able to stimulate lymphocyte proliferation in vitro more efficiently than its parental antibody. This optimized technology, besides the identification of a new potential checkpoint inhibitor, provides a tool for the quick isolation of high affinity binders.
Collapse
|
26
|
Newton MS, Morrone DJ, Lee KH, Seelig B. Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries. Chembiochem 2019; 20:846-856. [PMID: 30511381 DOI: 10.1002/cbic.201800668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 11/08/2022]
Abstract
The universal genetic code of 20 amino acids is the product of evolution. It is believed that earlier versions of the code had fewer residues. Many theories for the order in which amino acids were integrated into the code have been proposed, considering factors ranging from prebiotic chemistry to codon capture. Several meta-analyses combined these theories to yield a feasible consensus chronology of the genetic code's evolution, but there is a dearth of experimental data to test the hypothesised order. We used combinatorial chemistry to synthesise libraries of random polypeptides that were based on different subsets of the 20 standard amino acids, thus representing different stages of a plausible history of the alphabet. Four libraries were comprised of the five, nine, and 16 most ancient amino acids, and all 20 extant residues for a direct side-by-side comparison. We characterised numerous variants from each library for their solubility and propensity to form secondary, tertiary or quaternary structures. Proteins from the two most ancient libraries were more likely to be soluble than those from the extant library. Several individual protein variants exhibited inducible protein folding and other traits typical of intrinsically disordered proteins. From these libraries, we can infer how primordial protein structure and function might have evolved with the genetic code.
Collapse
Affiliation(s)
- Matilda S Newton
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Dana J Morrone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Kun-Hwa Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| |
Collapse
|
27
|
Abstract
Microbial transglutaminase (mTG), a protein-glutamine γ-glutamyltransferase from Streptomyces mobaraensis, is an enzyme capable of forming isopeptide bonds between the nearly inert (from the chemical point of view) γ-carboxamides present in the side chain of glutamine residues and primary amines. Its high substrate tolerance, compared to other bond-forming enzymes, makes it a versatile tool for numerous applications including food manufacturing, material science, and biotechnology. Although an mTG-mediated bioconjugation is a well-established technique, some major drawbacks of this approach need to be bypassed, with the poor substrate specificity being among the most essential ones. Especially biopharmaceutical methodologies require high subsite specificity of the utilized biocatalyst, which is often not warranted by mTG. Therefore, access to tailor-made transglutaminases is strongly desired. Herein, we describe a protocol for the generation of mTG libraries based on yeast surface display, which allow for the isolation of mutants with altered properties. Moreover, methods for cloning of respective expression vectors, recombinant expression, and in vitro procession are provided.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
28
|
Studer S, Hansen DA, Pianowski ZL, Mittl PRE, Debon A, Guffy SL, Der BS, Kuhlman B, Hilvert D. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 2018; 362:1285-1288. [DOI: 10.1126/science.aau3744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Primordial sequence signatures in modern proteins imply ancestral origins tracing back to simple peptides. Although short peptides seldom adopt unique folds, metal ions might have templated their assembly into higher-order structures in early evolution and imparted useful chemical reactivity. Recapitulating such a biogenetic scenario, we have combined design and laboratory evolution to transform a zinc-binding peptide into a globular enzyme capable of accelerating ester cleavage with exacting enantiospecificity and high catalytic efficiency (kcat/KM~ 106M−1s−1). The simultaneous optimization of structure and function in a naïve peptide scaffold not only illustrates a plausible enzyme evolutionary pathway from the distant past to the present but also proffers exciting future opportunities for enzyme design and engineering.
Collapse
|
29
|
She W, Ni J, Shui K, Wang F, He R, Xue J, Reetz MT, Li A, Ma L. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System. ACS Synth Biol 2018; 7:2236-2244. [PMID: 30075075 DOI: 10.1021/acssynbio.8b00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The quality and efficiency of any PCR-based mutagenesis technique may not be optimal due to, among other things, amino acid bias, which means that the development of efficient PCR-free methods is desirable. Here, we present a highly efficient in vitro CRISPR/Cas9-mediated mutagenic (ICM) system that allows rapid construction of designed mutants in a PCR-free manner. First, it involves plasmid digestion by utilizing a complex of Cas9 with specific single guide RNA (sgRNA) followed by degradation with T5 exonuclease to generate a 15 nt homologous region. Second, primers containing the desired mutations are annealed to form the double-stranded DNA fragments, which are then ligated into the linearized plasmid. In theory, neither the size of the target plasmid nor the unavailable restriction enzyme site poses any problems that may arise in traditional techniques. In this study, single and multiple site-directed mutagenesis were successfully performed even for a large size plasmid (up to 9.0 kb). Moreover, a PCR-free site-saturation mutagenesis library on single site and two adjacent sites of a green fluorescent protein was also generated with promising results. This demonstrates the great potential of the ICM system for creating high-quality mutant libraries in directed evolution as an alternative to PCR-based saturation mutagenesis, thus facilitating research on synthetic biology.
Collapse
Affiliation(s)
- Wenwen She
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jing Ni
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Ruyi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Jinhui Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
30
|
Li A, Sun Z, Reetz MT. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? Chembiochem 2018; 19:2023-2032. [PMID: 30044530 DOI: 10.1002/cbic.201800339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of, Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
- Department of Chemistry; Philipps University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
31
|
Xu GC, Wang Y, Tang MH, Zhou JY, Zhao J, Han RZ, Ni Y. Hydroclassified Combinatorial Saturation Mutagenesis: Reshaping Substrate Binding Pockets of KpADH for Enantioselective Reduction of Bulky–Bulky Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guo-Chao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming-Hui Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jie-Yu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rui-Zhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
32
|
Seo JH, Min WK, Lee SG, Yun H, Kim BG. To the Final Goal: Can We Predict and Suggest Mutations for Protein to Develop Desired Phenotype? BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0064-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Li A, Acevedo-Rocha CG, Sun Z, Cox T, Xu JL, Reetz MT. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. Chembiochem 2017; 19:221-228. [DOI: 10.1002/cbic.201700540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
- Hubei Collaborative Innovation Center for, Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 P.R. China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Tony Cox
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Jia Lucy Xu
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Manfred T. Reetz
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
| |
Collapse
|
34
|
Bora B, Gogoi D, Tripathy D, Kurkalang S, Ramani S, Chatterjee A, Mukherjee AK. The N-terminal-truncated recombinant fibrin(ogen)olytic serine protease improves its functional property, demonstrates in vivo anticoagulant and plasma defibrinogenation activity as well as pre-clinical safety in rodent model. Int J Biol Macromol 2017; 111:462-474. [PMID: 29292153 DOI: 10.1016/j.ijbiomac.2017.12.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
An N-terminal truncated fibrino(geno)lytic serine protease gene encoding a ~42kDa protein from Bacillus cereus strain AB01 was produced by error prone PCR, cloned into pET19b vector, and expressed in E5 coli BL21 DE3 cells. The deletion of 24 amino acid residues from N-terminal of wild-type Bacifrinase improves the catalytic activity of [Bacifrinase (ΔN24)]. The anticoagulant potency of [Bacifrinase (ΔN24)] was comparable to Nattokinase and Warfarin and results showed that its anticoagulant action is contributed by progressive defibrinogenation and antiplatelet activities. Nonetheless, at the tested concentration of 2.0μM [Bacifrinase (ΔN24)] did not show in vitro cytotoxicity or chromosomal aberrations on human embryonic kidney cells-293 (HEK-293) and human peripheral blood lymphocytes (HPBL) cells. [Bacifrinase (ΔN24)], at a dose of 2mg/kg, did not show toxicity, adverse pharmacological effects, tissue necrosis or hemorrhagic effect after 72h of its administration in Swiss albino mice. However, at the tested doses of 0.125 to 0.5mg/kg, it demonstrated significant in anticoagulant effect as well as defibrinogenation after 6h of administration in mice. We propose that [Bacifrinase (ΔN24)] may serve as prototype for the development of potent drug to prevent hyperfibrinogenemia related disorders.
Collapse
Affiliation(s)
- Bandana Bora
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Debananda Gogoi
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Debabrata Tripathy
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Sillarine Kurkalang
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Sheetal Ramani
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Anupam Chatterjee
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
35
|
Cárcamo E, Roldán-Salgado A, Osuna J, Bello-Sanmartin I, Yáñez JA, Saab-Rincón G, Viadiu H, Gaytán P. Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly. ACS OMEGA 2017; 2:3183-3191. [PMID: 30023688 PMCID: PMC6044943 DOI: 10.1021/acsomega.7b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/08/2023]
Abstract
In vitro mutagenesis methods have revolutionized biological research and the biotechnology industry. In this study, we describe a mutagenesis method based on synthesizing a gene using a complete set of forward and reverse spiked oligonucleotides that have been modified to introduce a low ratio of mutant nucleotides at each position. This novel mutagenesis scheme named "Spiked Genes" yields a library of clones with an enhanced mutation distribution due to its unbiased nucleotide incorporation. Using the far-red fluorescent protein emKate as a model, we demonstrated that Spiked Genes yields richer libraries than those obtained via enzymatic methods. We obtained a library without bias toward any nucleotide or base pair and with even mutations, transitions, and transversion frequencies. Compared with enzymatic methods, the proposed synthetic approach for the creation of gene libraries represents an improved strategy for screening protein variants and does not require a starting template.
Collapse
Affiliation(s)
- Edson Cárcamo
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Joel Osuna
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Iván Bello-Sanmartin
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Gloria Saab-Rincón
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Héctor Viadiu
- Instituto
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad
de Mexico 04510, México
| | - Paul Gaytán
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
36
|
Lönnberg H. Synthesis of oligonucleotides on a soluble support. Beilstein J Org Chem 2017; 13:1368-1387. [PMID: 28781703 PMCID: PMC5530625 DOI: 10.3762/bjoc.13.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, H-phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and H-phosphonate chemistries are almost exclusively used on a solid support, the "outdated" P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
37
|
Schmohl L, Bierlmeier J, Gerth F, Freund C, Schwarzer D. Engineering sortase A by screening a second-generation library using phage display. J Pept Sci 2017; 23:631-635. [PMID: 28185387 DOI: 10.1002/psc.2980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Sortase-mediated ligation is one of the most commonly used chemo-enzymatic techniques for the site-specific modification of proteins. We have established a new library of sortase mutants for directed evolution of sortase substrate selectivity. Phage display screens of this second-generation library yielded sortase mutants that ligate substrate proteins containing an APxTG or FPxTG recognition sequence instead of the canonical LPxTG sorting motif. These findings indicate that the second-generation sortase library is well suited for sortase engineering in order to increase the versatility of sortase-mediated ligation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lena Schmohl
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| | - Jan Bierlmeier
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| | - Fabian Gerth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195, Berlin, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, D-72076, Tübingen, Germany
| |
Collapse
|
38
|
Chaitanyakumar A, Anbalagan M. Expression, purification and immobilization of tannase from Staphylococcus lugdunensis MTCC 3614. AMB Express 2016; 6:89. [PMID: 27704471 PMCID: PMC5050181 DOI: 10.1186/s13568-016-0261-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Enzymes find their applications in various industries, due to their error free conversion of substrate into product. Tannase is an enzyme used by various industries for degradation of tannin. Biochemical characterization of a specific enzyme from one organism to other is one of the ways to search for enzymes with better traits for industrial applications. Here, tannase encoding gene from Staphylococcus lugdunensis was cloned and suitability of the enzyme in various conditions was analysed to find its application in various industry. The recombinant protein was expressed with 6× His tag and purified using nickel affinity beads. The enzyme was purified up to homogeneity, with approximate molecular weight of 66 kDa. Purified tannase exhibited specific activity of about 716 U/mg. Optimum enzyme activity was found to be 40 °C at pH 7.0. Biochemical characterization revealed; metal ions such as Zn2+, Fe2+, Fe3+ and Mn2+ inhibited tannase activity, and SDS at lower concentration, increased tannase activity. Non polar organic solvents increased the tannase activity and polar solvents inhibited the tannase activity. Tannase immobilization studies show protection of the enzyme under wide range of pH and temperature. Also in this study we report a method for recovery and repeated use of the tannase.
Collapse
Affiliation(s)
| | - M. Anbalagan
- School of Bio-Sciences and Technology, VIT University, Vellore, 632014 India
| |
Collapse
|
39
|
Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat Chem 2016; 9:50-56. [DOI: 10.1038/nchem.2596] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
|
40
|
Mingo J, Erramuzpe A, Luna S, Aurtenetxe O, Amo L, Diez I, Schepens JTG, Hendriks WJAJ, Cortés JM, Pulido R. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections. PLoS One 2016; 11:e0160972. [PMID: 27548698 PMCID: PMC4993582 DOI: 10.1371/journal.pone.0160972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis.
Collapse
Affiliation(s)
- Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Ibai Diez
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jan T. G. Schepens
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wiljan J. A. J. Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jesús M. Cortés
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail: ;
| |
Collapse
|
41
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Kungurtsev V, Lönnberg H, Virta P. Synthesis of protected 2′-O-deoxyribonucleotides on a precipitative soluble support: a useful procedure for the preparation of trimer phosphoramidites. RSC Adv 2016. [DOI: 10.1039/c6ra22316h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A straightforward procedure for the preparation of protected 2′-O-deoxyribonucleotide trimers, using the phosphotriester chemistry on a precipitative soluble support, was described.
Collapse
Affiliation(s)
- V. Kungurtsev
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| | - H. Lönnberg
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| | - P. Virta
- Department of Chemistry
- University of Turku
- FI-20014 Turku
- Finland
| |
Collapse
|
43
|
Porter JL, Rusli RA, Ollis DL. Directed Evolution of Enzymes for Industrial Biocatalysis. Chembiochem 2015; 17:197-203. [DOI: 10.1002/cbic.201500280] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Joanne L. Porter
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - Rukhairul A. Rusli
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| | - David L. Ollis
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
| |
Collapse
|
44
|
Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol Adv 2015; 33:1671-84. [DOI: 10.1016/j.biotechadv.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
|
45
|
Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Appl Microbiol Biotechnol 2015; 100:2183-91. [DOI: 10.1007/s00253-015-7048-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023]
|
46
|
Abstract
Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges.
Collapse
|
47
|
Ding S, Cargill AA, Medintz IL, Claussen JC. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol 2015; 34:242-50. [PMID: 25957941 DOI: 10.1016/j.copbio.2015.04.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The efficiency and selectivity of enzymatic catalysis is useful to a plethora of industrial and manufacturing processes. Many of these processes require the immobilization of enzymes onto surfaces, which has traditionally reduced enzyme activity. However, recent research has shown that the integration of nanoparticles into enzyme carrier schemes has maintained or even enhanced immobilized enzyme performance. The nanoparticle size and surface chemistry as well as the orientation and density of immobilized enzymes all contribute to the enhanced performance of enzyme-nanoparticle conjugates. These improvements are noted in specific nanoparticles including those comprising carbon (e.g., graphene and carbon nanotubes), metal/metal oxides and polymeric nanomaterials, as well as semiconductor nanocrystals or quantum dots.
Collapse
Affiliation(s)
- Shaowei Ding
- Department of Mechanical Engineering, 2104 Black Engineering, Ames, IA 50011, United States
| | - Allison A Cargill
- Department of Mechanical Engineering, 2104 Black Engineering, Ames, IA 50011, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering, 2104 Black Engineering, Ames, IA 50011, United States.
| |
Collapse
|
48
|
Acevedo-Rocha CG, Reetz MT. Assembly of Designed Oligonucleotides: a useful tool in synthetic biology for creating high-quality combinatorial DNA libraries. Methods Mol Biol 2015; 1179:189-206. [PMID: 25055779 DOI: 10.1007/978-1-4939-1053-3_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The method dubbed Assembly of Designed Oligonucleotides (ADO) is a powerful tool in synthetic biology to create combinatorial DNA libraries for gene, protein, metabolic, and genome engineering. In directed evolution of proteins, ADO benefits from using reduced amino acid alphabets for saturation mutagenesis and/or DNA shuffling, but all 20 canonical amino acids can be also used as building blocks. ADO is performed in a two-step reaction. The first involves a primer-free, polymerase cycling assembly or overlap extension PCR step using carefully designed overlapping oligonucleotides. The second step is a PCR amplification using the outer primers, resulting in a high-quality and bias-free double-stranded DNA library that can be assembled with other gene fragments and/or cloned into a suitable plasmid subsequently. The protocol can be performed in a few hours. In theory, neither the length of the DNA library nor the number of DNA changes has any limits. Furthermore, with the costs of synthetic DNA dropping every year, after an initial investment is made in the oligonucleotides, these can be exchanged for alternative ones with different sequences at any point in the process, fully exploiting the potential of creating highly diverse combinatorial libraries. In the example chosen here, we show the construction of a high-quality combinatorial ADO library targeting sixteen different codons simultaneously with nonredundant degenerate codons encoding various reduced alphabets of four amino acids along the heme region of the monooxygenase P450-BM3.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Organische Synthese, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | | |
Collapse
|
49
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
50
|
Cheng F, Zhu L, Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem Commun (Camb) 2015; 51:9760-72. [DOI: 10.1039/c5cc01594d] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A KnowVolution: knowledge gaining directed evolution including four phases is proposed in this feature article, which generates improved enzyme variants and molecular understanding.
Collapse
Affiliation(s)
- Feng Cheng
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| |
Collapse
|