1
|
Campelo Morillo R, Casique L, Figarella K, Ramírez JL. Molecular and Structural Characterization of an Immunopurified Telomerase from Leishmania major and the Effect of Telomerase Inhibitors. Microorganisms 2025; 13:357. [PMID: 40005724 PMCID: PMC11858695 DOI: 10.3390/microorganisms13020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Leishmania major is the etiological agent of cutaneous leishmaniasis (CL) in several countries in Asia and Northern Africa. The disease is considered a zoonotic infection where rodents are the reservoirs and phlebotomine sandflies are the vectors. Once inside the human body, the parasite multiplies inside the macrophages of infected patients, but the disease eventually cures spontaneously, leaving scars where the phlebotomine bites occurred. Given the importance of the replicative forms in the parasite's cell cycle, here, we decided to study the enzyme telomerase, which has the critical role of replenishing the chromosomal telomeric ends during cell replication. To this aim, we first conducted partial purification using Sephacryl-300 HR gel filtration, which allowed us to determine that the telomerase activity eluted as a 600 KDa complex. Second, we characterized an immunopurified L. major telomerase, and to try to explain some of our findings, we performed modeling studies using Alfa fold 3, Pyre2, and Swiss Protein Model. Finally, considering the similarity between the catalytic site of Leishmania and Homo sapiens telomerase, we decided to test typical inhibitors of human telomerase on the purified enzyme and promastigote cell forms, confirming that MST-312 and TMPYP4 efficiently inhibited L. major activity and arrested cell growth in Leishmania promastigotes. Our findings confirm the importance of telomerase activity in L. major's replicative forms and suggest the possibility of using drugs previously tested on human telomerase to treat CL.
Collapse
Affiliation(s)
- Riward Campelo Morillo
- Institute of Advanced Studies, Ministerio del Poder Popular para Ciencia y Tecnología (MINCYT), Caracas 1010, Venezuela; (R.C.M.); (L.C.); (K.F.)
| | - Liliana Casique
- Institute of Advanced Studies, Ministerio del Poder Popular para Ciencia y Tecnología (MINCYT), Caracas 1010, Venezuela; (R.C.M.); (L.C.); (K.F.)
- Departamento de Biología, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | - Katherine Figarella
- Institute of Advanced Studies, Ministerio del Poder Popular para Ciencia y Tecnología (MINCYT), Caracas 1010, Venezuela; (R.C.M.); (L.C.); (K.F.)
| | - José Luis Ramírez
- Institute of Advanced Studies, Ministerio del Poder Popular para Ciencia y Tecnología (MINCYT), Caracas 1010, Venezuela; (R.C.M.); (L.C.); (K.F.)
- Instituto de Biología Experimental, Universidad Central de Venezuela (UCV), Caracas 1040, Venezuela
| |
Collapse
|
2
|
Dey A, Monroy-Eklund A, Klotz K, Saha A, Davis J, Li B, Laederach A, Chakrabarti K. In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei. Nucleic Acids Res 2021; 49:12445-12466. [PMID: 34850114 PMCID: PMC8643685 DOI: 10.1093/nar/gkab1042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Anais Monroy-Eklund
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kausik Chakrabarti
- To whom correspondence should be addressed. Tel: +1 704 687 1882; Fax: +1 704 687 1488;
| |
Collapse
|
3
|
The putative Leishmania telomerase RNA (LeishTER) undergoes trans-splicing and contains a conserved template sequence. PLoS One 2014; 9:e112061. [PMID: 25391020 PMCID: PMC4229120 DOI: 10.1371/journal.pone.0112061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/11/2014] [Indexed: 02/07/2023] Open
Abstract
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5′ spliced leader (SL) cap, a putative 3′ polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5′SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Collapse
|
4
|
Leishmania major telomerase TERT protein has a nuclear/mitochondrial eclipsed distribution that is affected by oxidative stress. Infect Immun 2014; 83:57-66. [PMID: 25312950 DOI: 10.1128/iai.02269-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In its canonical role the reverse transcriptase telomerase recovers the telomeric repeats that are lost during DNA replication. Other locations and activities have been recently described for the telomerase protein subunit TERT in mammalian cells. In the present work, using biochemistry, molecular biology, and electron microscopy techniques, we found that in the human parasite Leishmania major, TERT (and telomerase activity) shared locations between the nuclear, mitochondrial, and cytoplasmic compartments. Also, some telomerase activity and TERT protein could be found in ∼ 100-nm nanovesicles. In the mitochondrial compartment, TERT appears to be mainly associated with the kinetoplast DNA. When Leishmania cells were exposed to H2O2, TERT changed its relative abundance and activity between the nuclear and mitochondrial compartments, with the majority of activity residing in the mitochondrion. Finally, overexpression of TERT in Leishmania transfected cells not only increased the parasitic cell growth rate but also increased their resistance to oxidative stress.
Collapse
|
5
|
Gupta SK, Kolet L, Doniger T, Biswas VK, Unger R, Tzfati Y, Michaeli S. The Trypanosoma brucei
telomerase RNA (TER) homologue binds core proteins of the C/D snoRNA family. FEBS Lett 2013; 587:1399-404. [DOI: 10.1016/j.febslet.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/16/2022]
|
6
|
A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Res 2013; 23:537-51. [PMID: 23478302 DOI: 10.1038/cr.2013.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme typically required for sustained cell proliferation. Although both telomerase activity and the telomerase catalytic protein component, TbTERT, have been identified in the eukaryotic pathogen Trypanosoma brucei, the RNA molecule that dictates telomere synthesis remains unknown. Here, we identify the RNA component of Trypanosoma brucei telomerase, TbTR, and provide phylogenetic and in vivo evidence for TbTR's native folding and activity. We show that TbTR is processed through trans-splicing, and is a capped transcript that interacts and copurifies with TbTERT in vivo. Deletion of TbTR caused progressive shortening of telomeres at a rate of 3-5 bp/population doubling (PD), which can be rescued by ectopic expression of a wild-type allele of TbTR in an apparent dose-dependent manner. Remarkably, introduction of mutations in the TbTR template domain resulted in corresponding mutant telomere sequences, demonstrating that telomere synthesis in T. brucei is dependent on TbTR. We also propose a secondary structure model for TbTR based on phylogenetic analysis and chemical probing experiments, thus defining TbTR domains that may have important functional implications in telomere synthesis. Identification and characterization of TbTR not only provide important insights into T. brucei telomere functions, which have been shown to play important roles in T. brucei pathogenesis, but also offer T. brucei as an attractive model system for studying telomerase biology in pathogenic protozoa and for comparative analysis of telomerase function with higher eukaryotes.
Collapse
|
7
|
Cogo J, Caleare ADO, Ueda-Nakamura T, Filho BPD, Ferreira ICP, Nakamura CV. Trypanocidal activity of guaianolide obtained from Tanacetum parthenium (L.) Schultz-Bip. and its combinational effect with benznidazole. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 20:59-66. [PMID: 23069248 DOI: 10.1016/j.phymed.2012.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/18/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
In the present study, we evaluated the in vitro antiprotozoal activity of a guaianolide (11,13-dehydrocompressanolide) isolated from Tanacetum parthenium against Trypanosoma cruzi and investigated the possible combinational effect of guaianolide and benznidazole. The isolated compound was shown to be effective against T. cruzi, with IC₅₀ values of 18.1±0.8 and 66.6±1.3 μM against the multiplicative epimastigote and amastigote forms, respectively. The best results were obtained against trypomastigotes, with an EC₅₀ of 5.7±0.7 μM. The guaianolide presented no toxicity in LLCMK₂ cells (CC₅₀ of 93.5 μM) and was 16.4-fold more selective for trypomastigotes. The study of the combinational effect of benznidazole and guaianolide revealed the presence of a synergistic effect against the epimastigote form and marginal additive effect against the trypomastigote form. Striking morphological changes were observed in epimastigotes treated with guaianolide, such as thinning and stretching of the cell body and flagellum and changes in the format of the cell body with apparent leakage of the cytoplasmic content in trypomastigote forms. The ultrastructural analysis of epimastigotes revealed the presence of membranes that involved organelles and formation of myelin-like figures. Flow cytometry revealed a cell volume reduction and decrease in mitochondrial membrane potential. However, no major changes in cell membrane integrity were found in the epimastigote form treated with guaianolide.
Collapse
Affiliation(s)
- Juliana Cogo
- Programa de Pós graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Campelo R, Galindo MM, Ramirez JL. Characterization of Trypanosoma cruzi telomerase. Acta Trop 2011; 120:173-8. [PMID: 21893016 DOI: 10.1016/j.actatropica.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
High telomerase activity is always associated with actively dividing cells, however the detection of this activity in dividing Leishmania and Trypanosoma cruzi cells has always been disappointingly low. Recently, we have found that Leishmania major telomerase activity can be activated by heat, which combined with dilutions of the nuclear extracts produced an increase in activity comparable to cancer cells. Here we examined whether T. cruzi telomerase shares the same physicochemical properties of primer specificity and overall features of the L. major. Our studies revealed that no telomerase inhibitory factors were present in the nuclear lysates of T. cruzi however the enzyme was activated by heat and was very resilient to heat denaturation. We also showed the extension primer specificity, susceptibility to RNase-A and RNase-H digestion, and the effect of telomerase inhibitors.
Collapse
|
9
|
Schenkman S, Pascoalino BDS, Nardelli SC. Nuclear structure of Trypanosoma cruzi. ADVANCES IN PARASITOLOGY 2011; 75:251-83. [PMID: 21820560 DOI: 10.1016/b978-0-12-385863-4.00012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general features of T. cruzi nuclear structure regarding unique characteristics of this protozoan parasite will be described.
Collapse
Affiliation(s)
- Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Giardini M, Fernández M, Lira C, Cano M. Leishmania amazonensis: Partial purification and study of the biochemical properties of the telomerase reverse transcriptase activity from promastigote-stage. Exp Parasitol 2011; 127:243-8. [DOI: 10.1016/j.exppara.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
|
11
|
|
12
|
Lira CBB, Giardini MA, Neto JLS, Conte FF, Cano MIN. Telomere biology of trypanosomatids: beginning to answer some questions. Trends Parasitol 2007; 23:357-62. [PMID: 17580124 DOI: 10.1016/j.pt.2007.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Collapse
Affiliation(s)
- Cristina B B Lira
- Laboratório de Telômeros, Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
13
|
Abstract
Telomeres are specialized DNA-protein complexes that stabilize chromosome ends, protecting them from nucleolytic degradation and illegitimate recombination. Telomeres form a heterochromatic structure that can suppress the transcription of adjacent genes. These structures might have additional roles in Trypanosoma brucei, as the major surface antigens of this parasite are expressed during its infectious stages from subtelomeric loci. We propose that the telomere protein complexes of trypanosomes and vertebrates are conserved and offer the hypothesis that growth and breakage of telomeric repeats has an important role in regulating parasite antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Oliver Dreesen
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
14
|
Horn D, Barry JD. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res 2005; 13:525-33. [PMID: 16132817 DOI: 10.1007/s10577-005-0991-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Telomeres and subtelomeres are important to the virulence of a number of pathogens, as they harbour large diverse gene families associated with the maintenance of infection. Evasion of immunity by African trypanosomes involves the differential expression of variant surface glycoproteins (VSGs), which are encoded by a family of >1500 genes and pseudogenes. This silent archive is located subtelomerically and is activated by gene conversion into specialized transcription units, which themselves are subject to silencing by allelic exclusion. Current research addresses the role of telomeres in the conversion and silencing mechanisms and in the diversification of the VSG archive.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|