1
|
He X, Chen M, Fan Y, Wu B, Dong Z. TFE3-mediated neuroprotection: Clearance of aggregated α-synuclein and accumulated mitochondria in the AAV-α-synuclein model of Parkinson's disease. Genes Dis 2025; 12:101429. [PMID: 39759118 PMCID: PMC11697191 DOI: 10.1016/j.gendis.2024.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 01/07/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar neuronal inclusions containing aggregated α-synuclein (α-Syn). While the pathology of PD is multifaceted, the aggregation of α-Syn and mitochondrial dysfunction are well-established hallmarks in its pathogenesis. Recently, TFE3, a transcription factor, has emerged as a regulator of autophagy and metabolic processes. However, it remains unclear whether TFE3 can facilitate the degradation of α-Syn and regulate mitochondrial metabolism specifically in dopaminergic neurons. In this study, we demonstrate that TFE3 overexpression significantly mitigates the loss of dopaminergic neurons and reduces the decline in tyrosine hydroxylase-positive fiber density, thereby restoring motor function in an α-Syn overexpression model of PD. Mechanistically, TFE3 overexpression reversed α-Syn-mediated impairment of autophagy, leading to enhanced α-Syn degradation and reduced aggregation. Additionally, TFE3 overexpression inhibited α-Syn propagation. TFE3 overexpression also reversed the down-regulation of Parkin, promoting the clearance of accumulated mitochondria, and restored the expression of PGC1-α and TFAM, thereby enhancing mitochondrial biogenesis in the adeno-associated virus-α-Syn model. These findings further underscore the neuroprotective role of TFE3 in PD and provide insights into its underlying mechanisms, suggesting TFE3 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
| | | | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
2
|
Du HH, Sun FZ, Xiao HL, Liu JJ. Endometrioid adenocarcinoma combined with TFE3-rearranged renal cell carcinoma: A case report. Asian J Surg 2024:S1015-9584(24)02883-5. [PMID: 39674799 DOI: 10.1016/j.asjsur.2024.11.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Affiliation(s)
- Hong-Hu Du
- Department of Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Fu-Zhen Sun
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - He-Long Xiao
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Jun-Jiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
3
|
Moradi N, Sanfrancesco VC, Champsi S, Hood DA. Regulation of lysosomes in skeletal muscle during exercise, disuse and aging. Free Radic Biol Med 2024; 225:323-332. [PMID: 39332541 DOI: 10.1016/j.freeradbiomed.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Lysosomes play a critical role as a terminal organelle in autophagy flux and in regulating protein degradation, but their function and adaptability in skeletal muscle is understudied. Lysosome functions include both housekeeping and signaling functions essential for cellular homeostasis. This review focuses on the regulation of lysosomes in skeletal muscle during exercise, disuse, and aging, with a consideration of sex differences as well as the role of lysosomes in mediating the degradation of mitochondria, termed mitophagy. Exercise enhances mitophagy during elevated mitochondrial stress and energy demand. A critical response to this deviation from homeostasis is the activation of transcription factors TFEB and TFE3, which drive the expression of lysosomal and autophagic genes. Conversely, during muscle disuse, the suppression of lysosomal activity contributes to the accumulation of defective mitochondria and other cellular debris, impairing muscle function. Aging further exacerbates these effects by diminishing lysosomal efficacy, leading to the accumulation of damaged cellular components. mTORC1, a key nutrient sensor, modulates lysosomal activity by inhibiting TFEB/TFE3 translocation to the nucleus under nutrient-rich conditions, thereby suppressing autophagy. During nutrient deprivation or exercise, AMPK activation inhibits mTORC1, facilitating TFEB/TFE3 nuclear translocation and promoting lysosomal biogenesis and autophagy. TRPML1 activation by mitochondrial ROS enhances lysosomal calcium release, which is essential for autophagy and maintaining mitochondrial quality. Overall, the intricate regulation of lysosomal functions and signaling pathways in skeletal muscle is crucial for adaptation to physiological demands, and disruptions in these processes during disuse and aging underscore the ubiquitous power of exercise-induced adaptations, and also highlight the potential for targeted therapeutic interventions to preserve muscle health.
Collapse
Affiliation(s)
- N Moradi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - V C Sanfrancesco
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - S Champsi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - D A Hood
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
4
|
Shiyao L, Yao K, Jun L, Yichen L, Tingxiao Z, Longtao Y, Hong Z, Kai Z. Unraveling the role of bisphenol A in osteosarcoma biology: insights into prognosis and immune microenvironment modulation. Discov Oncol 2024; 15:404. [PMID: 39230832 PMCID: PMC11374946 DOI: 10.1007/s12672-024-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a common environmental pollutant, and its specific mechanisms in cancer development and its impact on the tumor immune microenvironment are not yet fully understood. METHODS Transcriptome data from osteosarcoma (OS) patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. BPA-related genes were identified through the Comparative Toxicogenomics Database (CTD), yielding 177 genes. Differentially expressed genes were analyzed using the GSE162454 dataset from the Tumor Immune Single Cell Hub 2 (TISCH2). We constructed the prognostic model using univariate Cox regression and LASSO analysis. The model was validated using the GSE16091 dataset. GO, KEGG, and GSEA analyses were performed to investigate the mechanisms of BPA-related genes. RESULTS A total of 15 BPA-related genes were identified as differentially expressed in OS. Univariate Cox regression and LASSO analysis identified four key prognostic genes (FOLR1, MYC, ESRRA, VEGFA). The prognostic model exhibited strong predictive performance with area under the curve (AUC) values of 0.89, 0.6, and 0.79 for predicting 1-, 2-, and 3-year survival, respectively. External validation using the GSE16091 dataset confirmed the model's high accuracy with AUC values exceeding 0.88. Our results indicated that the prognosis of the high-risk population is generally poorer, which may be associated with alterations in the tumor immune microenvironment. In the high-risk group, immune cells showed predominantly low expression levels, while immune checkpoint genes were significantly overexpressed, along with markedly elevated tumor purity. These findings revealed a correlation between upregulation of BPA-related genes and formation of an immunosuppressive microenvironment, leading to unfavorable patient outcomes. CONCLUSION Our study highlighted the significant association of BPA with OS biology, particularly in its potential role in modulating the tumor immune microenvironment. We offered a fresh insight into the influence of BPA on cancer development, thus providing valuable insights for future clinical interventions and treatment strategies.
Collapse
Affiliation(s)
- Liao Shiyao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kang Yao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Yichen
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Longtao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Sports Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhou Hong
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhou Kai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
5
|
Chen Q, Zhou Y, Yu M, Zhu S, Sun J, Du W, Chen Z, Tao J, Feng X, Zhang Q, Zhao Y. Transcription factor EB-mediated autophagy affects cell migration and inhibits apoptosis to promote endometriosis. Apoptosis 2024; 29:757-767. [PMID: 38358580 DOI: 10.1007/s10495-024-01939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mengqi Yu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Sennan Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jindan Sun
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhuo Du
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ziqi Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiayu Tao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiao Feng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
| | - Qiong Zhang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
6
|
Zhang Y, Li C, Deng X, Urabe F, Burotto M, Buti S, Giudice GC, Zhao Z, Yang C, Sun J, Du Y, Wang S. Treatment of metastatic TFE3 microphthalmia transcription factor translocation renal cell carcinoma: a case report. Transl Pediatr 2024; 13:499-507. [PMID: 38590368 PMCID: PMC10998990 DOI: 10.21037/tp-24-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Background Microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) translocation renal cell carcinoma (RCC) is a rare type of non-clear cell RCC (nccRCC), which is more common in females. Currently, there is no standardized treatment for advanced metastatic microphthalmia translocation RCC (MiT-RCC). The main treatment modalities include surgery, chemotherapy, immunotherapy, anti-vascular endothelial growth factor or vascular endothelial growth factor receptor (VEGFR) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and targeted therapy against the mesenchymal-epithelial transition (MET) factor signaling pathway. Case Description We present the case of an 8-year-old male patient with hematuria and paroxysmal urinary pain. Based on tumor genetic testing results and targeted drug matching analysis, the patient underwent tumor biopsy, tumor radical surgery with vascular osteotomy, and cervicothoracic lymph node dissection. The patient was then treated with a combination of immunotherapy [sintilimab, a drug directed against programmed cell death receptor-1 (PD-1)] and VEGFR tyrosine kinase inhibitor (TKI) (from pazopanib to sunitinib). Throughout the 10 cycles of conventional chemotherapy (seven courses of sintilimab since the start of the third chemotherapy treatment), the patient's condition remained stable, with no tumor recurrence at the primary site. However, in the later stages, the patient developed a large amount of ascites, and the family requested discontinuation of treatment, ultimately leading to the patient's death. Conclusions In this case report, we summarize the therapeutic strategy of a young patient with metastatic transcription factor E3 (TFE3) MiT-RCC. For this disease, early immunotherapy and the use of precision-targeted drugs may have a favorable impact on the survival prognosis of the patient but may still be of less benefit in children with advanced multiple metastases. Therefore, further research on tumor driver genes, among other treatment components, is urgently needed to improve precision therapy.
Collapse
Affiliation(s)
- Yunlong Zhang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Changchun Li
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaobin Deng
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Claire Giudice
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chao Yang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jian Sun
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yifei Du
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children’s Hospital of Chongqing Medical University, The National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
7
|
Hu JH, Li SY, Yu LH, Guan ZR, Jiang YP, Hu D, Wang HJ, Zhao LP, Zhou ZH, Yan YX, Xie T, Huang ZH, Lou JS. TFEB: a double-edged sword for tumor metastasis. J Mol Med (Berl) 2023; 101:917-929. [PMID: 37328669 DOI: 10.1007/s00109-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.
Collapse
Affiliation(s)
- Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shou-Ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang, 311258, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhen-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
8
|
Ferret L, Alvarez-Valadez K, Rivière J, Muller A, Bohálová N, Yu L, Guittat L, Brázda V, Kroemer G, Mergny JL, Djavaheri-Mergny M. G-quadruplex ligands as potent regulators of lysosomes. Autophagy 2023; 19:1901-1915. [PMID: 36740766 PMCID: PMC10283436 DOI: 10.1080/15548627.2023.2170071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
Collapse
Affiliation(s)
- Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jennifer Rivière
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Muller
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Natalia Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Luo Yu
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, Orsay, France
| | - Lionel Guittat
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| | - Vaclav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Louis Mergny
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
9
|
Garcia-Elfring A, Sabin CE, Iouchmanov AL, Roffey HL, Samudra SP, Alcala AJ, Osman RS, Lauderdale JD, Hendry AP, Menke DB, Barrett RDH. Piebaldism and chromatophore development in reptiles are linked to the tfec gene. Curr Biol 2023; 33:755-763.e3. [PMID: 36702128 DOI: 10.1016/j.cub.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Christina E Sabin
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Anna L Iouchmanov
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Heather L Roffey
- Biology Department, Vanier College, Montreal, QC H4L 3X9, Canada
| | - Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rida S Osman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
10
|
Carling PJ, Ryan BJ, McGuinness W, Kataria S, Humble SW, Milde S, Duce JA, Kapadia N, Zuercher WJ, Davis JB, Di Daniel E, Wade-Martins R. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 2023; 19:692-705. [PMID: 35786165 PMCID: PMC9851200 DOI: 10.1080/15548627.2022.2095834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - William McGuinness
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shikha Kataria
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Stewart W Humble
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD USA
| | - Stefan Milde
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - James A Duce
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - John B Davis
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Elena Di Daniel
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
12
|
Astanina E, Doronzo G, Corà D, Neri F, Oliviero S, Genova T, Mussano F, Middonti E, Vallariello E, Cencioni C, Valdembri D, Serini G, Limana F, Foglio E, Ballabio A, Bussolino F. The TFEB-TGIF1 axis regulates EMT in mouse epicardial cells. Nat Commun 2022; 13:5191. [PMID: 36057632 PMCID: PMC9440911 DOI: 10.1038/s41467-022-32855-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) β, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFβ/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFβ-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFβ, inducing an EMT response to low doses of TGFβ. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression. Epithelial-mesenchymal transition (EMT) is a complex process involved in organogenesis. Here, the authors show that the transcription factor EB (TFEB) regulates EMT in epicardium during heart development by tuning sensitivity to TGFβ signaling.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Torino, Italy. .,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Davide Corà
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126, Turin, Italy
| | - Emanuele Middonti
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Edoardo Vallariello
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federica Limana
- San Raffaele Open University, Rome, Italy.,Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, 04100, Latina, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
13
|
Gama A, Sukhanova M, Choy B. Minimally invasive cytologic evaluation leading to the diagnosis of TFE3-rearranged renal cell carcinoma: A case report. Diagn Cytopathol 2022; 50:E382-E385. [PMID: 35975764 DOI: 10.1002/dc.25042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
TFE3-rearranged renal cell carcinoma (RCC) has been categorized as a molecularly defined renal carcinoma in the 2022 WHO classification of tumors as it does not demonstrate a specific genotype-phenotype correlation. However, in order to arrive at the diagnosis, recognition of the broad spectrum of cytologic and histologic features that can be seen in TFE3-rearranged RCC is important for differential diagnostic consideration. Reported here is the diagnostic workup of a TFE3-rearranged RCC using very limited tissue sample. The initial evaluation was dependent on the cytomorphologic findings observed on a touch preparation made from the renal mass biopsy, directing appropriate selection of ancillary tests, and leading to a definitive diagnosis.
Collapse
Affiliation(s)
- Alcino Gama
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bonnie Choy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
15
|
The Transcription Factor EB (TFEB) Sensitizes the Heart to Chronic Pressure Overload. Int J Mol Sci 2022; 23:ijms23115943. [PMID: 35682624 PMCID: PMC9180101 DOI: 10.3390/ijms23115943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.
Collapse
|
16
|
Wang K, Zhou L, Liu F, Lin L, Ju J, Tian P, Liu C, Li X, Chen X, Wang T, Wang F, Wang S, Zhang J, Zhang Y, Tian J, Wang K. PIWI-Interacting RNA HAAPIR Regulates Cardiomyocyte Death After Myocardial Infarction by Promoting NAT10-Mediated ac 4 C Acetylation of Tfec mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106058. [PMID: 35138696 PMCID: PMC8922123 DOI: 10.1002/advs.202106058] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Indexed: 05/08/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed in heart. However, their functions and molecular mechanisms during myocardial infarction remain unknown. Here, a heart-apoptosis-associated piRNA (HAAPIR), which regulates cardiomyocyte apoptosis by targeting N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4 C) acetylation of transcription factor EC (Tfec) mRNA transcript, is identified. HAAPIR deletion attenuates ischemia/reperfusion induced myocardial infarction and ameliorate cardiac function compared to WT mice. Mechanistically, HAAPIR directly interacts with NAT10 and enhances ac4 C acetylation of Tfec mRNA transcript, which increases Tfec expression. TFEC can further upregulate the transcription of BCL2-interacting killer (Bik), a pro-apoptotic factor, which results in the accumulation of Bik and progression of cardiomyocyte apoptosis. The findings reveal that piRNA-mediated ac4 C acetylation mechanism is involved in the regulation of cardiomyocyte apoptosis. HAAPIR-NAT10-TFEC-BIK signaling axis can be potential target for the reduction of myocardial injury caused by cardiomyocyte apoptosis in ischemia heart diseases.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Lu‐Yu Zhou
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fang Liu
- Center of Diabetic Systems MedicineGuangxi Key Laboratory of Excellenceand Department of AnatomyGuilin Medical UniversityGuilin541004China
| | - Liang Lin
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Jie Ju
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Peng‐Chao Tian
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Cui‐Yun Liu
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Min Li
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Xin‐Zhe Chen
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Tao Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Fei Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Shao‐Cong Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Yu‐Hui Zhang
- State Key Laboratory of Cardiovascular DiseaseHeart Failure CenterFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100037China
| | - Jin‐Wei Tian
- Department of CardiologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Kun Wang
- Institute for Translational MedicineThe Affiliated Hospital of Qingdao UniversityCollege of MedicineQingdao UniversityQingdao266021China
| |
Collapse
|
17
|
He X, Xie Y, Zheng Q, Zhang Z, Ma S, Li J, Li M, Huang Q. TFE3-Mediated Autophagy is Involved in Dopaminergic Neurodegeneration in Parkinson's Disease. Front Cell Dev Biol 2021; 9:761773. [PMID: 34912803 PMCID: PMC8667775 DOI: 10.3389/fcell.2021.761773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.
Collapse
Affiliation(s)
- Xin He
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiongping Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Ding Q, Luo L, Yu L, Huang SL, Wang XQ, Zhang B. The critical role of glutathione redox homeostasis towards oxidation in ermanin-induced melanogenesis. Free Radic Biol Med 2021; 176:392-405. [PMID: 34560247 DOI: 10.1016/j.freeradbiomed.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Vitiligo is a depigmented disease featured as diagnosis simplicity and cure difficulty. Its occurrence and development are associated with a variety of factors, including oxidative stress, heredity and immunity, etc. Existing drugs for the treatment of vitiligo are to reduce the death of melanocytes and induce pigment accumulation as the main treatment strategy. Ermanin, a member of the flavonoids, is extracted from bee glue which is wildly used to treat vitiligo in traditional Chinese medicine. Therefore, this article discusses the relationship between melanogenesis and glutathione redox homeostasis by ermanin via biochemical and free radical approaches in vivo and in vitro. In this study, we found that ermanin effectively increased the melanin content at the in vivo model (zebrafish). Moreover, the melanin levels at the in vitro models (B16F10 cells and primary melanocytes) were also increased significantly accompanied with a shift of glutathione redox homeostasis towards oxidation. Ermanin also significantly enhanced the activity of tyrosinase. Meanwhile, ermanin increased the expression levels of TYR, TRP-1, and DCT genes, while ROS accumulation and glutathione depletion mediated the accumulation of pigments caused by ermanin, which increased the production of pigments and regulated the expression mRNA levels of TYR and DCT genes. From the perspective of pigment production regulation pathways, western blot showed that the pigment accumulation caused by ermanin was closely related to the CREB-MITF pathways, it activated CREB, TYR, TRP-1, and DCT proteins. The use of CREB specific inhibitor 666-15 and MITF inhibitor ML329 confirmed that the pigment accumulation caused by ermanin was positively correlated with CREB and MITF proteins. Our findings revealed the potential mechanisms by which ermanin promoted the production of melanin through activated CREB-MITF signaling pathway and glutathione redox homeostasis towards oxidation function as a signal are beneficial to melanin production and will help develop novel therapeutic approaches for vitiligo.
Collapse
Affiliation(s)
- Qiong Ding
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Lin Luo
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Lan Yu
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Si-Lu Huang
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Xiao-Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| |
Collapse
|
19
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
20
|
A splicing variant of TFEB negatively regulates the TFEB-autophagy pathway. Sci Rep 2021; 11:21119. [PMID: 34702966 PMCID: PMC8548335 DOI: 10.1038/s41598-021-00613-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Transcription factor EB (TFEB) is a master regulator of the autophagy-lysosomal pathway (ALP). Here, we cloned a novel splicing variant of TFEB, comprising 281 amino acids (hereafter referred to as small TFEB), and lacking the helix-loop-helix (HLH) and leucine zipper (LZ) motifs present in the full-length TFEB (TFEB-L). The TFEB variant is widely expressed in several tissues, including the brain, although its expression level is considerably lower than that of TFEB-L. Intriguingly, in cells stably expressing small TFEB, the expression profile of genes was inverted compared to that in cells ectopically expressing TFEB-L. In addition, fisetin-induced luciferase activity of promoter containing either coordinated lysosomal expression and regulation (CLEAR) element or antioxidant response element (ARE) was significantly repressed by co-transfection with small TFEB. Moreover, fisetin-mediated clearance of phosphorylated tau or α-synuclein was attenuated in the presence of small TFEB. Taken together, the results suggest that small TFEB is a novel splicing variant of TFEB that might act as a negative regulator of TFEB-L, thus fine tuning the activity of ALP during cellular stress.
Collapse
|
21
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
23
|
Corà D, Bussolino F, Doronzo G. TFEB Signalling-Related MicroRNAs and Autophagy. Biomolecules 2021; 11:985. [PMID: 34356609 PMCID: PMC8301958 DOI: 10.3390/biom11070985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
The oncogenic Transcription Factor EB (TFEB), a member of MITF-TFE family, is known to be the most important regulator of the transcription of genes responsible for the control of lysosomal biogenesis and functions, autophagy, and vesicles flux. TFEB activation occurs in response to stress factors such as nutrient and growth factor deficiency, hypoxia, lysosomal stress, and mitochondrial damage. To reach the final functional status, TFEB is regulated in multimodal ways, including transcriptional rate, post-transcriptional regulation, and post-translational modifications. Post-transcriptional regulation is in part mediated by miRNAs. miRNAs have been linked to many cellular processes involved both in physiology and pathology, such as cell migration, proliferation, differentiation, and apoptosis. miRNAs also play a significant role in autophagy, which exerts a crucial role in cell behaviour during stress or survival responses. In particular, several miRNAs directly recognise TFEB transcript or indirectly regulate its function by targeting accessory molecules or enzymes involved in its post-translational modifications. Moreover, the transcriptional programs triggered by TFEB may be influenced by the miRNA-mediated regulation of TFEB targets. Finally, recent important studies indicate that the transcription of many miRNAs is regulated by TFEB itself. In this review, we describe the interplay between miRNAs with TFEB and focus on how these types of crosstalk affect TFEB activation and cellular functions.
Collapse
Affiliation(s)
- Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, 28100 Novara, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute-IRCCS-FPO, Laboratory of Vascular Oncology, 10060 Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute-IRCCS-FPO, Laboratory of Vascular Oncology, 10060 Candiolo, Italy
| |
Collapse
|
24
|
Doronzo G, Astanina E, Bussolino F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021; 12:640061. [PMID: 33912071 PMCID: PMC8072379 DOI: 10.3389/fphys.2021.640061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in vascular biology. It belongs to the bHLH-leucine zipper transcription factor microphthalmia family, which includes microphthalmia-associated transcription factor, transcription factor E3 and transcription factor EC, and is known to be deregulated in cancer. The canonical transcriptional pathway orchestrated by TFEB adapts cells to stress in all kinds of tissues by supporting lysosomal and autophagosome biogenesis. However, emerging findings highlight that TFEB activates other genetic programs involved in cell proliferation, metabolism, inflammation and immunity. Here, we first summarize the general principles and mechanisms by which TFEB activates its transcriptional program. Then, we analyze the current knowledge of TFEB in the vascular system, placing particular emphasis on its regulatory role in angiogenesis and on the involvement of the vascular unit in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
25
|
Astanina E, Bussolino F, Doronzo G. Multifaceted activities of transcription factor EB in cancer onset and progression. Mol Oncol 2020; 15:327-346. [PMID: 33252196 PMCID: PMC7858119 DOI: 10.1002/1878-0261.12867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in cancer biology. Together with microphthalmia‐associated transcription factor, transcription factor E3 and transcription factor EC, TFEB belongs to the microphthalmia family of bHLH‐leucine zipper transcription factors that may be implicated in human melanomas, renal and pancreatic cancers. TFEB was originally described as being translocated in a juvenile subset of pediatric renal cell carcinoma; however, whole‐genome sequencing reported that somatic mutations were sporadically found in many different cancers. Besides its oncogenic activity, TFEB controls the autophagy‐lysosomal pathway by recognizing a recurrent motif present in the promoter regions of a set of genes that participate in lysosome biogenesis; furthermore, its dysregulation was found to have a crucial pathogenic role in different tumors by modulating the autophagy process. Other than regulating cancer cell‐autonomous responses, recent findings indicate that TFEB participates in the regulation of cellular functions of the tumor microenvironment. Here, we review the emerging role of TFEB in regulating cancer cell behavior and choreographing tumor–microenvironment interaction. Recognizing TFEB as a hub of network of signals exchanged within the tumor between cancer and stroma cells provides a fresh perspective on the molecular principles of tumor self‐organization, promising to reveal numerous new and potentially druggable vulnerabilities.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
26
|
Kim NI, Lee JS, Choi YD, Ju UC, Nam JH. TFE3-expressing malignant perivascular epithelioid cell tumor of the mesentery: A case report and review of literature. World J Clin Cases 2020; 8:4207-4214. [PMID: 33024780 PMCID: PMC7520760 DOI: 10.12998/wjcc.v8.i18.4207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor that exhibits an epithelioid and spindle cell morphology. The tumor is characterized by immunoreactivity for melanocytic and myogenic markers but can be misdiagnosed as more common tumors with similar characteristics, including gastrointestinal stroma tumors or leiomyosarcomas. Recently, a subset of PEComas has been reported to harbor a transcription factor binding to TFE3 fusion. Herein, we report a rare case of TFE3-expressing malignant PEComa arising from the mesentery.
CASE SUMMARY A 50-year-old woman presented with abdominal discomfort for 3 months. Results of laboratory tests were all within the normal ranges, and the patient had no notable medical history. Magnetic resonance imaging revealed a large tumor on the right side of the pelvic floor, which was originally suspected to be a primary ovarian tumor. However, during surgery, the tumor was revealed to have originated from the mesentery. Histologically, the tumor was composed of bundles of spindle cells and sheets of epithelioid cells. Extensive coagulative necrosis and numerous mitotic figures were observed. Immunohistochemistry revealed that the tumor cells were positive for smooth muscle actin, HMB-45, and TFE3 expression. Tumor involvement of the rectal serosa was identified, leading to a final diagnosis of malignant PEComa of the mesentery. Surgical resection was followed by adjuvant chemotherapy. No recurrence or metastasis was observed over a 6-month follow-up period.
CONCLUSION Malignant PEComa of the mesentery is extremely rare and should be distinguished from morphological mimics through differential diagnosis and immunohistochemistry.
Collapse
Affiliation(s)
- Nah Ihm Kim
- Department of Pathology, Chonnam National University Hospital and Medical School, Gwangju 61469, South Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, South Korea
| | - Yoo Duk Choi
- Department of Pathology, Chonnam National University Hospital and Medical School, Gwangju 61469, South Korea
| | - U Chul Ju
- Department of Obstetrics and Gynecology, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, South Korea
| | - Jong Hee Nam
- Department of Pathology, Chonnam National University Hospital and Medical School, Gwangju 61469, South Korea
| |
Collapse
|
27
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
28
|
Remote ischemic postconditioning attenuates damage in rats with chronic cerebral ischemia by upregulating the autophagolysosome pathway via the activation of TFEB. Exp Mol Pathol 2020; 115:104475. [PMID: 32473154 DOI: 10.1016/j.yexmp.2020.104475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022]
Abstract
The transcription factor EB (TFEB) is known for its role in lysosomal biogenesis, and it coordinates this process by driving autophagy and lysosomal gene expression during ischemia. In the present study, we aimed to explore the role of the TFEB-regulated autophagolysosome pathway (ALP) in rats with chronic cerebral ischemia (CCI) that were treated with remote ischemic postconditioning (RIPC). A modified 2-vessel occlusion (2-VO) method was utilized to establish the CCI rat model, and the CCI rats were identified by the Morris water maze test and histological staining. After the CCI rats were treated with RIPC, the damage to the rat cortex and hippocampal tissues and the status of the ALP were determined. Western blot analysis and immunofluorescence assays were performed to observe the nuclear translocation of TFEB. The rats were injected with TFEB siRNA via the lateral ventricle to investigate the effect of TFEB siRNA on the RIPC-treated CCI rats. The results suggested that RIPC of the CCI rats alleviated nerve injury, induced TFEB translocation into the nucleus, upregulated autophagy-related protein expression, and activated ALP machinery. Furthermore, TFEB siRNA decreased the levels of TFEB and impaired the neuroprotective effects of RIPC on the CCI rats. Collectively, we highlighted that RIPC attenuates damage in CCI rats via the activation of the TFEB-mediated ALP.
Collapse
|
29
|
Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 2020; 128:110272. [PMID: 32447212 DOI: 10.1016/j.biopha.2020.110272] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are energy producers that play a vital role in cell survival. Mitochondrial dysfunction is involved in many diseases, including metabolic syndrome, neurodegenerative disorders, cardiomyopathies, cancer, obesity, and diabetic kidney disease, and challenges still remain in terms of treatments for these diseases. Mitochondrial quality control (MQC), which is defined as the maintenance of the quantity, morphology, and function of mitochondria, plays a pivotal role in maintaining cellular metabolic homeostasis and cell survival. Recently, growing evidence suggests that the transcription factor EB (TFEB) plays a pivotal role in MQC. Here, we systemically investigate the potential role and mechanisms of TFEB in MQC, which include the activation of mitophagy, regulation of mitochondrial biogenesis, reactive oxygen species (ROS) clearance, and the balance of mitochondria fission-fusion cycle. Importantly, we further discuss the therapeutic measures and effects aimed at TFEB on mitochondrial dysfunction-related diseases. Taken together, targeting TFEB to regulate MQC may represent an appealing therapeutic strategy for mitochondrial dysfunction related-diseases.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaoyu Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weihuang Zhang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
30
|
Bahrami A, Bianconi V, Pirro M, Orafai HM, Sahebkar A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci 2020; 244:117341. [PMID: 31972208 DOI: 10.1016/j.lfs.2020.117341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/29/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved "self-eating" recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
32
|
Sharain RF, Gown AM, Greipp PT, Folpe AL. Immunohistochemistry for TFE3 lacks specificity and sensitivity in the diagnosis of TFE3-rearranged neoplasms: a comparative, 2-laboratory study. Hum Pathol 2019; 87:65-74. [DOI: 10.1016/j.humpath.2019.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
|
33
|
Yang M, Liu E, Tang L, Lei Y, Sun X, Hu J, Dong H, Yang SM, Gao M, Tang B. Emerging roles and regulation of MiT/TFE transcriptional factors. Cell Commun Signal 2018; 16:31. [PMID: 29903018 PMCID: PMC6003119 DOI: 10.1186/s12964-018-0242-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.,Department of Medicine, University of California San Diego, San Diego, CA, 92093, USA
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Mingfa Gao
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 40037, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
34
|
Wu K, Zhao Q, Li Z, Li N, Xiao Q, Li X, Zhao Q. Bioinformatic screening for key miRNAs and genes associated with myocardial infarction. FEBS Open Bio 2018; 8:897-913. [PMID: 29928570 PMCID: PMC5985982 DOI: 10.1002/2211-5463.12423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in understanding of the causes of and treatment of myocardial infarction (MI) in recent years, morbidity and mortality is still high. The aim of this study was to identify miRNA and genes potentially associated with MI. mRNA and miRNA expression datasets were downloaded from the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Interactions between miRNA and the expression and function of target genes were analyzed, and a protein–protein interaction network was constructed. The diagnostic value of identified miRNA and genes was assessed. Quantitative RT‐PCR was applied to validate the results of the bioinformatics analysis. MiR‐27a, miR‐31*, miR‐1291, miR‐139‐5p, miR‐204, miR‐375, and target genes including CX3CR1,HSPA6, and TPM3 had potential diagnostic value. The genes TFEB,IRS2,GRB2,FASLG,LIMS1,CX3CR1,HSPA6,TPM3,LAT2,CEBPD,AQP9, and MAPKAPK2 were associated with recovery from MI. In conclusion, the identified miRNA and genes might be associated with the pathology of MI.
Collapse
Affiliation(s)
- Ke Wu
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China.,Department of Cardiology Central Hospital of Taian of Shandong Province China
| | - Qiang Zhao
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Zhengmei Li
- Department of Radiology Taishan Medical University of Shandong Province Taian China
| | - Nannan Li
- Department of Respiration Medicine Central Hospital of Taian of Shandong Province China
| | - Qiang Xiao
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Xiuchang Li
- Department of Cardiology Affiliated Hospital of Taishan Medical University of Shandong Province Taian China
| | - Quanming Zhao
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
35
|
Guo X, Tang P, Chen L, Liu P, Hou C, Zhang X, Liu Y, Chong L, Li X, Li R. Amyloid β-Induced Redistribution of Transcriptional Factor EB and Lysosomal Dysfunction in Primary Microglial Cells. Front Aging Neurosci 2017; 9:228. [PMID: 28769785 PMCID: PMC5515861 DOI: 10.3389/fnagi.2017.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Impaired clearance of Amyloid β (Aβ) by microglia in the brain may be associated with the senile plaque formation, a pathological hallmark relevant to Alzheimer's disease. Microglial cells in the brain are not able to efficiently degrade Aβ, suggesting that microglial lysosome impairment may occur. However, the mechanism of Aβ-induced impairment of microglia remains poorly understood. We observed the effects of Aβ on the trafficking of nuclear transcriptional factor EB (TFEB), a master regulator of lysosome biogenesis, and the expression of a downstream osteoporosis-associated transmembrane protein 1 (OSTM1), a vital molecule involved in lysosome acidification in primary microglial cells. Aβ1−42 but not Aβ42−1 resulted in a significant release of tumor necrosis factor-α in primary microglia, but the total cellular TFEB was not changed. Further, Aβ induced a dose-dependent reduction of the TFEB in the nucleus of primary microglial cells, coincident with the increase in the plasma, as revealed by Western blot and confocal microscopy. In addition, a dramatic decrease of OSTM1 expression was observed in the Aβ-challenged microglial cells, along with the intracellular pH steady state, indicating the inadequate lysosomal acidification. These data suggest that Aβ might result in a lysosomal dysfunction via inhibiting nuclear TFEB translocation in microglial cells.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Peng Tang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Peng Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Chen Hou
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Xin Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Yue Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Li Chong
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Xiaoqing Li
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of MedicineXi'an, China
| |
Collapse
|
36
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
37
|
LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int J Mol Sci 2017; 18:ijms18020290. [PMID: 28146073 PMCID: PMC5343826 DOI: 10.3390/ijms18020290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a process in which precursor messenger RNA (pre-mRNA) splicing sites are differentially selected to diversify the protein isoform population. Changes in AS patterns have an essential role in normal development, differentiation and response to physiological stimuli. It is documented that AS can generate both “risk” and “protective” splice variants that can contribute to the pathogenesis of several diseases including atherosclerosis. The main endothelial receptor for oxidized low-density lipoprotein (ox-LDLs) is LOX-1 receptor protein encoded by the OLR1 gene. When OLR1 undergoes AS events, it generates three variants: OLR1, OLR1D4 and LOXIN. The latter lacks exon 5 and two-thirds of the functional domain. Literature data demonstrate a protective role of LOXIN in pathologies correlated with LOX-1 overexpression such as atherosclerosis and tumors. In this review, we summarize recent developments in understanding of OLR1 AS while also highlighting data warranting further investigation of this process as a novel therapeutic target.
Collapse
|
38
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
39
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
40
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
41
|
Selesniemi K, Albers RE, Brown TL. Id2 Mediates Differentiation of Labyrinthine Placental Progenitor Cell Line, SM10. Stem Cells Dev 2016; 25:959-74. [PMID: 27168216 PMCID: PMC4931356 DOI: 10.1089/scd.2016.0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 11/12/2022] Open
Abstract
The placenta is an organ that is formed transiently during pregnancy, and appropriate placental development is necessary for fetal survival and growth. Proper differentiation of the labyrinthine layer of the placenta is especially crucial, as it establishes the fetal-maternal interface that is involved in physiological exchange processes. Although previous studies have indicated the importance of inhibitor of differentiation/inhibitor of DNA binding-2 (Id2) helix-loop-helix transcriptional regulator in mediating cell differentiation, the ability of Id2 to regulate differentiation toward the labyrinthine (transport) lineage of the placenta has yet to be determined. In the current study, we have generated labyrinthine trophoblast progenitor cells with increased (SM10-Id2) or decreased (SM10-Id2-shRNA) Id2 expression and determined the effect on TGF-β-induced differentiation. Our Id2 overexpression and knockdown analyses indicate that Id2 mediates TGF-β-induced morphological differentiation of labyrinthine trophoblast cells, as Id2 overexpression prevents differentiation and Id2 knockdown results in differentiation. Thus, our data indicate that Id2 is an important molecular mediator of labyrinthine trophoblast differentiation. An understanding of the regulators of trophoblast progenitor differentiation toward the labyrinthine lineage may offer insights into events governing pregnancy-associated disorders, such as placental insufficiency, fetal growth restriction, and preeclampsia.
Collapse
Affiliation(s)
- Kaisa Selesniemi
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Renee E Albers
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| |
Collapse
|
42
|
Godar RJ, Ma X, Liu H, Murphy JT, Weinheimer CJ, Kovacs A, Crosby SD, Saftig P, Diwan A. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 2016; 11:1537-60. [PMID: 26103523 DOI: 10.1080/15548627.2015.1063768] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rebecca J Godar
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA.,b John Cochran VA Medical Center ; St. Louis , MO USA
| | - Xiucui Ma
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA.,b John Cochran VA Medical Center ; St. Louis , MO USA
| | - Haiyan Liu
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA
| | - John T Murphy
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA
| | - Carla J Weinheimer
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA
| | - Attila Kovacs
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA
| | - Seth D Crosby
- c Department of Genetics ; Washington University School of Medicine ; St. Louis , MO USA
| | - Paul Saftig
- d Institut für Biochemie; Christian-Albrechts-Universität zu Kiel ; Kiel , Germany
| | - Abhinav Diwan
- a Division of Cardiology and Center for Cardiovascular Research ; Department of Internal Medicine; Washington University School of Medicine ; St. Louis , MO USA.,b John Cochran VA Medical Center ; St. Louis , MO USA
| |
Collapse
|
43
|
Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, Orraca L, Gonzalez-Martinez J, Novak MJ, Huja SS. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol 2016; 43:408-17. [PMID: 26859687 DOI: 10.1111/jcpe.12528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
AIM Cellular and molecular immunoinflammatory changes in gingival tissues drive alveolar bone loss in periodontitis. Since ageing is a risk factor for periodontitis, we sought to identify age-related gingival transcriptome changes associated with bone metabolism in both healthy and in naturally occurring periodontitis. MATERIALS AND METHODS Adult (12-16 years) and aged (18-23 years) non-human primates (M. mulatta) (n = 24) were grouped into healthy and periodontitis. Gingival tissue samples were obtained and subjected to microarray analysis using the Gene Chip Macaque Genome Array. Gene expression profiles involved in osteoclast/osteoblast proliferation, adhesion and function were evaluated and compared across and between the age groups. QPCR was also performed on selected genes to validate microarray data. RESULTS Healthy aged tissues showed a gene profile expression that suggest enhancement of osteoclastic adhesion, proliferation/survival and function (SPP1, TLR4, MMP8 and TFEC) and impaired osteoblastic activity (SMEK3P and SMAD5). The gingival transcriptome in both adult and aged animals with naturally occurring periodontitis (FOS, IL6, TLR4, MMP9, MMP10 and SPP1 genes) was consistent with a local inflammatory response driving towards bone/connective tissue destruction. CONCLUSION A pro-osteoclastogenic gingival transcriptome is associated with periodontitis irrespective of age; however; a greater bone-destructive molecular environment is associated with ageing in healthy tissues.
Collapse
Affiliation(s)
- Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sudha Gudhimella
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | | | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | - Michael J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sarandeep S Huja
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
44
|
Nezich CL, Wang C, Fogel AI, Youle RJ. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 2015; 210:435-50. [PMID: 26240184 PMCID: PMC4523611 DOI: 10.1083/jcb.201501002] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022] Open
Abstract
The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.
Collapse
Affiliation(s)
- Catherine L Nezich
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Adam I Fogel
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
45
|
Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN, Fielitz J. Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression. Circ Res 2015; 117:424-36. [PMID: 26137861 DOI: 10.1161/circresaha.114.305393] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin-angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 (MuRF1) expression, which may involve protein kinase D1 (PKD1). OBJECTIVE To elucidate the molecular mechanism of Ang II-induced skeletal muscle wasting. METHODS AND RESULTS A cDNA expression screen identified the lysosomal hydrolase-coordinating transcription factor EB (TFEB) as novel regulator of the human MuRF1 promoter. TFEB played a key role in regulating Ang II-induced skeletal muscle atrophy by transcriptional control of MuRF1 via conserved E-box elements. Inhibiting TFEB with small interfering RNA prevented Ang II-induced MuRF1 expression and atrophy. The histone deacetylase-5 (HDAC5), which was directly bound to and colocalized with TFEB, inhibited TFEB-induced MuRF1 expression. The inhibition of TFEB by HDAC5 was reversed by PKD1, which was associated with HDAC5 and mediated its nuclear export. Mice lacking PKD1 in skeletal myocytes were resistant to Ang II-induced muscle wasting. CONCLUSION We propose that elevated Ang II serum concentrations, as occur in patients with congestive heart failure, could activate the PKD1/HDAC5/TFEB/MuRF1 pathway to induce skeletal muscle wasting.
Collapse
Affiliation(s)
- Philipp Du Bois
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Cristina Pablo Tortola
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Doerte Lodka
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Melanie Kny
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Franziska Schmidt
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Kunhua Song
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Sibylle Schmidt
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Rhonda Bassel-Duby
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Eric N Olson
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Jens Fielitz
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.).
| |
Collapse
|
46
|
Park F. Activators of G protein signaling in the kidney. J Pharmacol Exp Ther 2015; 353:235-45. [PMID: 25628392 PMCID: PMC4407716 DOI: 10.1124/jpet.115.222695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022] Open
Abstract
Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation-inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
47
|
Lu B, Wang C, Zhang J, Kuiper RP, Song M, Zhang X, Song S, Kessel AGV, Iwamoto A, Wang J, Liu H. Perivascular epithelioid cell tumor of gastrointestinal tract: case report and review of the literature. Medicine (Baltimore) 2015; 94:e393. [PMID: 25621681 PMCID: PMC4602642 DOI: 10.1097/md.0000000000000393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Perivascular epithelioid cell tumors of gastrointestinal tract (GI PEComas) are exceedingly rare, with only a limited number of published reports worldwide. Given the scarcity of GI PEComas and their relatively short follow-up periods, our current knowledge of their biologic behavior, molecular genetic alterations, diagnostic criteria, and prognostic factors continues to be very limited.We present 2 cases of GI PEComas, one of which showed an aggressive histologic behavior that underwent multiple combined chemotherapies. We also review the available English-language medical literature on GI PEComas-not otherwise specified (PEComas-NOS) and discuss their clinicopathological and molecular genetic features.Pathologic analyses including histomorphologic, immunohistochemical, and ultrastructural studies were performed to evaluate the clinicopathological features of GI PEComas, their diagnosis, and differential diagnosis. Immunohistochemistry, semiquantitative reverse transcriptase polymerase chain reaction, and DNA sequencing assays were carried out to detect the potential molecular genetic alterations in our cases. Microscopically, the tumors showed distinctive histologic features of PEComas-NOS, including fascicular or nested architecture, epithelioid or spindled cell type, and clear to eosinophilic cytoplasm. The tumor cells were immunohistochemically positive for melanocytic markers. Molecular pathological assays confirmed a PSF-TFE3 gene fusion in one of our cases. Furthermore, in this case microphthalmia-associated transcription factor and its downstream genes were found to exhibit elevated transcript levels.Knowledge about the molecular genetic alterations in GI PEComas is still limited and warrants further study.
Collapse
Affiliation(s)
- Biyan Lu
- From the Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, (BL, CW, JZ, MS, XZ, SS, JW, HL); Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, (BL, CW, JZ, MS, XZ, JW, HL); Institute of Human Virology, (BL, CW, JZ, MS, XZ, HL) Key Laboratory of Tropical Disease Control (Ministry of Education); Sun Yat-sen University, Guangzhou (BL, CW, JZ, MS, XZ, HL); Dongguan Health School, Dongguan, China (BL); Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands (JZ, RPK, AGK); and Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan (AI)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Martina JA, Diab HI, Li H, Puertollano R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci 2014; 71:2483-97. [PMID: 24477476 DOI: 10.1007/s00018-014-1565-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 01/22/2023]
Abstract
The MiTF/TFE family of basic helix-loop-helix leucine zipper transcription factors includes MITF, TFEB, TFE3, and TFEC. The involvement of some family members in the development and proliferation of specific cell types, such as mast cells, osteoclasts, and melanocytes, is well established. Notably, recent evidence suggests that the MiTF/TFE family plays a critical role in organelle biogenesis, nutrient sensing, and energy metabolism. The MiTF/TFE family is also implicated in human disease. Mutations or aberrant expression of most MiTF/TFE family members has been linked to different types of cancer. At the same time, they have recently emerged as novel and very promising targets for the treatment of neurological and lysosomal diseases. The characterization of this fascinating family of transcription factors is greatly expanding our understanding of how cells synchronize environmental signals, such as nutrient availability, with gene expression, energy production, and cellular homeostasis.
Collapse
Affiliation(s)
- José A Martina
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 50/3537, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
49
|
Bharti K, Gasper M, Ou J, Brucato M, Clore-Gronenborn K, Pickel J, Arnheiter H. A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genet 2012; 8:e1002757. [PMID: 22792072 PMCID: PMC3390378 DOI: 10.1371/journal.pgen.1002757] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/20/2012] [Indexed: 01/13/2023] Open
Abstract
The separation of the optic neuroepithelium into future retina and retinal pigment epithelium (RPE) is a critical event in early eye development in vertebrates. Here we show in mice that the transcription factor PAX6, well-known for its retina-promoting activity, also plays a crucial role in early pigment epithelium development. This role is seen, however, only in a background genetically sensitized by mutations in the pigment cell transcription factor MITF. In fact, a reduction in Pax6 gene dose exacerbates the RPE-to-retina transdifferentiation seen in embryos homozygous for an Mitf null allele, and it induces such a transdifferentiation in embryos that are either heterozygous for the Mitf null allele or homozygous for an RPE–specific hypomorphic Mitf allele generated by targeted mutation. Conversely, an increase in Pax6 gene dose interferes with transdifferentiation even in homozygous Mitf null embryos. Gene expression analyses show that, together with MITF or its paralog TFEC, PAX6 suppresses the expression of Fgf15 and Dkk3. Explant culture experiments indicate that a combination of FGF and DKK3 promote retina formation by inhibiting canonical WNT signaling and stimulating the expression of retinogenic genes, including Six6 and Vsx2. Our results demonstrate that in conjunction with Mitf/Tfec Pax6 acts as an anti-retinogenic factor, whereas in conjunction with retinogenic genes it acts as a pro-retinogenic factor. The results suggest that careful manipulation of the Pax6 regulatory circuit may facilitate the generation of retinal and pigment epithelium cells from embryonic or induced pluripotent stem cells. The retinal pigment epithelium or RPE in the back of the eye is critical for the normal function of the retina, and its abnormalities can lead to retinal disorders such as adult-onset macular degeneration. Insights into the pathogenesis of such disorders, and potential therapies, may come from using RPE cells generated in vitro from induced pluripotent stem cells. To obtain authentic RPE cells in vitro, we need to thoroughly understand the normal process of their development in vivo. Here we find that the potent retina-inducing transcription factor PAX6 plays a critical anti-retinogenic role in the RPE of mice. But how can PAX6 be pro-retinogenic in the retina and anti-retinogenic in the RPE? To address this question, we used gene expression studies and combined them with chromatin immunoprecipitation assays, which analyze the interaction of transcription factors with chromatin in vivo. Our findings show that, in the RPE, PAX6 cooperates with either one (or both) of two related RPE transcription factors, MITF and TFEC, to suppress extracellular signals that in the normal retina induce a signaling cascade promoting retina formation. Hence, this study provides mechanistic insights into RPE development that may become important for the efficient generation of retina and RPE from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kapil Bharti
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
50
|
Mitton B, Federman N. Alveolar soft part sarcomas: molecular pathogenesis and implications for novel targeted therapies. Sarcoma 2012; 2012:428789. [PMID: 22566752 PMCID: PMC3337503 DOI: 10.1155/2012/428789] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/29/2012] [Indexed: 12/16/2022] Open
Abstract
Alveolar soft part sarcoma (ASPS) is a very rare soft tissue sarcoma which arises primarily in children and young adults. Despite its unique histology and well-characterized genetic translocation, many questions remain regarding the pathogenesis and treatment of this tumor type. Though collective clinical experience with this tumor type spans more than 60 years, there has been little progress made in treating this uncommon but frequently fatal disease. This paper focuses on the available data regarding its molecular pathogenesis and insights into targeted therapeutics as well as the results of clinical trials performed to date to hopefully improve the outcome of patients with this rare malignancy.
Collapse
Affiliation(s)
- Bryan Mitton
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Mattel Children's Hospital at UCLA, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-175, USA
| | - Noah Federman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Mattel Children's Hospital at UCLA, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-175, USA
- UCLA Pediatric Bone and Soft Tissue Sarcoma Program, The UCLA Sarcoma Program, Nanotechnology Program Area, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|