1
|
Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction. Biosci Rep 2021; 41:230259. [PMID: 34792534 PMCID: PMC8607333 DOI: 10.1042/bsr20211419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressor, LexA, regulates the ‘SOS’ response, an indispensable bacterial DNA damage repair machinery. Compared with its Escherichia coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA-binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in ‘SOS’ regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA–DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different ‘SOS’ boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, the present study provides insights into the kinetics of the interaction between Mtb LexA and its target ‘SOS’ boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of ‘SOS’ regulation and activation in Mtb.
Collapse
|
2
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Genome-wide Identification of DNA-protein Interaction to Reconstruct Bacterial Transcription Regulatory Network. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Fröhlich KS, Förstner KU, Gitai Z. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus. Nucleic Acids Res 2019; 46:10969-10982. [PMID: 30165530 PMCID: PMC6237742 DOI: 10.1093/nar/gky765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are a heterogeneous group of post-transcriptional regulators that often act at the heart of large networks. Hundreds of sRNAs have been discovered by genome-wide screens and most of these sRNAs exert their functions by base-pairing with target mRNAs. However, studies addressing the molecular roles of sRNAs have been largely confined to gamma-proteobacteria, such as Escherichia coli. Here we identify and characterize a novel sRNA, ChvR, from the alpha-proteobacterium Caulobacter crescentus. Transcription of chvR is controlled by the conserved two-component system ChvI-ChvG and it is expressed in response to DNA damage, low pH, and growth in minimal medium. Transient over-expression of ChvR in combination with genome-wide transcriptome profiling identified the mRNA of the TonB-dependent receptor ChvT as the sole target of ChvR. Genetic and biochemical analyses showed that ChvR represses ChvT at the post-transcriptional level through direct base-pairing. Fine-mapping of the ChvR-chvT interaction revealed the requirement of two distinct base-pairing sites for full target regulation. Finally, we show that ChvR-controlled repression of chvT is independent of the ubiquitous RNA-chaperone Hfq, and therefore distinct from previously reported mechanisms employed by prototypical bacterial sRNAs. These findings have implications for the mechanism and evolution of sRNA function across bacterial species.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratories, Princeton, NJ 08544, USA.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratories, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Structure 2019; 27:1094-1102.e4. [PMID: 31056420 DOI: 10.1016/j.str.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7. Here we report the crystallographic structure of phage-borne gp7 at 1.7-Å resolution, and characterize the 4:2 stoichiometry and potential interaction with LexA using surface plasmon resonance, static light scattering, and small-angle X-ray scattering. These data suggest that gp7 stabilizes LexA binding to operator DNA via coordination of the N- and C-terminal domains of LexA. Furthermore, we have found that gp7 can interact with LexA from Staphylococcus aureus, a significant human pathogen. Our results provide structural evidence as to how phage factors can directly associate with LexA to modulate the SOS response.
Collapse
|
6
|
Koppenhöfer S, Wang H, Scharfe M, Kaever V, Wagner-Döbler I, Tomasch J. Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in Dinoroseobacter shibae. Front Microbiol 2019; 10:803. [PMID: 31031742 PMCID: PMC6473078 DOI: 10.3389/fmicb.2019.00803] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) coordinates population wide gene expression of bacterial species. Highly adaptive traits like gene transfer agents (GTA), morphological heterogeneity, type 4 secretion systems (T4SS), and flagella are QS controlled in Dinoroseobacter shibae, a Roseobacter model organism. Its QS regulatory network is integrated with the CtrA phosphorelay that controls cell division in alphaproteobacteria. To elucidate the network topology, we analyzed the transcriptional response of the QS-negative D. shibae strain ΔluxI1 toward externally added autoinducer (AI) over a time period of 3 h. The signaling cascade is initiated by the CtrA phosphorelay, followed by the QS genes and other target genes, including the second messenger c-di-GMP, competence, flagella and pili. Identification of transcription factor binding sites in promoters of QS induced genes revealed the integration of QS, CtrA phosphorelay and the SOS stress response mediated by LexA. The concentration of regulatory genes located close to the origin or terminus of replication suggests that gene regulation and replication are tightly coupled. Indeed, addition of AI first stimulates and then represses replication. The restart of replication comes along with increased c-di-GMP levels. We propose a model in which QS induces replication followed by differentiation into GTA producing and non-producing cells. CtrA-activity is controlled by the c-di-GMP level, allowing some of the daughter cells to replicate again. The size of the GTA producing subpopulation is tightly controlled by QS via the AI Synthase LuxI2. Finally, induction of the SOS response allows for integration of GTA DNA into the host chromosome.
Collapse
Affiliation(s)
- Sonja Koppenhöfer
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Hui Wang
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Maren Scharfe
- Group Genomic Analytics, Helmholtz Centre for Infection Research, Helmholtz Association of German Research Centers, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Inoue M, Fukui K, Fujii Y, Nakagawa N, Yano T, Kuramitsu S, Masui R. The Lon protease-like domain in the bacterial RecA paralog RadA is required for DNA binding and repair. J Biol Chem 2017; 292:9801-9814. [PMID: 28432121 DOI: 10.1074/jbc.m116.770180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.
Collapse
Affiliation(s)
- Masao Inoue
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Kenji Fukui
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Yuki Fujii
- the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, and
| | - Noriko Nakagawa
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Takato Yano
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Seiki Kuramitsu
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Ryoji Masui
- the Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
8
|
Kılıç S, Erill I. Assessment of transfer methods for comparative genomics of regulatory networks in bacteria. BMC Bioinformatics 2016; 17 Suppl 8:277. [PMID: 27586594 PMCID: PMC5009822 DOI: 10.1186/s12859-016-1113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Comparative genomics can leverage the vast amount of available genomic sequences to reconstruct and analyze transcriptional regulatory networks in Bacteria, but the efficacy of this approach hinges on the ability to transfer regulatory network information from reference species to the genomes under analysis. Several methods have been proposed to transfer regulatory information between bacterial species, but the paucity and distributed nature of experimental information on bacterial transcriptional networks have prevented their systematic evaluation. Results We report the compilation of a large catalog of transcription factor-binding sites across Bacteria and its use to systematically benchmark proposed transfer methods across pairs of bacterial species. We evaluate motif- and accuracy-based metrics to assess the results of regulatory network transfer and we identify the precision-recall area-under-the-curve as the best metric for this purpose due to the large class-imbalanced nature of the problem. Methods assuming conservation of the transcription factor-binding motif (motif-based) are shown to substantially outperform those assuming conservation of regulon composition (network-based), even though their efficiency can decrease sharply with increasing phylogenetic distance. Variations of the basic motif-based transfer method do not yield significant improvements in transfer accuracy. Our results indicate that detection of a large enough number of regulated orthologs is critical for network-based transfer methods, but that relaxing orthology requirements does not improve results. Using the transcriptional regulators LexA and Fur as case examples, we also show how DNA-binding domain sequence similarity can yield confounding results as an indicator of transfer efficiency for motif-based methods. Conclusions Counter to standard practice, our evaluation of metrics to assess the efficiency of methods for regulatory network information transfer reveals that the area under precision-recall (PR) curves is a more precise and informative metric than that of receiver-operating-characteristic (ROC) curves, confirming similar findings in other class-imbalanced settings. Our systematic assessment of transfer methods reveals that simple approaches to both motif- and network-based transfer of regulatory information provide equal or better results than more elaborate methods. We also show that there are not effective predictors of transfer efficacy, substantiating the long-standing practice of manual curation in comparative genomics analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1113-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sefa Kılıç
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, 21250, USA
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, 21250, USA.
| |
Collapse
|
9
|
Erill I, Campoy S, Kılıç S, Barbé J. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response. Front Mol Biosci 2016; 3:33. [PMID: 27489856 PMCID: PMC4951493 DOI: 10.3389/fmolb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.
Collapse
Affiliation(s)
- Ivan Erill
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Susana Campoy
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sefa Kılıç
- Erill Lab, Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | - Jordi Barbé
- Unitat de Microbiologia, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
10
|
The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA. J Bacteriol 2016; 198:1137-48. [PMID: 26833411 DOI: 10.1128/jb.00839-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. IMPORTANCE This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically.
Collapse
|
11
|
Lopes-Kulishev CO, Alves IR, Valencia EY, Pidhirnyj MI, Fernández-Silva FS, Rodrigues TR, Guzzo CR, Galhardo RS. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus. DNA Repair (Amst) 2015; 33:78-89. [DOI: 10.1016/j.dnarep.2015.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
12
|
An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria. J Bacteriol 2015; 197:2622-30. [PMID: 25986903 DOI: 10.1128/jb.00035-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or mediate responses to stress. The results reported here constitute the first characterization of a noncanonical LexA protein regulating a standard SOS regulon. This is significant because it illustrates how a complex transcriptional program can be put under the control of a novel transcriptional regulator. Our results also reveal a substantial degree of plasticity in the LexA recognition domain, raising intriguing questions about the space of protein-DNA interfaces and the specific evolutionary constrains faced by these elements.
Collapse
|
13
|
Signal correlations in ecological niches can shape the organization and evolution of bacterial gene regulatory networks. Adv Microb Physiol 2013; 61:1-36. [PMID: 23046950 DOI: 10.1016/b978-0-12-394423-8.00001-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly.
Collapse
|
14
|
Cornish JP, Matthews F, Thomas JR, Erill I. Inference of self-regulated transcriptional networks by comparative genomics. Evol Bioinform Online 2012; 8:449-61. [PMID: 23032607 PMCID: PMC3422134 DOI: 10.4137/ebo.s9205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The assumption of basic properties, like self-regulation, in simple transcriptional regulatory networks can be exploited to infer regulatory motifs from the growing amounts of genomic and meta-genomic data. These motifs can in principle be used to elucidate the nature and scope of transcriptional networks through comparative genomics. Here we assess the feasibility of this approach using the SOS regulatory network of Gram-positive bacteria as a test case. Using experimentally validated data, we show that the known regulatory motif can be inferred through the assumption of self-regulation. Furthermore, the inferred motif provides a more robust search pattern for comparative genomics than the experimental motifs defined in reference organisms. We take advantage of this robustness to generate a functional map of the SOS response in Gram-positive bacteria. Our results reveal definite differences in the composition of the LexA regulon between Firmicutes and Actinobacteria, and confirm that regulation of cell-division inhibition is a widespread characteristic of this network among Gram-positive bacteria.
Collapse
Affiliation(s)
- Joseph P Cornish
- Department of Biological Sciences, University of Maryland Baltimore County
| | | | | | | |
Collapse
|
15
|
BioWord: a sequence manipulation suite for Microsoft Word. BMC Bioinformatics 2012; 13:124. [PMID: 22676326 PMCID: PMC3546851 DOI: 10.1186/1471-2105-13-124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022] Open
Abstract
Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.
Collapse
|
16
|
Sanchez-Alberola N, Campoy S, Barbé J, Erill I. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes. BMC Genomics 2012; 13:58. [PMID: 22305460 PMCID: PMC3323433 DOI: 10.1186/1471-2164-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Collapse
Affiliation(s)
- Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
17
|
Li S, Xu M, Su Z. Computational analysis of LexA regulons in Cyanobacteria. BMC Genomics 2010; 11:527. [PMID: 20920248 PMCID: PMC3091678 DOI: 10.1186/1471-2164-11-527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/29/2010] [Indexed: 12/13/2022] Open
Abstract
Background The transcription factor LexA plays an important role in the SOS response in Escherichia coli and many other bacterial species studied. Although the lexA gene is encoded in almost every bacterial group with a wide range of evolutionary distances, its precise functions in each group/species are largely unknown. More recently, it has been shown that lexA genes in two cyanobacterial genomes Nostoc sp. PCC 7120 and Synechocystis sp. PCC 6803 might have distinct functions other than the regulation of the SOS response. To gain a general understanding of the functions of LexA and its evolution in cyanobacteria, we conducted the current study. Results Our analysis indicates that six of 33 sequenced cyanobacterial genomes do not harbor a lexA gene although they all encode the key SOS response genes, suggesting that LexA is not an indispensable transcription factor in these cyanobacteria, and that their SOS responses might be regulated by different mechanisms. Our phylogenetic analysis suggests that lexA was lost during the course of evolution in these six cyanobacterial genomes. For the 26 cyanobacterial genomes that encode a lexA gene, we have predicted their LexA-binding sites and regulons using an efficient binding site/regulon prediction algorithm that we developed previously. Our results show that LexA in most of these 26 genomes might still function as the transcriptional regulator of the SOS response genes as seen in E. coli and other organisms. Interestingly, putative LexA-binding sites were also found in some genomes for some key genes involved in a variety of other biological processes including photosynthesis, drug resistance, etc., suggesting that there is crosstalk between the SOS response and these biological processes. In particular, LexA in both Synechocystis sp. PCC6803 and Gloeobacter violaceus PCC7421 has largely diverged from those in other cyanobacteria in the sequence level. It is likely that LexA is no longer a regulator of the SOS response in Synechocystis sp. PCC6803. Conclusions In most cyanobacterial genomes that we analyzed, LexA appears to function as the transcriptional regulator of the key SOS response genes. There are possible couplings between the SOS response and other biological processes. In some cyanobacteria, LexA has adapted distinct functions, and might no longer be a regulator of the SOS response system. In some other cyanobacteria, lexA appears to have been lost during the course of evolution. The loss of lexA in these genomes might lead to the degradation of its binding sites.
Collapse
Affiliation(s)
- Shan Li
- Bioinformatics Research Center, Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
18
|
Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA. RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 2009; 38:D111-8. [PMID: 19884135 PMCID: PMC2808921 DOI: 10.1093/nar/gkp894] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The RegPrecise database (http://regprecise.lbl.gov) was developed for capturing, visualization and analysis of predicted transcription factor regulons in prokaryotes that were reconstructed and manually curated by utilizing the comparative genomic approach. A significant number of high-quality inferences of transcriptional regulatory interactions have been already accumulated for diverse taxonomic groups of bacteria. The reconstructed regulons include transcription factors, their cognate DNA motifs and regulated genes/operons linked to the candidate transcription factor binding sites. The RegPrecise allows for browsing the regulon collections for: (i) conservation of DNA binding sites and regulated genes for a particular regulon across diverse taxonomic lineages; (ii) sets of regulons for a family of transcription factors; (iii) repertoire of regulons in a particular taxonomic group of species; (iv) regulons associated with a metabolic pathway or a biological process in various genomes. The initial release of the database includes ∼11 500 candidate binding sites for ∼400 orthologous groups of transcription factors from over 350 prokaryotic genomes. Majority of these data are represented by genome-wide regulon reconstructions in Shewanella and Streptococcus genera and a large-scale prediction of regulons for the LacI family of transcription factors. Another section in the database represents the results of accurate regulon propagation to the closely related genomes.
Collapse
Affiliation(s)
- Pavel S Novichkov
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, State Scientific Center GosNIIGenetika, Moscow 117545, Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Janga SC, Pérez-Rueda E. Plasticity of transcriptional machinery in bacteria is increased by the repertoire of regulatory families. Comput Biol Chem 2009; 33:261-8. [PMID: 19632156 DOI: 10.1016/j.compbiolchem.2009.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/17/2022]
Abstract
Escherichia coli K12 and Bacillus subtilis 168 are two of the best characterized bacterial organisms with a long history in molecular biology for understanding various mechanisms in prokaryotic species. However, at the level of transcriptional regulation little is known on a comparative scale. Here we address the question of the degree to which transcription factors (TFs) and their evolutionary families are shared between them. We found that 59 proteins and 28 families are shared between these two bacteria, whereas different subsets were lineage specific. We demonstrate that majority of the common families expand in a lineage-specific manner. More specifically, we found that AraC, ColD, Ebp, LuxR and LysR families are over-represented in E. coli, while ArsR, AsnC, MarR, MerR and TetR families have significantly expanded in B. subtilis. We introduce the notion of regulatory superfamilies based on an empirical number of functional categories regulated by them and show that these families are essentially different in the two bacteria. We further show that global regulators seem to be constrained to smaller regulatory families and generally originate from lineage-specific families. We find that although TF families may be conserved across genomes their functional roles might evolve in a lineage-specific manner and need not be conserved, indicating convergence to be an important phenomenon involved in the functional evolution of TFs of the same family. Although topologically the networks of transcriptional interactions among TF families are similar in both the genomes, we found that the players are different, suggesting different evolutionary origins for the transcriptional regulatory machinery in both bacteria. This study provides evidence from complete repertoires that not only novel families originate in different lineages but conserved TF families expand/contrast in a lineage-specific manner, and suggests that part of the global regulatory mechanisms might originate independently in different lineages.
Collapse
|
20
|
Mertens K, Lantsheer L, Ennis DG, Samuel JE. Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol Microbiol 2008; 69:1411-26. [PMID: 18647165 DOI: 10.1111/j.1365-2958.2008.06373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SUMMARY Coxiella burnetii, a Gram-negative obligate intracellular pathogen, replicates within an parasitophorous vacuole with lysosomal characteristics. To understand how C. burnetii maintains genomic integrity in this environment, a database search for genes involved in DNA repair was performed. Major components of repair, SOS response and recombination were identified, including recA and ruvABC, but lexA and recBCD were absent. Instead, C. burnetii possesses addAB orthologous genes, functional equivalents to recBCD. Survival after treatment with UV, mitomycin C (MC) or methyl methanesulfonate (MMS), as well as homologous recombination in Hfr mating was restored in Escherichia coli deletion strains by C. burnetii recA or addAB. Despite the absence of LexA, co-protease activity for C. burnetii RecA was demonstrated. Dominant-negative inhibition of C. burnetii RecA by recA mutant alleles, modelled after E. coli recA1 and recA56, was observed and more apparent with expression of C. burnetii RecAG159D mutant protein. Expression of a subset of repair genes in C. burnetii was monitored and, in contrast to the non-inducible E. coli recBCD, addAB expression was strongly upregulated under oxidative stress. Constitutive SOS gene expression due to the lack of LexA and induction of AddAB likely reflect a unique repair adaptation of C. burnetii to its hostile niche.
Collapse
Affiliation(s)
- Katja Mertens
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College of Medicine, College Station, TX, USA
| | | | | | | |
Collapse
|
21
|
González Pérez AD, González González E, Espinosa Angarica V, Vasconcelos ATR, Collado-Vides J. Impact of Transcription Units rearrangement on the evolution of the regulatory network of gamma-proteobacteria. BMC Genomics 2008; 9:128. [PMID: 18366643 PMCID: PMC2329645 DOI: 10.1186/1471-2164-9-128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 03/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the past years, several studies begun to unravel the structure, dynamical properties, and evolution of transcriptional regulatory networks. However, even those comparative studies that focus on a group of closely related organisms are limited by the rather scarce knowledge on regulatory interactions outside a few model organisms, such as E. coli among the prokaryotes. RESULTS In this paper we used the information annotated in Tractor_DB (a database of regulatory networks in gamma-proteobacteria) to calculate a normalized Site Orthology Score (SOS) that quantifies the conservation of a regulatory link across thirty genomes of this subclass. Then we used this SOS to assess how regulatory connections have evolved in this group, and how the variation of basic regulatory connection is reflected on the structure of the chromosome. We found that individual regulatory interactions shift between different organisms, a process that may be described as rewiring the network. At this evolutionary scale (the gamma-proteobacteria subclass) this rewiring process may be an important source of variation of regulatory incoming interactions for individual networks. We also noticed that the regulatory links that form feed forward motifs are conserved in a better correlated manner than triads of random regulatory interactions or pairs of co-regulated genes. Furthermore, the rewiring process that takes place at the most basic level of the regulatory network may be linked to rearrangements of genetic material within bacterial chromosomes, which change the structure of Transcription Units and therefore the regulatory connections between Transcription Factors and structural genes. CONCLUSION The rearrangements that occur in bacterial chromosomes-mostly inversion or horizontal gene transfer events - are important sources of variation of gene regulation at this evolutionary scale.
Collapse
Affiliation(s)
- Abel D González Pérez
- Centro Nacional de Bioinformática. Industria y San José, Capitolio Nacional, CP. 10200, Habana Vieja, Ciudad de la Habana, Cuba.
| | | | | | | | | |
Collapse
|
22
|
Janky R, van Helden J. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution. BMC Bioinformatics 2008; 9:37. [PMID: 18215291 PMCID: PMC2248561 DOI: 10.1186/1471-2105-9-37] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 01/23/2008] [Indexed: 11/24/2022] Open
Abstract
Background The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. Results We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference). Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. Conclusion The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.
Collapse
Affiliation(s)
- Rekin's Janky
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles (ULB), Campus Plaine, CP 263, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | | |
Collapse
|
23
|
Abstract
The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in the alphaproteobacterium Caulobacter crescentus. In agreement with previous results, we have found that the direct repeat GTTCN7GTTC is the SOS operator of C. crescentus, which was confirmed by site-directed mutagenesis studies of the imuA promoter. Several potential promoter regions containing the SOS operator were identified in the genome, and the expression of the corresponding genes was analyzed for both the wild type and the lexA strain, demonstrating that the vast majority of these genes are indeed SOS regulated. Interestingly, many of these genes encode proteins with unknown functions, revealing the potential of this approach for the discovery of novel genes involved in cellular responses to DNA damage in prokaryotes, and illustrating the diversity of SOS-regulated genes among different bacterial species.
Collapse
|
24
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
25
|
Sycheva LV, Permina EA, Gelfand MS. Taxon-specific regulation of the SOS response in γ-proteobacteria. Mol Biol 2007. [DOI: 10.1134/s0026893307050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Andersson SA, Lagergren J. Motif Yggdrasil: sampling sequence motifs from a tree mixture model. J Comput Biol 2007; 14:682-97. [PMID: 17683268 DOI: 10.1089/cmb.2007.r010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.
Collapse
Affiliation(s)
- Samuel A Andersson
- Stockholm Bioinformatics Center and School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
27
|
Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 2007; 107:3467-97. [PMID: 17636889 PMCID: PMC2643304 DOI: 10.1021/cr068309+] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry A Rodionov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
28
|
Enikeeva FN, Kotelnikova EA, Gelfand MS, Makeev VJ. A model of evolution with constant selective pressure for regulatory DNA sites. BMC Evol Biol 2007; 7:125. [PMID: 17662135 PMCID: PMC1978210 DOI: 10.1186/1471-2148-7-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 07/27/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular evolution is usually described assuming a neutral or weakly non-neutral substitution model. Recently, new data have become available on evolution of sequence regions under a selective pressure, e.g. transcription factor binding sites. To reconstruct the evolutionary history of such sequences, one needs evolutionary models that take into account a substantial constant selective pressure. RESULTS We present a simple evolutionary model with a single preferred (consensus) nucleotide and the neutral substitution model adopted for all other nucleotides. This evolutionary model has a rate matrix in which all substitutions that do not involve the consensus nucleotide occur with the same rate. The model has two time scales for achieving a stationary distribution; in the general case only one of the two rate parameters can be evaluated from the stationary distribution. In the middle-time zone, a counterintuitive behavior was observed for some parameter values, with a probability of conservation for a non-consensus nucleotide greater than that for the consensus nucleotide. Such an effect can be observed only in the case of weak preference for the consensus nucleotide, when the probability to observe the consensus nucleotide in the stationary distribution is less than 1/2. If the substitution rate is represented as a product of mutation and fixation, only the fixation can be calculated from the stationary distribution. The exhibited conservation of non-consensus nucleotides does not take place if the elements of mutation matrix are identical, and can be related to the reduced mutation rate between the non-consensus nucleotides. This bias can have no effect on the stationary distribution of nucleotide frequencies calculated over the ensemble of multiple alignments, e.g. transcription factor binding sites upstream of different sets of co-regulated orthologous genes. CONCLUSION The derived model can be used as a null model when analyzing the evolution of orthologous transcription factor binding sites. In particular, our findings show that a nucleotide preferred at some position of a multiple alignment of binding sites for some transcription factor in the same genome is not necessarily the most conserved nucleotide in an alignment of orthologous sites from different species. However, this effect can take place only in the case of a mutation matrix whose elements are not identical.
Collapse
Affiliation(s)
- Farida N Enikeeva
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
| | - Ekaterina A Kotelnikova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Ariadne Genomics Inc. 9700 Great Seneca Highway, Suite 113, Rockville, MD 20850, USA
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute) of RAS, Bolshoi Karetny pereulok, 19, GSP-4, Moscow, 127994, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Vorobyevy Gory 1-73, Moscow, 119992, Russia
| | - Vsevolod J Makeev
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1st Dorozhnyj proezd, 1, Moscow, 113535, Russia
- Engelgardt Institute of Molecular Biology of RAS, Vavilova 32, Moscow, 119991, Russia
| |
Collapse
|
29
|
Baumbach J, Wittkop T, Rademacher K, Rahmann S, Brinkrolf K, Tauch A. CoryneRegNet 3.0—An interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli. J Biotechnol 2007; 129:279-89. [PMID: 17229482 DOI: 10.1016/j.jbiotec.2006.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 12/04/2006] [Indexed: 11/30/2022]
Abstract
CoryneRegNet is an ontology-based data warehouse for the reconstruction and visualization of transcriptional regulatory interactions in prokaryotes. To extend the biological content of CoryneRegNet, we added comprehensive data on transcriptional regulations in the model organism Escherichia coli K-12, originally deposited in the international reference database RegulonDB. The enhanced web interface of CoryneRegNet offers several types of search options. The results of a search are displayed in a table-based style and include a visualization of the genetic organization of the respective gene region. Information on DNA binding sites of transcriptional regulators is depicted by sequence logos. The results can also be displayed by several layouters implemented in the graphical user interface GraphVis, allowing, for instance, the visualization of genome-wide network reconstructions and the homology-based inter-species comparison of reconstructed gene regulatory networks. In an application example, we compare the composition of the gene regulatory networks involved in the SOS response of E. coli and Corynebacterium glutamicum. CoryneRegNet is available at the following URL: http://www.cebitec.uni-bielefeld.de/groups/gi/software/coryneregnet/.
Collapse
Affiliation(s)
- Jan Baumbach
- Algorithms and Statistics for Systems Biology Group, Genominformatik, Technische Fakultät, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Martins-Pinheiro M, Marques RCP, Menck CFM. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus. BMC Microbiol 2007; 7:17. [PMID: 17352799 PMCID: PMC1839093 DOI: 10.1186/1471-2180-7-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 03/12/2007] [Indexed: 11/10/2022] Open
Abstract
Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA), endonuclease III (nth), O6-methylguanine-DNA methyltransferase (ada gene), photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular aspects of the C. crescentus among other known DNA repair pathways. The observed differences enlarge what is known for DNA repair in the Bacterial world, and provide a useful framework for further experimental studies in this organism.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Regina CP Marques
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| | - Carlos FM Menck
- Department of Microbiology, Institute of Biomedical Sciences, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
31
|
Abstract
The SOS response that responds to DNA damage induces many genes that are under LexA repression. A detailed examination of LexA regulons using genome-wide techniques has recently been undertaken in both Escherichia coli and Bacillus subtilis. These extensive and elegant studies have now charted the extent of the LexA regulons, uncovered many new genes, and exposed a limited overlap in the LexA regulon between the two bacteria. As more bacterial genomes are analysed, more curiosities in LexA regulons arise. Several notable examples include the discovery of a LexA-like protein, HdiR, in Lactococcus lactis, organisms with two lexA genes, and small DNA damage-inducible cassettes under LexA control. In the cyanobacterium Synechocystis, genetic and microarray studies demonstrated that a LexA paralogue exerts control over an entirely different set of carbon-controlled genes and is crucial to cells facing carbon starvation. An examination of SOS induction evoked by common therapeutic drugs has shed new light on unsuspected consequences of drug exposure. Certain antibiotics, most notably fluoroquinolones such as ciprofloxacin, can induce an SOS response and can modulate the spread of virulence factors and drug resistance. SOS induction by beta-lactams in E. coli triggers a novel form of antibiotic defence that involves cell wall stress and signal transduction by the DpiAB two-component system. In this review, we provide an overview of these new directions in SOS and LexA research with emphasis on a few themes: identification of genes under LexA control, the identification of new endogenous triggers, and antibiotic-induced SOS response and its consequences.
Collapse
Affiliation(s)
- William L Kelley
- Laboratory of Microbial Genetics, Service of Infectious Diseases, University Hospital of Geneva, 24 rue Micheli-du-Crest, CH-1211, Geneva 14, Switzerland.
| |
Collapse
|
32
|
Pérez AG, Angarica VE, Vasconcelos ATR, Collado-Vides J. Tractor_DB (version 2.0): a database of regulatory interactions in gamma-proteobacterial genomes. Nucleic Acids Res 2006; 35:D132-6. [PMID: 17088283 PMCID: PMC1669740 DOI: 10.1093/nar/gkl800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The version 2.0 of Tractor_DB is now accessible at its three international mirrors: , and . This database contains a collection of computationally predicted Transcription Factors' binding sites in gamma-proteobacterial genomes. These data should aid researchers in the design of microarray experiments and the interpretation of their results. They should also facilitate studies of Comparative Genomics of the regulatory networks of this group of organisms. In this paper we describe the main improvements incorporated to the database in the past year and a half which include incorporating information on the regulatory networks of 13—increasing to 30—new gamma-proteobacteria and developing a new computational strategy to complement the putative sites identified by the original weight matrix-based approach. We have also added dynamically generated navigation tabs to the navigation interfaces. Moreover, we developed a new interface that allows users to directly retrieve information on the conservation of regulatory interactions in the 30 genomes included in the database by navigating a map that represents a core of the known Escherichia coli regulatory network.
Collapse
Affiliation(s)
| | | | - Ana Tereza R. Vasconcelos
- National Laboratory for Scientific ComputingBrazil
- To whom correspondence should be addressed at Bioinformatics Laboratory-LABINFO National Laboratory of Scientfic Computation Av. Getulio Vargas, 333, Quitandinha ZC: 25651-075 Petrópolis Rio de Janeiro, Brazil. Tel: +55 24 2233 6065; Fax: +55 24 2231 5595;
| | | |
Collapse
|
33
|
Mazón G, Campoy S, Fernández de Henestrosa AR, Barbé J. Insights into the LexA regulon of Thermotogales. Antonie Van Leeuwenhoek 2006; 90:123-37. [PMID: 16897562 DOI: 10.1007/s10482-006-9066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
The lexA genes of Thermotoga maritima and Petrotoga miotherma, both members of the Order Thermotogales, have been cloned and their transcriptional organization, as well as the functional characteristics of their encoded products, analyzed. In both bacterial species, the lexA gene was found to be co-transcribed together with another four (T. maritima) or three (P. miotherma) upstream open-reading frames. The P. miotherma LexA was able to bind promoters of both the cognate lexA encoding operon and the uvrA gene but not to that of the recA. Conversely, LexA protein and crude cell extracts from T. maritima were unable to bind promoters governing the expression of either its lexA or recA genes. In agreement with these observations, no functional copy of the P. miotherma LexA box, corresponding to the GANTN(6)GANNAC motif, seems to be present in the T. maritima genome. Giving support to the proposal that the evolutionary branching order of the Order Thermotogales is very close to that of Gram-positive bacteria, the P. miotherma LexA protein was still able to recognize the previously described LexA-binding sequence for Gram-positive bacteria.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
34
|
Mazón G, Campoy S, Erill I, Barbé J. Identification of the Acidobacterium capsulatum LexA box reveals a lateral acquisition of the Alphaproteobacteria lexA gene. MICROBIOLOGY-SGM 2006; 152:1109-1118. [PMID: 16549674 DOI: 10.1099/mic.0.28376-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acidobacterium capsulatum is the most thoroughly studied species of a new bacterial phylogenetic group designated the phylum Acidobacteria. Through a tblastn search, the A. capsulatum lexA gene has been identified, and its product purified. Electrophoretic mobility shift assays have shown that A. capsulatum LexA protein binds specifically to the direct repeat GTTCN(7)GTTC motif. Strikingly, this is also the LexA box of the Alphaproteobacteria, but had not previously been described outside this subclass of the Proteobacteria. In addition, a phylogenetic analysis of the LexA protein clusters together Acidobacterium and the Alphaproteobacteria, moving the latter away from their established phylogenetic position as a subclass of the Proteobacteria, and pointing to a lateral gene transfer of the lexA gene from the phylum Acidobacteria, or an immediate ancestor, to the Alphaproteobacteria. Lastly, in vivo experiments demonstrate that the A. capsulatum recA gene is DNA-damage inducible, despite the fact that a LexA-binding sequence is not present in its promoter region.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
35
|
Lozada-Chávez I, Janga SC, Collado-Vides J. Bacterial regulatory networks are extremely flexible in evolution. Nucleic Acids Res 2006; 34:3434-45. [PMID: 16840530 PMCID: PMC1524901 DOI: 10.1093/nar/gkl423] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Over millions of years the structure and complexity of the transcriptional regulatory network (TRN) in bacteria has changed, reorganized and enabled them to adapt to almost every environmental niche on earth. In order to understand the plasticity of TRNs in bacteria, we studied the conservation of currently known TRNs of the two model organisms Escherichia coli K12 and Bacillus subtilis across complete genomes including Bacteria, Archaea and Eukarya at three different levels: individual components of the TRN, pairs of interactions and regulons. We found that transcription factors (TFs) evolve much faster than the target genes (TGs) across phyla. We show that global regulators are poorly conserved across the phylogenetic spectrum and hence TFs could be the major players responsible for the plasticity and evolvability of the TRNs. We also found that there is only a small fraction of significantly conserved transcriptional regulatory interactions among different phyla of bacteria and that there is no constraint on the elements of the interaction to co-evolve. Finally our results suggest that majority of the regulons in bacteria are rapidly lost implying a high-order flexibility in the TRNs. We hypothesize that during the divergence of bacteria certain essential cellular processes like the synthesis of arginine, biotine and ribose, transport of amino acids and iron, availability of phosphate, replication process and the SOS response are well conserved in evolution. From our comparative analysis, it is possible to infer that transcriptional regulation is more flexible than the genetic component of the organisms and its complexity and structure plays an important role in the phenotypic adaptation.
Collapse
Affiliation(s)
- Irma Lozada-Chávez
- Programa de Genomica Computacional, Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Apdo. Postal 565-A, Avenue Universidad, Cuernavaca, Morelos, 62100 Mexico, Mexico. [corrected]
| | | | | |
Collapse
|
36
|
Abstract
Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution may be driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although genes within operons are usually closely spaced because of a neutral bias toward deletion and because of selection against large overlaps, genes in highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution may be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.
Collapse
Affiliation(s)
- Morgan N Price
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
| | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Eric J Alm
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Virtual Institute for Microbial Stress and Survival, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
37
|
Erill I, Campoy S, Mazon G, Barbé J. Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucleic Acids Res 2006; 34:66-77. [PMID: 16407325 PMCID: PMC1326238 DOI: 10.1093/nar/gkj412] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a multiple gene cassette with mutagenic translation synthesis activity was identified and shown to be under LexA regulation in several proteobacteria species. In this work, we have traced down instances of this multiple gene cassette across the bacteria domain. Phylogenetic analyses show that this cassette has undergone several reorganizations since its inception in the actinobacteria, and that it has dispersed across the bacterial domain through a combination of vertical inheritance, lateral gene transfer and duplication. In addition, our analyses show that LexA regulation of this multiple gene cassette is persistent in all the phyla in which it has been detected, and suggest that this regulation is prompted by the combined activity of two of its constituent genes: a polymerase V homolog and an alpha subunit of the DNA polymerase III.
Collapse
Affiliation(s)
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
| | - Gerard Mazon
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA)08193 Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona 08193 BellaterraSpain
- To whom correspondence should be addressed at Departament de Genètica i Microbiologia, Ed. C, Universitat Autònoma de Barcelona 08193 Bellaterra, Spain. Tel: +34 93 581 1837; Fax: +34 93 581 2387;
| |
Collapse
|
38
|
Gerasimova AV, Gelfand MS. Evolution of the NadR regulon in Enterobacteriaceae. J Bioinform Comput Biol 2005; 3:1007-19. [PMID: 16078372 DOI: 10.1142/s0219720005001387] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 02/18/2005] [Accepted: 02/24/2005] [Indexed: 12/23/2022]
Abstract
The NAD biosynthetic pathway and NAD transformations in E. coli and S. typhi are well characterized. Using comparative genomics methods we describe the NadR regulon in other Enterobacteriaceae, identity new candidate regulon members and demonstrate that even a very simple regulon covering an essential methabolic pathway could be different in closely related genomes.
Collapse
Affiliation(s)
- Anna V Gerasimova
- Laboratory of Bioinformatics, State Scientific Center GOSNIIGenetika, 1-iy Dorozhny proezd 1, Moscow, 113545, Russia.
| | | |
Collapse
|
39
|
Espinosa V, González AD, Vasconcelos AT, Huerta AM, Collado-Vides J. Comparative studies of transcriptional regulation mechanisms in a group of eight gamma-proteobacterial genomes. J Mol Biol 2005; 354:184-99. [PMID: 16236313 DOI: 10.1016/j.jmb.2005.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022]
Abstract
Experimental data on the Escherichia coli transcriptional regulation has enabled the construction of statistical models to predict new regulatory elements within its genome. Far less is known about the transcriptional regulatory elements in other gamma-proteobacteria with sequenced genomes, so it is of great interest to conduct comparative genomic studies oriented to extracting biologically relevant information about transcriptional regulation in these less studied organisms using the knowledge from E. coli. In this work, we use the information stored in the TRACTOR_DB database to conduct a comparative study on the mechanisms of transcriptional regulation in eight gamma-proteobacteria and 38 regulons. We assess the conservation of transcription factors binding specificity across all the eight genomes and show a correlation between the conservation of a regulatory site and the structure of the transcription unit it regulates. We also find a marked conservation of site-promoter distances across the eight organisms and a correspondence of the statistical significance of co-occurrence of pairs of transcription factor binding sites in the regulatory regions, which is probably related to a conserved architecture of higher-order regulatory complexes in the organisms studied. The results obtained in this study using the information on transcriptional regulation in E. coli enable us to conclude that not only transcription factor-binding sites are conserved across related species but also several of the transcriptional regulatory mechanisms previously identified in E. coli.
Collapse
Affiliation(s)
- Vladimir Espinosa
- National Bioinformatics Center, Industria y San José, Capitolio Nacional, CP. 10200, Habana Vieja, Ciudad de la Habana, Cuba
| | | | | | | | | |
Collapse
|
40
|
Cuñé J, Cullen P, Mazon G, Campoy S, Adler B, Barbe J. The Leptospira interrogans lexA gene is not autoregulated. J Bacteriol 2005; 187:5841-5. [PMID: 16077133 PMCID: PMC1196068 DOI: 10.1128/jb.187.16.5841-5845.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Footprinting and mutagenesis experiments demonstrated that Leptospira interrogans LexA binds the palindrome TTTGN(5)CAAA found in the recA promoter but not in the lexA promoter. In silico analysis revealed that none of the other canonical SOS genes is under direct control of LexA, making the leptospiral lexA gene the first described which is not autoregulated.
Collapse
Affiliation(s)
- Jordi Cuñé
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Campoy S, Salvador N, Cortés P, Erill I, Barbé J. Expression of canonical SOS genes is not under LexA repression in Bdellovibrio bacteriovorus. J Bacteriol 2005; 187:5367-75. [PMID: 16030231 PMCID: PMC1196036 DOI: 10.1128/jb.187.15.5367-5375.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.
Collapse
Affiliation(s)
- Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|
42
|
Galhardo RS, Rocha RP, Marques MV, Menck CFM. An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Res 2005; 33:2603-14. [PMID: 15886391 PMCID: PMC1092274 DOI: 10.1093/nar/gki551] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog is not involved in damage-induced mutagenesis. However, an operon composed of two hypothetical genes and dnaE2, encoding a second copy of the catalytic subunit of Pol III, is damage inducible in a recA-dependent manner, and is responsible for most ultraviolet (UV) and mitomycin C-induced mutations in C.crescentus. The results demonstrate that the three genes are required for the error-prone processing of DNA lesions. The two hypothetical genes were named imuA and imuB, after inducible mutagenesis. ImuB is similar to proteins of the Y-family of polymerases, and possibly cooperates with DnaE2 in lesion bypass. The mutations arising as a consequence of the activity of the imuAB dnaE2 operon are rather unusual for UV irradiation, including G:C to C:G transversions.
Collapse
Affiliation(s)
| | | | | | - Carlos F. M. Menck
- To whom correspondence should be addressed at Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Avenue Professor Lineu Prestes, 1374, São Paulo, SP 05508-900, Brazil. Tel: +55 11 3091 7499; Fax: +55 11 3091 7354;
| |
Collapse
|
43
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447509 DOI: 10.1002/cfg.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|