1
|
Nasheuer HP, Meaney AM. Starting DNA Synthesis: Initiation Processes during the Replication of Chromosomal DNA in Humans. Genes (Basel) 2024; 15:360. [PMID: 38540419 PMCID: PMC10969946 DOI: 10.3390/genes15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland;
| | | |
Collapse
|
2
|
Kashima Y, Tsuyama T, Sakai A, Morita K, Suzuki H, Azuma Y, Tada S. Cdt1 Self-associates via the Winged-Helix Domain of the Central Region during the Licensing Reaction, Which Is Inhibited by Geminin. Biol Pharm Bull 2024; 47:1338-1344. [PMID: 39048355 DOI: 10.1248/bpb.b24-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The initiation of DNA replication is tightly controlled by the licensing system that loads replicative DNA helicases onto replication origins to form pre-replicative complexes (pre-RCs) once per cell cycle. Cdc10-dependent transcript 1 (Cdt1) plays an essential role in the licensing reaction by recruiting mini-chromosome maintenance (MCM) complexes, which are eukaryotic replicative DNA helicases, to their origins via direct protein-protein interactions. Cdt1 interacts with other pre-RC components, the origin recognition complex, and the cell division cycle 6 (Cdc6) protein; however, the molecular mechanism by which Cdt1 functions in the MCM complex loading process has not been fully elucidated. Here, we analyzed the protein-protein interactions of recombinant Cdt1 and observed that Cdt1 self-associates via the central region of the molecule, which is inhibited by the endogenous licensing inhibitor, geminin. Mutation of two β-strands of the winged-helix domain in the central region of Cdt1 attenuated its self-association but could still interact with other pre-RC components and DNA similarly to wild-type Cdt1. Moreover, the Cdt1 mutant showed decreased licensing activity in Xenopus egg extracts. Together, these results suggest that the self-association of Cdt1 is crucial for licensing.
Collapse
Affiliation(s)
- Yuki Kashima
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Takashi Tsuyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Azusa Sakai
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kenta Morita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Hironori Suzuki
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Yutaro Azuma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Shusuke Tada
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
3
|
Volpi I, Gillespie PJ, Chadha GS, Blow JJ. The role of DDK and Treslin-MTBP in coordinating replication licensing and pre-initiation complex formation. Open Biol 2021; 11:210121. [PMID: 34699733 PMCID: PMC8548084 DOI: 10.1098/rsob.210121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Treslin/Ticrr is required for the initiation of DNA replication and binds to MTBP (Mdm2 Binding Protein). Here, we show that in Xenopus egg extract, MTBP forms an elongated tetramer with Treslin containing two molecules of each protein. Immunodepletion and add-back experiments show that Treslin-MTBP is rate limiting for replication initiation. It is recruited onto chromatin before S phase starts and recruitment continues during S phase. We show that DDK activity both increases and strengthens the interaction of Treslin-MTBP with licensed chromatin. We also show that DDK activity cooperates with CDK activity to drive the interaction of Treslin-MTBP with TopBP1 which is a regulated crucial step in pre-initiation complex formation. These results suggest how DDK works together with CDKs to regulate Treslin-MTBP and plays a crucial in selecting which origins will undergo initiation.
Collapse
Affiliation(s)
- Ilaria Volpi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
4
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
5
|
Zhou Y, Pozo PN, Oh S, Stone HM, Cook JG. Distinct and sequential re-replication barriers ensure precise genome duplication. PLoS Genet 2020; 16:e1008988. [PMID: 32841231 PMCID: PMC7473519 DOI: 10.1371/journal.pgen.1008988] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/04/2020] [Accepted: 07/12/2020] [Indexed: 01/19/2023] Open
Abstract
Achieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins, after S phase begins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 can hyperphosphorylate Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, our findings suggest that Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication. The initial step of DNA replication is loading the DNA helicase, MCM, onto DNA during the first phase of the cell division cycle. If MCM loading occurs inappropriately onto DNA that has already been replicated, then cells risk DNA re-replication, a source of endogenous DNA damage and genome instability. How mammalian cells prevent any sections of their very large genomes from re-replicating is still not fully understood. We found that the Cdt1 protein, one of the critical MCM loading factors, is inhibited specifically in late cell cycle stages through a mechanism involving protein phosphorylation. This phosphorylation prevents Cdt1 from binding MCM; when Cdt1 cannot be phosphorylated MCM is inappropriately re-loaded onto DNA and cells are prone to re-replication. When cells divide and transition into G1 phase, Cdt1 is then dephosphorylated to re-activate it for MCM loading. Based on these findings we assert that the different mechanisms that cooperate to avoid re-replication are not redundant. Instead, different cell cycle phases are dominated by different re-replication control mechanisms. These findings have implications for understanding how genomes are duplicated precisely once per cell cycle and shed light on how that process is perturbed by changes in Cdt1 levels or phosphorylation activity.
Collapse
Affiliation(s)
- Yizhuo Zhou
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United State of America
| | - Pedro N. Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United State of America
| | - Seeun Oh
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and the Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United State of America
| | - Haley M. Stone
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United State of America
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United State of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United State of America
- Lineberger Comprehensive Cancer, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United State of America
- * E-mail:
| |
Collapse
|
6
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
7
|
Pozo PN, Matson JP, Cole Y, Kedziora KM, Grant GD, Temple B, Cook JG. Cdt1 variants reveal unanticipated aspects of interactions with cyclin/CDK and MCM important for normal genome replication. Mol Biol Cell 2018; 29:2989-3002. [PMID: 30281379 PMCID: PMC6333176 DOI: 10.1091/mbc.e18-04-0242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The earliest step in DNA replication is origin licensing, which is the DNA loading of minichromosome maintenance (MCM) helicase complexes. The Cdc10-dependent transcript 1 (Cdt1) protein is essential for MCM loading during the G1 phase of the cell cycle, but the mechanism of Cdt1 function is still incompletely understood. We examined a collection of rare Cdt1 variants that cause a form of primordial dwarfism (the Meier-Gorlin syndrome) plus one hypomorphic Drosophila allele to shed light on Cdt1 function. Three hypomorphic variants load MCM less efficiently than wild-type (WT) Cdt1, and their lower activity correlates with impaired MCM binding. A structural homology model of the human Cdt1-MCM complex positions the altered Cdt1 residues at two distinct interfaces rather than the previously described single MCM interaction domain. Surprisingly, one dwarfism allele (Cdt1-A66T) is more active than WT Cdt1. This hypermorphic variant binds both cyclin A and SCFSkp2 poorly relative to WT Cdt1. Detailed quantitative live-cell imaging analysis demonstrated no change in the stability of this variant, however. Instead, we propose that cyclin A/CDK inhibits the Cdt1 licensing function independent of the creation of the SCFSkp2 phosphodegron. Together, these findings identify key Cdt1 interactions required for both efficient origin licensing and tight Cdt1 regulation to ensure normal cell proliferation and genome stability.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob P Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yasemin Cole
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Structural Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Nakazaki Y, Tsuyama T, Azuma Y, Takahashi M, Tada S. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts. Biochem Biophys Res Commun 2017; 490:1375-1380. [PMID: 28694193 DOI: 10.1016/j.bbrc.2017.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
The initiation of DNA replication is strictly regulated by multiple mechanisms to ensure precise duplication of chromosomes. In higher eukaryotes, activity of the Cdt1 protein is temporally regulated during the cell cycle, and deregulation of Cdt1 induces DNA re-replication. In previous studies, we showed that excess Cdt1 inhibits DNA replication by suppressing progression of replication forks in Xenopus egg extracts. Here, we investigated the functional regions of Cdt1 that are required for the inhibition of DNA replication. We constructed a series of N-terminally or C-terminally deleted mutants of Cdt1 and examined their inhibitory effects on DNA replication in Xenopus egg extracts. Our results showed that the region spanning amino acids (a. a.) 255-620 is required for efficient inhibition of DNA replication, and that, within this region, a. a. 255-289 have a critical role in inhibition. Moreover, one of the Cdt1 mutants, Cdt1 R285A, was compromised with respect to the licensing activity but still inhibited DNA replication. This result suggests that Cdt1 has an unforeseen function in the negative regulation of DNA replication, and that this function is located within a molecular region that is distinct from those required for the licensing activity.
Collapse
Affiliation(s)
- Yuta Nakazaki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Takashi Tsuyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Yutaro Azuma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Shusuke Tada
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
9
|
Gardner NJ, Gillespie PJ, Carrington JT, Shanks EJ, McElroy SP, Haagensen EJ, Frearson JA, Woodland A, Blow JJ. The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chem Biol 2017; 24:981-992.e4. [PMID: 28781123 PMCID: PMC5563080 DOI: 10.1016/j.chembiol.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.
Collapse
Affiliation(s)
- Nicola J Gardner
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jamie T Carrington
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Shanks
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart P McElroy
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Haagensen
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Julie A Frearson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Woodland
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
10
|
You Z, Ode KL, Shindo M, Takisawa H, Masai H. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex. Cell Cycle 2017; 15:1213-26. [PMID: 26940553 DOI: 10.1080/15384101.2015.1106652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.
Collapse
Affiliation(s)
- Zhiying You
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Koji L Ode
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Mayumi Shindo
- c Laboratory of Protein Analysis, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Haruhiko Takisawa
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Hisao Masai
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
11
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
12
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Chadha GS, Gambus A, Gillespie PJ, Blow JJ. Xenopus Mcm10 is a CDK-substrate required for replication fork stability. Cell Cycle 2016; 15:2183-2195. [PMID: 27327991 PMCID: PMC4993430 DOI: 10.1080/15384101.2016.1199305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.
Collapse
Affiliation(s)
- Gaganmeet Singh Chadha
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Agnieszka Gambus
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - Peter J Gillespie
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Julian Blow
- a Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
14
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Lee JP, Liu C, Li T, Zhu G, Li X. Development of stapled helical peptides to perturb the Cdt1-Mcm6 interaction. J Pept Sci 2015; 21:593-8. [DOI: 10.1002/psc.2779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jonghan Peter Lee
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Changdong Liu
- Division of Life Science; The Hong Kong University of Sciences and Technology; Hong Kong China
| | - Tianlu Li
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Guang Zhu
- Division of Life Science; The Hong Kong University of Sciences and Technology; Hong Kong China
| | - Xuechen Li
- Department of Chemistry; The University of Hong Kong; Hong Kong China
- State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
16
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|
17
|
Wu M, Lu W, Santos RE, Frattini MG, Kelly TJ. Geminin inhibits a late step in the formation of human pre-replicative complexes. J Biol Chem 2014; 289:30810-30821. [PMID: 25231993 PMCID: PMC4215257 DOI: 10.1074/jbc.m114.552935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2-7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2-7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2-7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2-7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication.
Collapse
Affiliation(s)
- Min Wu
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Wenyan Lu
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Ruth E Santos
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Mark G Frattini
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| | - Thomas J Kelly
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| |
Collapse
|
18
|
Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol 2014; 4:130138. [PMID: 24403013 PMCID: PMC3909274 DOI: 10.1098/rsob.130138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/03/2013] [Indexed: 01/31/2023] Open
Abstract
The initiation of DNA replication requires two protein kinases: cyclin-dependent kinase (Cdk) and Cdc7. Although S phase Cdk activity has been intensively studied, relatively little is known about how Cdc7 regulates progression through S phase. We have used a Cdc7 inhibitor, PHA-767491, to dissect the role of Cdc7 in Xenopus egg extracts. We show that hyperphosphorylation of mini-chromosome maintenance (MCM) proteins by Cdc7 is required for the initiation, but not for the elongation, of replication forks. Unlike Cdks, we demonstrate that Cdc7 executes its essential functions by phosphorylating MCM proteins at virtually all replication origins early in S phase and is not limiting for progression through the Xenopus replication timing programme. We demonstrate that protein phosphatase 1 (PP1) is recruited to chromatin and rapidly reverses Cdc7-mediated MCM hyperphosphorylation. Checkpoint kinases induced by DNA damage or replication inhibition promote the association of PP1 with chromatin and increase the rate of MCM dephosphorylation, thereby counteracting the previously completed Cdc7 functions and inhibiting replication initiation. This novel mechanism for regulating Cdc7 function provides an explanation for previous contradictory results concerning the control of Cdc7 by checkpoint kinases and has implications for the use of Cdc7 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Wei Theng Poh
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Neelsen KJ, Zanini IM, Mijic S, Herrador R, Zellweger R, Ray Chaudhuri A, Creavin KD, Blow JJ, Lopes M. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev 2013; 27:2537-42. [PMID: 24298053 PMCID: PMC3861667 DOI: 10.1101/gad.226373.113] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023]
Abstract
Deregulated origin licensing and rereplication promote genome instability and tumorigenesis by largely elusive mechanisms. Investigating the consequences of Early mitotic inhibitor 1 (Emi1) depletion in human cells, previously associated with rereplication, we show by DNA fiber labeling that origin reactivation occurs rapidly, well before accumulation of cells with >4N DNA, and is associated with checkpoint-blind ssDNA gaps and replication fork reversal. Massive RPA chromatin loading, formation of small chromosomal fragments, and checkpoint activation occur only later, once cells complete bulk DNA replication. We propose that deregulated origin firing leads to undetected discontinuities on newly replicated DNA, which ultimately cause breakage of rereplicating forks.
Collapse
Affiliation(s)
- Kai J. Neelsen
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Isabella M.Y. Zanini
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Sofija Mijic
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Raquel Herrador
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Arnab Ray Chaudhuri
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kevin D. Creavin
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
21
|
Bell SP, Kaguni JM. Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a010124. [PMID: 23613349 DOI: 10.1101/cshperspect.a010124] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase is required for the recruitment of the rest of the replication machinery. In this work, we review the current knowledge of helicase loading at Escherichia coli and eukaryotic origins of replication. In each case, this process requires both an origin recognition protein as well as one or more additional proteins. Comparison of these events shows intriguing similarities that suggest a similar underlying mechanism, as well as critical differences that likely reflect the distinct processes that regulate helicase loading in bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Stephen P Bell
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
22
|
Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, Winkler C, Gardenal E, Uhle S, Speck C. An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell 2013; 50:577-88. [PMID: 23603117 DOI: 10.1016/j.molcel.2013.03.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
In Saccharomyces cerevisiae and higher eukaryotes, the loading of the replicative helicase MCM2-7 onto DNA requires the combined activities of ORC, Cdc6, and Cdt1. These proteins load MCM2-7 in an unknown way into a double hexamer around DNA. Here we show that MCM2-7 recruitment by ORC/Cdc6 is blocked by an autoinhibitory domain in the C terminus of Mcm6. Interestingly, Cdt1 can overcome this inhibitory activity, and consequently the Cdt1-MCM2-7 complex activates ORC/Cdc6 ATP-hydrolysis to promote helicase loading. While Cdc6 ATPase activity is known to facilitate Cdt1 release and MCM2-7 loading, we discovered that Orc1 ATP-hydrolysis is equally important in this process. Moreover, we found that Orc1/Cdc6 ATP-hydrolysis promotes the formation of the ORC/Cdc6/MCM2-7 (OCM) complex, which functions in MCM2-7 double-hexamer assembly. Importantly, CDK-dependent phosphorylation of ORC inhibits OCM establishment to ensure once per cell cycle replication. In summary, this work reveals multiple critical mechanisms that redefine our understanding of DNA licensing.
Collapse
|
23
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
24
|
Dynamic association of ORCA with prereplicative complex components regulates DNA replication initiation. Mol Cell Biol 2012; 32:3107-20. [PMID: 22645314 DOI: 10.1128/mcb.00362-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotes, initiation of DNA replication requires the assembly of a multiprotein prereplicative complex (pre-RC) at the origins. We recently reported that a WD repeat-containing protein, origin recognition complex (ORC)-associated (ORCA/LRWD1), plays a crucial role in stabilizing ORC to chromatin. Here, we find that ORCA is required for the G(1)-to-S-phase transition in human cells. In addition to binding to ORC, ORCA associates with Cdt1 and its inhibitor, geminin. Single-molecule pulldown experiments demonstrate that each molecule of ORCA can bind to one molecule of ORC, one molecule of Cdt1, and two molecules of geminin. Further, ORCA directly interacts with the N terminus of Orc2, and the stability of ORCA is dependent on its association with Orc2. ORCA associates with Orc2 throughout the cell cycle, with Cdt1 during mitosis and G(1), and with geminin in post-G(1) cells. Overexpression of geminin results in the loss of interaction between ORCA and Cdt1, suggesting that increased levels of geminin in post-G(1) cells titrate Cdt1 away from ORCA. We propose that the dynamic association of ORCA with pre-RC components modulates the assembly of its interacting partners on chromatin and facilitates DNA replication initiation.
Collapse
|
25
|
Liu C, Wu R, Zhou B, Wang J, Wei Z, Tye BK, Liang C, Zhu G. Structural insights into the Cdt1-mediated MCM2-7 chromatin loading. Nucleic Acids Res 2012; 40:3208-17. [PMID: 22140117 PMCID: PMC3326298 DOI: 10.1093/nar/gkr1118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 12/23/2022] Open
Abstract
Initiation of DNA replication in eukaryotes is exquisitely regulated to ensure that DNA replication occurs exactly once in each cell division. A conserved and essential step for the initiation of eukaryotic DNA replication is the loading of the mini-chromosome maintenance 2-7 (MCM2-7) helicase onto chromatin at replication origins by Cdt1. To elucidate the molecular mechanism of this event, we determined the structure of the human Cdt1-Mcm6 binding domains, the Cdt1(410-440)/MCM6(708-821) complex by NMR. Our structural and site-directed mutagenesis studies showed that charge complementarity is a key determinant for the specific interaction between Cdt1 and Mcm2-7. When this interaction was interrupted by alanine substitutions of the conserved interacting residues, the corresponding yeast Cdt1 and Mcm6 mutants were defective in DNA replication and the chromatin loading of Mcm2, resulting in cell death. Having shown that Cdt1 and Mcm6 interact through their C-termini, and knowing that Cdt1 is tethered to Orc6 during the loading of MCM2-7, our results suggest that the MCM2-7 hexamer is loaded with its C terminal end facing the ORC complex. These results provide a structural basis for the Cdt1-mediated MCM2-7 chromatin loading.
Collapse
Affiliation(s)
- Changdong Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Rentian Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Bo Zhou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Jiafeng Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Zhun Wei
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Bik K. Tye
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Chun Liang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| | - Guang Zhu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China and Department of Molecular Biology & Genetics, Cornell University, USA
| |
Collapse
|
26
|
Abstract
In eukaryotes, the Mcm2-7 complex forms the core of the replicative helicase - the molecular motor that uses ATP binding and hydrolysis to fuel the unwinding of double-stranded DNA at the replication fork. Although it is a toroidal hexameric helicase superficially resembling better-studied homohexameric helicases from prokaryotes and viruses, Mcm2-7 is the only known helicase formed from six unique and essential subunits. Recent biochemical and structural analyses of both Mcm2-7 and a higher-order complex containing additional activator proteins (the CMG complex) shed light on the reason behind this unique subunit assembly: whereas only a limited number of specific ATPase active sites are needed for DNA unwinding, one particular ATPase active site has evolved to form a reversible discontinuity (gate) in the toroidal complex. The activation of Mcm2-7 helicase during S-phase requires physical association of the accessory proteins Cdc45 and GINS; structural data suggest that these accessory factors activate DNA unwinding through closure of the Mcm2-7 gate. Moreover, studies capitalizing on advances in the biochemical reconstitution of eukaryotic DNA replication demonstrate that Mcm2-7 loads onto origins during initiation as a double hexamer, yet does not act as a double-stranded DNA pump during elongation.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
27
|
Kisielewska J, Blow JJ. Dynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos. Development 2012; 139:63-74. [PMID: 22096080 PMCID: PMC3492748 DOI: 10.1242/dev.068676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdt1 plays a key role in licensing DNA for replication. In the somatic cells of metazoans, both Cdt1 and its natural inhibitor geminin show reciprocal fluctuations in their protein levels owing to cell cycle-dependent proteolysis. Here, we show that the protein levels of Cdt1 and geminin are persistently high during the rapid cell cycles of the early Xenopus embryo. Immunoprecipitation of Cdt1 and geminin complexes, together with their cell cycle spatiotemporal dynamics, strongly supports the hypothesis that Cdt1 licensing activity is regulated by periodic interaction with geminin rather than its proteolysis. Overexpression of ectopic geminin slows down, but neither arrests early embryonic cell cycles nor affects endogenous geminin levels; apparent embryonic lethality is observed around 3-4 hours after mid-blastula transition. However, functional knockdown of geminin by ΔCdt1_193-447, which lacks licensing activity and degradation sequences, causes cell cycle arrest and DNA damage in affected cells. This contributes to subsequent developmental defects in treated embryos. Our results clearly show that rapidly proliferating early Xenopus embryonic cells are able to regulate replication licensing in the persistent presence of high levels of licensing proteins by relying on changing interactions between Cdt1 and geminin during the cell cycle, but not their degradation.
Collapse
Affiliation(s)
- Jolanta Kisielewska
- University of Newcastle, The Institute for Cell and Molecular Biosciences, Framlington Place, NE2 4HH, Newcastle-Upon-Tyne, UK.
| | | |
Collapse
|
28
|
Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2-7 helicases. EMBO J 2011; 30:4885-96. [PMID: 22045335 DOI: 10.1038/emboj.2011.394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/06/2011] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic origins of replication are selected by loading a head-to-head double hexamer of the Mcm2-7 replicative helicase around origin DNA. Cdt1 plays an essential but transient role during this event; however, its mechanism of action is unknown. Through analysis of Cdt1 mutations, we demonstrate that Cdt1 performs multiple functions during helicase loading. The C-terminus of Cdt1 binds Mcm2-7, and this interaction is required for efficient origin recruitment of both proteins. We show that origin recognition complex (ORC) and Cdc6 recruit multiple Cdt1 molecules to the origin during helicase loading, and disruption of this multi-Cdt1 intermediate prevents helicase loading. Although dispensable for loading Mcm2-7 double hexamers that are topologically linked to DNA, the essential N-terminal domain of Cdt1 is required to load Mcm2-7 complexes that are competent for association with the Cdc45 and GINS helicase-activating proteins and replication initiation. Our data support a model in which origin-bound ORC and Cdc6 recruit two Cdt1 molecules to initiate double-hexamer formation prior to helicase loading and demonstrate that Cdt1 influences the replication competence of loaded Mcm2-7 helicases.
Collapse
|
29
|
Ode KL, Fujimoto K, Kubota Y, Takisawa H. Inter-origin cooperativity of geminin action establishes an all-or-none switch for replication origin licensing. Genes Cells 2011; 16:380-96. [PMID: 21426446 DOI: 10.1111/j.1365-2443.2011.01501.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In metazoans, geminin functions as a molecular switch for preventing re-replication of chromosomal DNA. Geminin binds to and inhibits Cdt1, which is required for replication origin licensing, but little is known about the mechanisms underlying geminin's all-or-none action in licensing inhibition. Using Xenopus egg extract, we found that the all-or-none activity correlated with the formation of Cdt1 foci on chromatin, suggesting that multiple Cdt1-geminin complexes on origins cooperatively inhibit licensing. Based on experimental identification of licensing intermediates targeted by geminin and Cdt1, we developed a mathematical model of the licensing process. The model involves positive feedback owing to the cooperative action of geminin at neighboring origins and accurately accounts for the licensing activity mediated by geminin and Cdt1 in the extracts. The model also predicts that such cooperativity leads to clustering of licensing-inhibited origins, an idea that is supported by the experimentally measured distribution of inter-origin distances. We propose that geminin inhibits licensing through an inter-origin interaction, ensuring strict and coordinated control of multiple replication origins on chromosomes.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
30
|
Sasaki T, Li A, Gillespie PJ, Blow JJ, Gilbert DM. Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus 2011; 2:455-64. [PMID: 21983086 DOI: 10.4161/nucl.2.5.17859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-replication complexes (pre-RCs) are assembled onto DNA during late mitosis and G1 to license replication origins for use in S phase. In order to prevent re-replication of DNA, licensing must be completely shutdown prior to entry into S phase. While mechanisms preventing re-replication during S phase and mitosis have been elucidated, the means by which cells first prevent licensing during late G1 phase are poorly understood. We have employed a hybrid mammalian / Xenopus egg extract replication system to dissect activities that inhibit replication licensing at different stages of the cell cycle in Chinese Hamster Ovary (CHO) cells. We find that soluble extracts from mitotic cells inhibit licensing through a combination of geminin and Cdk activities, while extracts from S-phase cells inhibit licensing predominantly through geminin alone. Surprisingly however, geminin did not accumulate until after cells enter S phase. Unlike extracts from cells in early G1 phase, extracts from late G1 phase and early S phase cells contained an inhibitor of licensing that could not be accounted for by either geminin or Cdk. Moreover, inhibiting cyclin and geminin protein synthesis or inhibiting Cdk activity early in G1 phase did not prevent the appearance of inhibitory activity. These results suggest that a soluble inhibitor of replication licensing appears prior to entry into S phase that is distinct from either geminin or Cdk activity. Our hybrid system should permit the identification of this and other novel cell cycle regulatory activities.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints. Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.
Collapse
Affiliation(s)
- Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
32
|
Liu C, Wei Z, Zhu G. 1H, 15N and 13C chemical shift assignments of the Cdt1 binding domain of human Mcm6. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:231-233. [PMID: 20623209 DOI: 10.1007/s12104-010-9246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
The eukaryotic minichromsome maintenance (Mcm) proteins (Mcm2-7) are evolutionally conserved from yeast to human. These proteins are essential for DNA replication and Mcm6 is one subunit of Mcm2-7 complex that serves as the replicative helicase in DNA replication. Cdt1 is a critical member of pre-replicative complex (pre-RC), which directs the chromatin loading of Mcm2-7 complex. The Cdt1 binding domain (CBD) of human Mcm6 was found to directly interact with Cdt1 and this interaction may mediate the chromatin loading of Mcm2-7 complex. The structure of CBD exhibits a typical "winged-helix" fold which is generally involved in protein-nucleic acid interaction. Here we report the (1)H, (15)N and (13)C chemical shift assignments of human Mcm6 CBD determined by triple resonance experiments. The resonance assignments obtained in this work were required for the structure-function studies of CBD by NMR spectroscopy (BMRB deposits with accession number 16396).
Collapse
Affiliation(s)
- Changdong Liu
- Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | | | | |
Collapse
|
33
|
Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, Zhu G. Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem 2010; 285:12469-73. [PMID: 20202939 PMCID: PMC2857124 DOI: 10.1074/jbc.c109.094599] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/02/2010] [Indexed: 12/28/2022] Open
Abstract
The minichromosome maintenance (Mcm) 2-7 complex is the replicative helicase in eukaryotic species, and it plays essential roles in the initiation and elongation phases of DNA replication. During late M and early G(1), the Mcm2-7 complex is loaded onto chromatin to form prereplicative complex in a Cdt1-dependent manner. However, the detailed molecular mechanism of this loading process is still elusive. In this study, we demonstrate that the previously uncharacterized C-terminal domain of human Mcm6 is the Cdt1 binding domain (CBD) and present its high resolution NMR structure. The structure of CBD exhibits a typical "winged helix" fold that is generally involved in protein-nucleic acid interaction. Nevertheless, the CBD failed to interact with DNA in our studies, indicating that it is specific for protein-protein interaction. The CBD-Cdt1 interaction involves the helix-turn-helix motif of CBD. The results reported here provide insight into the molecular mechanism of Mcm2-7 chromatin loading and prereplicative complex assembly.
Collapse
Affiliation(s)
- Zhun Wei
- From the
Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai 200062, China and
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Changdong Liu
- From the
Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai 200062, China and
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xing Wu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naining Xu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Zhou
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chun Liang
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guang Zhu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
34
|
Aze A, Fayet C, Lapasset L, Genevière A. Replication origins are already licensed in G1 arrested unfertilized sea urchin eggs. Dev Biol 2010; 340:557-70. [DOI: 10.1016/j.ydbio.2010.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/24/2022]
|
35
|
Jee J, Mizuno T, Kamada K, Tochio H, Chiba Y, Yanagi KI, Yasuda G, Hiroaki H, Hanaoka F, Shirakawa M. Structure and mutagenesis studies of the C-terminal region of licensing factor Cdt1 enable the identification of key residues for binding to replicative helicase Mcm proteins. J Biol Chem 2010; 285:15931-40. [PMID: 20335175 DOI: 10.1074/jbc.m109.075333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, DNA replication is fired once in a single cell cycle before cell division starts to maintain stability of the genome. This event is tightly controlled by a series of proteins. Cdt1 is one of the licensing factors and is involved in recruiting replicative DNA helicase Mcm2-7 proteins into the pre-replicative complex together with Cdc6. In Cdt1, the C-terminal region serves as a binding site for Mcm2-7 proteins, although the details of these interactions remain largely unknown. Here, we report the structure of the region and the key residues for binding to Mcm proteins. We determined the solution structure of the C-terminal fragment, residues 450-557, of mouse Cdt1 by NMR. The structure consists of a winged-helix domain and shows unexpected similarity to those of the C-terminal domain of Cdc6 and the central fragment of Cdt1, thereby implying functional and evolutionary relationships. Structure-based mutagenesis and an in vitro binding assay enabled us to pinpoint the region that interacts with Mcm proteins. Moreover, by performing in vitro binding and budding yeast viability experiments, we showed that approximately 45 residues located in the N-terminal direction of the structural region are equally crucial for recognizing Mcm proteins. Our data suggest the possibility that winged-helix domain plays a role as a common module to interact with replicative helicase in the DNA replication-licensing process.
Collapse
Affiliation(s)
- Jungoo Jee
- Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, Hwang E, Ryu KS, Cheong HK, Cheong C, Ko JS, Enomoto T, Karplus PA, Güntert P, Tada S, Jeon YH, Cho Y. Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci 2010; 18:2252-64. [PMID: 19722278 DOI: 10.1002/pro.236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In eukaryotic replication licensing, Cdt1 plays a key role by recruiting the MCM2-7 complex onto the origin of chromosome. The C-terminal domain of mouse Cdt1 (mCdt1C), the most conserved region in Cdt1, is essential for licensing and directly interacts with the MCM2-7 complex. We have determined the structures of mCdt1CS (mCdt1C_small; residues 452 to 557) and mCdt1CL (mCdt1C_large; residues 420 to 557) using X-ray crystallography and solution NMR spectroscopy, respectively. While the N-terminal 31 residues of mCdt1CL form a flexible loop with a short helix near the middle, the rest of mCdt1C folds into a winged helix structure. Together with the middle domain of mouse Cdt1 (mCdt1M, residues 172-368), this study reveals that Cdt1 is formed with a tandem repeat of the winged helix domain. The winged helix fold is also conserved in other licensing factors including archaeal ORC and Cdc6, which supports an idea that these replication initiators may have evolved from a common ancestor. Based on the structure of mCdt1C, in conjunction with the biochemical analysis, we propose a binding site for the MCM complex within the mCdt1C.
Collapse
Affiliation(s)
- Bulat I Khayrutdinov
- The Magnetic Resonance Team, Korea Basic Science Institute, 804-1 Yangchung-Ri, Ochang, Chungbuk 363-883, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thomson AM, Gillespie PJ, Blow JJ. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. ACTA ACUST UNITED AC 2010; 188:209-21. [PMID: 20083602 PMCID: PMC2812520 DOI: 10.1083/jcb.200911037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cdk activity can differentially regulate the number of active replication factories, replication rates, and the rate of progression through the timing program during S phase. In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.
Collapse
Affiliation(s)
- Alexander M Thomson
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
38
|
De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E, Klompmaker R, van Gerwen S, Fish A, Petoukhov MV, Iliou MS, Lygerou Z, Medema RH, Blow JJ, Svergun DI, Taraviras S, Perrakis A. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci U S A 2009; 106:19807-12. [PMID: 19906994 PMCID: PMC2775996 DOI: 10.1073/pnas.0905281106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 01/12/2023] Open
Abstract
All organisms need to ensure that no DNA segments are rereplicated in a single cell cycle. Eukaryotes achieve this through a process called origin licensing, which involves tight spatiotemporal control of the assembly of prereplicative complexes (pre-RCs) onto chromatin. Cdt1 is a key component and crucial regulator of pre-RC assembly. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent DNA rereplication. Here, we address the mechanism of DNA licensing inhibition by Geminin, by combining X-ray crystallography, small-angle X-ray scattering, and functional studies in Xenopus and mammalian cells. Our findings show that the Cdt1:Geminin complex can exist in two distinct forms, a "permissive" heterotrimer and an "inhibitory" heterohexamer. Specific Cdt1 residues, buried in the heterohexamer, are important for licensing. We postulate that the transition between the heterotrimer and the heterohexamer represents a molecular switch between licensing-competent and licensing-defective states.
Collapse
Affiliation(s)
- V. De Marco
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - P. J. Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - A. Li
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - E. Christodoulou
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - R. Klompmaker
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - S. van Gerwen
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - A. Fish
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - M. V. Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | - M. S. Iliou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - Z. Lygerou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - R. H. Medema
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - J. J. Blow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - D. I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | - A. Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
39
|
Havens CG, Walter JC. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 2009; 35:93-104. [PMID: 19595719 PMCID: PMC2744448 DOI: 10.1016/j.molcel.2009.05.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/14/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
Abstract
Substrates of the E3 ubiquitin ligase CRL4(Cdt2), including Cdt1 and p21, contain a PCNA-binding motif called a PIP box. Upon binding of the PIP box to PCNA on chromatin, CRL4(Cdt2) is recruited and the substrate is ubiquitylated. Importantly, a PIP box cannot be sufficient for destruction, as most PIP box proteins are stable. Using Xenopus egg extracts, we identify two sequence elements in CRL4(Cdt2) substrates that promote their proteolysis: a specialized PIP box that confers exceptionally efficient PCNA binding and a basic amino acid 4 residues downstream of the PIP box, which recruits CRL4(Cdt2) to the substrate-PCNA complex. We also identify two mechanisms that couple CRL4(Cdt2)-dependent proteolysis to the chromatin-bound form of PCNA, ensuring that this proteolysis pathway is active only in S phase or after DNA damage. Thus, CRL4(Cdt2) recognizes an unusual degron, which is assembled specifically on chromatin via the binding of a specialized PIP box to PCNA.
Collapse
Affiliation(s)
- Courtney G. Havens
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Dorn ES, Chastain PD, Hall JR, Cook JG. Analysis of re-replication from deregulated origin licensing by DNA fiber spreading. Nucleic Acids Res 2009; 37:60-9. [PMID: 19010964 PMCID: PMC2615611 DOI: 10.1093/nar/gkn912] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/22/2008] [Accepted: 10/29/2008] [Indexed: 01/12/2023] Open
Abstract
A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability.
Collapse
Affiliation(s)
- Elizabeth S. Dorn
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Paul D. Chastain
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Jonathan R. Hall
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
41
|
Hall JR, Lee HO, Bunker BD, Dorn ES, Rogers GC, Duronio RJ, Cook JG. Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage. J Biol Chem 2008; 283:25356-25363. [PMID: 18617514 PMCID: PMC2533066 DOI: 10.1074/jbc.m802667200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/17/2008] [Indexed: 11/06/2022] Open
Abstract
The replication factors Cdt1 and Cdc6 are essential for origin licensing, a prerequisite for DNA replication initiation. Mechanisms to ensure that metazoan origins initiate once per cell cycle include degradation of Cdt1 during S phase and inhibition of Cdt1 by the geminin protein. Geminin depletion or overexpression of Cdt1 or Cdc6 in human cells causes rereplication, a form of endogenous DNA damage. Rereplication induced by these manipulations is however uneven and incomplete, suggesting that one or more mechanisms restrain rereplication once it begins. We find that both Cdt1 and Cdc6 are degraded in geminin-depleted cells. We further show that Cdt1 degradation in cells that have rereplicated requires the PCNA binding site of Cdt1 and the Cul4(DDB1) ubiquitin ligase, and Cdt1 can induce its own degradation when overproduced. Cdc6 degradation in geminin-depleted cells requires Huwe1, the ubiquitin ligase that regulates Cdc6 after DNA damage. Moreover, perturbations that specifically disrupt Cdt1 and Cdc6 degradation in response to DNA damage exacerbate rereplication when combined with geminin depletion, and this enhanced rereplication occurs in both human cells and in Drosophila melanogaster cells. We conclude that rereplication-associated DNA damage triggers Cdt1 and Cdc6 ubiquitination and destruction, and propose that this pathway represents an evolutionarily conserved mechanism that minimizes the extent of rereplication.
Collapse
Affiliation(s)
- Jonathan R Hall
- Department of Biochemistry and Biophysics, Chapel Hill, North Carolina 27599-7260
| | - Hyun O Lee
- Department of Curriculum in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599-7260
| | - Brandon D Bunker
- Department of Biochemistry and Biophysics, Chapel Hill, North Carolina 27599-7260
| | - Elizabeth S Dorn
- Department of Biochemistry and Biophysics, Chapel Hill, North Carolina 27599-7260
| | - Greg C Rogers
- Department of Biology, Chapel Hill, North Carolina 27599-7260
| | - Robert J Duronio
- Department of Curriculum in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599-7260; Department of Biology, Chapel Hill, North Carolina 27599-7260; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, Chapel Hill, North Carolina 27599-7260; Department of Curriculum in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599-7260; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
42
|
Lutzmann M, Méchali M. MCM9 binds Cdt1 and is required for the assembly of prereplication complexes. Mol Cell 2008; 31:190-200. [PMID: 18657502 DOI: 10.1016/j.molcel.2008.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 03/04/2008] [Accepted: 07/01/2008] [Indexed: 02/03/2023]
Abstract
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.
Collapse
Affiliation(s)
- Malik Lutzmann
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
| | | |
Collapse
|
43
|
Teer JK, Dutta A. Human Cdt1 lacking the evolutionarily conserved region that interacts with MCM2-7 is capable of inducing re-replication. J Biol Chem 2008; 283:6817-25. [PMID: 18184650 DOI: 10.1074/jbc.m708767200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Replication initiation must be a carefully regulated process to avoid genomic instability caused by aberrant replication. In eukaryotic cells, distinct steps of protein loading (origin licensing) and replication activation are choreographed such that a cell can replicate only once per cell cycle. The first proteins recruited to the origins form the pre-replication complex. Of these proteins, Cdt1 is of interest, as it is the focus of several pathways to control replication initiation. It is degraded by two different pathways, mediated by the interaction of Cdt1 with proliferating cell nuclear antigen (PCNA) or with cyclin-Cdk2 and inhibited by geminin once cells are in S-phase, presumably to prevent reloading of pre-replication complexes once S-phase has begun. Although the requirement of Cdt1 in loading MCM2-7 is known, the mechanism by which overexpressed Cdt1 stimulates re-replication is unclear. In this study we have designed various mutations in Cdt1 to determine which portion of Cdt1 is important for re-replication, providing insight into possible mechanisms. Surprisingly, we found that mutants of Cdt1 that do not interact with MCM2-7 are able to induce re-replication when overexpressed. The re-replication is not due to titration of geminin from endogenous Cdt1 and is not accompanied by stabilization of endogenous Cdt1. Additionally, the N-terminal one-third of Cdt1 is sufficient to induce re-replication. The N terminus contains the PCNA- and cyclin-interacting motifs, and deletion of both motifs simultaneously in the overexpressed Cdt1 prevents re-replication. These findings suggest that exogenous Cdt1 induces re-replication by de-repressing endogenous Cdt1 through the titration of PCNA and cyclin.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
45
|
Xouri G, Squire A, Dimaki M, Geverts B, Verveer PJ, Taraviras S, Nishitani H, Houtsmuller AB, Bastiaens PIH, Lygerou Z. Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J 2007; 26:1303-14. [PMID: 17318181 PMCID: PMC1817642 DOI: 10.1038/sj.emboj.7601597] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 01/09/2007] [Indexed: 12/27/2022] Open
Abstract
To maintain genome integrity, eukaryotic cells initiate DNA replication once per cell cycle after assembling prereplicative complexes (preRCs) on chromatin at the end of mitosis and during G1. In S phase, preRCs are disassembled, precluding initiation of another round of replication. Cdt1 is a key member of the preRC and its correct regulation via proteolysis and by its inhibitor Geminin is essential to prevent premature re-replication. Using quantitative fluorescence microscopy, we study the interactions of Cdt1 with chromatin and Geminin in living cells. We find that Cdt1 exhibits dynamic interactions with chromatin throughout G1 phase and that the protein domains responsible for chromatin and Geminin interactions are separable. Contrary to existing in vitro data, we show that Cdt1 simultaneously binds Geminin and chromatin in vivo, thereby recruiting Geminin onto chromatin. We propose that dynamic Cdt1-chromatin associations and the recruitment of Geminin to chromatin provide spatio-temporal control of the licensing process.
Collapse
Affiliation(s)
- Georgia Xouri
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anthony Squire
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Maria Dimaki
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Bart Geverts
- Josephine Nefkens Institute, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Stavros Taraviras
- Laboratory of Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | - Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Adriaan B Houtsmuller
- Josephine Nefkens Institute, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Philippe I H Bastiaens
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg 69117, Germany. Tel.: + 49 6221 387 407; Fax: + 49 6221 387 512; E-mail:
| | - Zoi Lygerou
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
- Laboratory of General Biology, School of Medicine, University of Patras, University Campus, Rio, Patras 26500, Greece. Tel.: + 30 2610 997621; Fax: + 30 2610 991769; E-mail:
| |
Collapse
|
46
|
Kerns SL, Torke SJ, Benjamin JM, McGarry TJ. Geminin prevents rereplication during xenopus development. J Biol Chem 2006; 282:5514-21. [PMID: 17179155 DOI: 10.1074/jbc.m609289200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To maintain a stable genome, it is essential that replication origins fire only once per cell cycle. The protein Geminin is thought to prevent a second round of DNA replication by inhibiting the essential replication factor Cdt1. Geminin also affects the development of several different organs by binding and inhibiting transcription factors and chromatin-remodeling proteins. It is not known if the defects in Geminin-deficient organisms are due to overreplication or to effects on cell differentiation. We previously reported that Geminin depletion in Xenopus causes early embryonic lethality due to a Chk1-dependent G(2) cell cycle arrest just after the midblastula transition. Here we report that expressing a non-Geminin-binding Cdt1 mutant in Xenopus embryos exactly reproduces the phenotype of geminin depletion. Expressing the same mutant in replication extracts induces a partial second round of DNA replication within a single S phase. We conclude that Geminin is required to suppress a second round of DNA replication in vivo and that the phenotype of Geminin-depleted Xenopus embryos is caused by abnormal Cdt1 regulation. Expressing a nondegradable Cdt1 mutant in embryos also reproduces the Geminin-deficient phenotype. In cell extracts, the nondegradable mutant has no effect by itself but augments the amount of rereplication observed when Geminin is depleted. We conclude that Cdt1 is regulated both by Geminin binding and by degradation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Division of Cardiology, Department of Cell and Molecular Biology, and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
47
|
Lutzmann M, Maiorano D, Méchali M. A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 2006; 25:5764-74. [PMID: 17124498 PMCID: PMC1698883 DOI: 10.1038/sj.emboj.7601436] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 10/06/2006] [Indexed: 12/20/2022] Open
Abstract
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1-geminin complex binds chromatin, interacts with the MCM2-7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR-dependent checkpoint, the Cdt1-geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1-geminin complex regulates its activity. Our results suggest a model in which the MCM2-7 helicase is loaded onto chromatin by a Cdt1-geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.
Collapse
Affiliation(s)
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, Montpellier, France
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, Montpellier 34396, France. Tel.: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
48
|
Davidson IF, Li A, Blow JJ. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 2006; 24:433-43. [PMID: 17081992 PMCID: PMC1819398 DOI: 10.1016/j.molcel.2006.09.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/07/2006] [Accepted: 09/18/2006] [Indexed: 12/29/2022]
Abstract
Correct regulation of the replication licensing system ensures that no DNA is rereplicated in a single cell cycle. When the licensing protein Cdt1 is overexpressed in G2 phase of the cell cycle, replication origins are relicensed and the DNA is rereplicated. At the same time, checkpoint pathways are activated that block further cell cycle progression. We have studied the consequence of deregulating the licensing system by adding recombinant Cdt1 to Xenopus egg extracts. We show that Cdt1 induces checkpoint activation and the appearance of small fragments of double-stranded DNA. DNA fragmentation and strong checkpoint activation are dependent on uncontrolled rereplication and do not occur after a single coordinated round of rereplication. The DNA fragments are composed exclusively of rereplicated DNA. The unusual characteristics of these fragments suggest that they result from head-to-tail collision (rear ending) of replication forks chasing one another along the same DNA template.
Collapse
Affiliation(s)
- Iain F. Davidson
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Anatoliy Li
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Julian Blow
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
49
|
Yanagi KI, Mizuno T, Tsuyama T, Tada S, Iida Y, Sugimoto A, Eki T, Enomoto T, Hanaoka F. Caenorhabditis elegans Geminin Homologue Participates in Cell Cycle Regulation and Germ Line Development. J Biol Chem 2005; 280:19689-94. [PMID: 15811859 DOI: 10.1074/jbc.c500070200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cdt1 is an essential component for the assembly of a pre-replicative complex. Cdt1 activity is inhibited by geminin, which also participates in neural development and embryonic differentiation in many eukaryotes. Although Cdt1 homologues have been identified in organisms ranging from yeast to human, geminin homologues had not been described for Caenorhabditis elegans and fungi. Here, we identify the C. elegans geminin, GMN-1. Biochemical analysis reveals that GMN-1 associates with C. elegans CDT-1, the Hox protein NOB-1, and the Six protein CEH-32. GMN-1 inhibits not only the interaction between mouse Cdt1 and Mcm6 but also licensing activity in Xenopus egg extracts. RNA interference-mediated reduction of GMN-1 is associated with enlarged germ nuclei with aberrant nucleolar morphology, severely impaired gametogenesis, and chromosome bridging in intestinal cells. We conclude that the Cdt1-geminin system is conserved throughout metazoans and that geminin has evolved in these taxa to regulate proliferation and differentiation by directly interacting with Cdt1 and homeobox proteins.
Collapse
Affiliation(s)
- Ken-ichiro Yanagi
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takeda DY, Parvin JD, Dutta A. Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 2005; 280:23416-23. [PMID: 15855168 DOI: 10.1074/jbc.m501208200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that the N terminus of Cdt1 is required for its degradation during S phase (Li, X., Zhao, Q., Liao, R., Sun, P., and Wu, X. (2003) J. Biol. Chem. 278, 30854-30858; Nishitani, H., Lygerou, Z., and Nishimoto, T. (2004) J. Biol. Chem. 279, 30807-30816). The stabilization was attributed to deletion of the cyclin binding motif (Cy motif), which is required for its phosphorylation by cyclin-dependent kinases. Phosphorylated Cdt1 is subsequently recognized by the F-box protein Skp2 and targeted for proteasomal mediated degradation. Using phosphopeptide mapping and mutagenesis studies, we found that threonine 29 within the N terminus of Cdt1 is phosphorylated by Cdk2 and required for interaction with Skp2. However, threonine 29 and the Cy motif are not necessary for proteolysis of Cdt1 during S phase. Mutants of Cdt1 that do not stably associate with Skp2 or cyclins are still degraded in S phase to the same extent as wild type Cdt1, indicating that other determinants within the N terminus of Cdt1 are required for degrading Cdt1. We localized the region necessary for Cdt1 degradation to the first 32 residues. Overexpression of stable forms of Cdt1 significantly delayed entry into and completion of S phase, suggesting that failure to degrade Cdt1 prevents normal progression through S phase. In contrast, Cdt1 mutants that fail to interact with Skp2 and cyclins progress through S phase with similar kinetics as wild type Cdt1 but stimulate the re-replication caused by overexpressing Cdt1. Therefore, a Skp2-independent pathway that requires the N-terminal 32 residues of Cdt1 is critical for the degradation of Cdt1 in S phase, and this degradation is necessary for the optimum progression of cells through S phase.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|