1
|
Agalakova NI, Mikhailova EV, Ershov IA, Nadei OV, Pyankov AA, Galagoudza MM, Adair CD, Romanova IV, Bagrov AY. Antibody to Endogenous Cardiotonic Steroid Reverses Vascular Fibrosis and Restores Vasorelaxation in Chronic Kidney Disease. Int J Mol Sci 2024; 25:8896. [PMID: 39201581 PMCID: PMC11354990 DOI: 10.3390/ijms25168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Marinobufagenin (MBG) is implicated in chronic kidney disease, where it removes Fli1-induced inhibition of the collagen-1. We hypothesized that (i) in nephrectomized rats, aortic fibrosis develops due to elevated plasma MBG and inhibited Fli1, and (ii) that the antibody to MBG reduces collagen-1 and improves vasodilatation. A partial nephrectomy was performed in male Sprague-Dawley rats. Sham-operated animals comprised the control group. At 5 weeks following nephrectomy, rats were administered the vehicle (n = 8), or the anti-MBG antibody (n = 8). Isolated aortic rings were tested for their responsiveness to sodium nitroprusside following endothelin-1-induced constriction. In nephrectomized rats, there was an increase in the intensity of collagen staining in the aortic wall vs. the controls. In antibody-treated rats, the structure of bundles of collagen fibers had ordered organization. Western blots of the aorta had lower levels of Fli1 (arbitrary units, 1 ± 0.05 vs. 0.2 ± 0.01; p < 0.001) and greater collagen-1 (arbitrary units, 1 ± 0.01 vs. 9 ± 0.4; p < 0.001) vs. the control group. Administration of the MBG antibody to rats reversed the effect of the nephrectomy on Fli1 and collagen-1 proteins. Aortic rings pretreated with endothelin-1 exhibited 50% relaxation following the addition of sodium nitroprusside (EC50 = 0.28 μmol/L). The responsiveness of the aortic rings obtained from nephrectomized rats was markedly reduced (EC50 = 3.5 mol/L) compared to the control rings. Treatment of rats with the antibody restored vasorelaxation. Thus, the anti-MBG antibody counteracts the Fli1-collagen-1 system and reduces aortic fibrosis.
Collapse
Affiliation(s)
- Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russia; (N.I.A.); (E.V.M.); (O.V.N.); (A.A.P.); (I.V.R.)
| | - Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russia; (N.I.A.); (E.V.M.); (O.V.N.); (A.A.P.); (I.V.R.)
| | - Ivan A. Ershov
- Department of Obstetrics and Gynecology, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia;
| | - Olga V. Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russia; (N.I.A.); (E.V.M.); (O.V.N.); (A.A.P.); (I.V.R.)
| | - Arseny A. Pyankov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russia; (N.I.A.); (E.V.M.); (O.V.N.); (A.A.P.); (I.V.R.)
| | | | - C. David Adair
- Department of Obstetrics and Gynecology, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 St. Petersburg, Russia; (N.I.A.); (E.V.M.); (O.V.N.); (A.A.P.); (I.V.R.)
| | | |
Collapse
|
2
|
Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, Mannara F, Solsona-Vilarrasa E, García-Ruiz C, Fernández-Checa JC, Casals G, Rodríguez-Revenga L, Álvarez-Mora MI, Arteche-López A, Díaz de Bustamante A, Calvo R, Pujol A, Azkargorta M, Elortza F, Malagelada C, Pinyol R, Huguet-Pradell J, Melgar-Lesmes P, Jiménez W, Morales-Ruiz M. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int 2023; 43:1822-1836. [PMID: 37312667 DOI: 10.1111/liv.15640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Rodriguez-Vita
- Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leticia Pérez-Sisqués
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - José C Fernández-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Álvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | | | - Rosa Calvo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona. School of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Anna Pujol
- Unidad de Animales Transgénicos UAT-CBATEG, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Cristina Malagelada
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Júlia Huguet-Pradell
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI. Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 2023; 24:ijms24031881. [PMID: 36768203 PMCID: PMC9915382 DOI: 10.3390/ijms24031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Being initially described as a factor of virally-induced leukemias, Fli1 (Friend leukemia integration 1) has attracted considerable interest lately due to its role in both healthy physiology and a variety of pathological conditions. Over the past few years, Fli1 has been found to be one of the crucial regulators of normal hematopoiesis, vasculogenesis, and immune response. However, abnormal expression of Fli1 due to genetic predisposition, epigenetic reprogramming (modifications), or environmental factors is associated with a few diseases of different etiology. Fli1 hyperexpression leads to malignant transformation of cells and progression of cancers such as Ewing's sarcoma. Deficiency in Fli1 is implicated in the development of systemic sclerosis and hypertensive disorders, which are often accompanied by pronounced fibrosis in different organs. This review summarizes the initial findings and the most recent advances in defining the role of Fli1 in diseases of different origin with emphasis on its pro-fibrotic potential.
Collapse
Affiliation(s)
- Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | | | - Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Haller ST, Yan Y, Drummond CA, Xie J, Tian J, Kennedy DJ, Shilova VY, Xie Z, Liu J, Cooper CJ, Malhotra D, Shapiro JI, Fedorova OV, Bagrov AY. Rapamycin Attenuates Cardiac Fibrosis in Experimental Uremic Cardiomyopathy by Reducing Marinobufagenin Levels and Inhibiting Downstream Pro-Fibrotic Signaling. J Am Heart Assoc 2016; 5:JAHA.116.004106. [PMID: 27694325 PMCID: PMC5121507 DOI: 10.1161/jaha.116.004106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Experimental uremic cardiomyopathy causes cardiac fibrosis and is causally related to the increased circulating levels of the cardiotonic steroid, marinobufagenin (MBG), which signals through Na/K-ATPase. Rapamycin is an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR) implicated in the progression of many different forms of renal disease. Given that Na/K-ATPase signaling is known to stimulate the mTOR system, we speculated that the ameliorative effects of rapamycin might influence this pathway. METHODS AND RESULTS Biosynthesis of MBG by cultured human JEG-3 cells is initiated by CYP27A1, which is also a target for rapamycin. It was demonstrated that 1 μmol/L of rapamycin inhibited production of MBG in human JEG-2 cells. Male Sprague-Dawley rats were subjected to either partial nephrectomy (PNx), infusion of MBG, and/or infusion of rapamycin through osmotic minipumps. PNx animals showed marked increase in plasma MBG levels (1025±60 vs 377±53 pmol/L; P<0.01), systolic blood pressure (169±1 vs 111±1 mm Hg; P<0.01), and cardiac fibrosis compared to controls. Plasma MBG levels were significantly decreased in PNx-rapamycin animals compared to PNx (373±46 vs 1025±60 pmol/L; P<0.01), and cardiac fibrosis was substantially attenuated by rapamycin treatment. CONCLUSIONS Rapamycin treatment in combination with MBG infusion significantly attenuated cardiac fibrosis. Our results suggest that rapamycin may have a dual effect on cardiac fibrosis through (1) mTOR inhibition and (2) inhibiting MBG-mediated profibrotic signaling and provide support for beneficial effect of a novel therapy for uremic cardiomyopathy.
Collapse
Affiliation(s)
- Steven T Haller
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Yanling Yan
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | | | - Joe Xie
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Jiang Tian
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - David J Kennedy
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Victoria Y Shilova
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD
| | - Zijian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | | | - Deepak Malhotra
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD
| | - Alexei Y Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD
| |
Collapse
|
5
|
Jinnin M. A possible mechanism of hypercoagulation status in scleroderma. Br J Dermatol 2016; 174:263. [PMID: 26871920 DOI: 10.1111/bjd.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol Hematol 2015; 97:303-11. [PMID: 26467073 DOI: 10.1016/j.critrevonc.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Growth stimuli in cancer growth resemble those exhibited in wound healing. However, the process of nemosis is absent in cancer-associated fibroblasts (CAFs), which remain constitutively active. CAFs are present in almost all solid tumors but are most abundant in breast, prostate and pancreatic cancers. TGF-β1, TGF-β2, PDGF, IL-6, bFGF, reactive oxide species and protein kinase C are considered the key players in tumor-induced transdifferentiation of surrounding fibroblasts. Full-extent transdifferentiation was obtained only when the medium contained TGF-β1 or TGF-β2 (with or without other factors), whereas PDGF, bFGF or IL-6 (each alone) induced only partial transdifferentiation. Recent evidence suggests that the fibroblasts associated with primary cancers differ from those associated with metastases. The metastases-associated fibroblasts are converted by a metastasis-specific spectrum of factors. A large portion of paracrine tumor signaling is mediated by cancer cell-derived vesicles termed exosomes and microvesicles. The cancer cell-derived exosomes contain abundant and diverse proteomes and a number of signaling factors (TGF-ß1, TGF-ß2, IL-6, MMP2 and MMP9), particularly under hypoxic conditions. In contrast to the traditional view, the clonal expansion and selection of neoplastic cells should not be viewed outside the host body context. It is vital for a neoplastic cell to achieve the ability to re-program host body cells into CAFs and by this influence to modulate its microenvironment and receive positive feedback for growth and drug resistance. Neoplastic cells, which fail to develop such capacity, do not pass critical barriers in tumorigenesis and remain dormant and benign.
Collapse
|
7
|
Chichger H, Vang A, O'Connell KA, Zhang P, Mende U, Harrington EO, Choudhary G. PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L827-36. [PMID: 25659900 DOI: 10.1152/ajplung.00184.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 01/26/2023] Open
Abstract
Pulmonary hypertension (PH) eventually leads to right ventricular (RV) fibrosis and dysfunction that is associated with increased morbidity and mortality. Although angiotensin II plays an important role in RV remodeling associated with hypoxic PH, the molecular mechanisms underlying RV fibrosis in PH largely remain unresolved. We hypothesized that PKC-p38 signaling is involved in RV collagen accumulation in PH and in response to angiotensin II stimulation. Adult male Sprague-Dawley rats were exposed to 3 wk of normoxia or hypoxia (10% FiO2 ) as a model of PH. Hypoxic rats developed RV hypertrophy and fibrosis associated with an increase in PKC βII and δ protein expression and p38 dephosphorylation in freshly isolated RV cardiac fibroblasts. Further mechanistic studies were performed in cultured primary cardiac fibroblasts stimulated with angiotensin II, a key activator of ventricular fibrosis in PH. Angiotensin II induced a reduction in p38 phosphorylation that was attenuated following chemical inhibition of PKC βII and δ. Molecular and chemical inhibition of PKC βII and δ abrogated angiotensin II-induced cardiac fibroblast proliferation and collagen deposition in vitro. The effects of PKC inhibition on proliferation and fibrosis were reversed by chemical inhibition of p38. Conversely, constitutive activation of p38 attenuated angiotensin II-induced increase of cardiac fibroblast proliferation and collagen accumulation. PKC βII- and δ-dependent inactivation of p38 regulates cardiac fibroblast proliferation and collagen deposition in response to angiotensin II, which suggests that the PKC-p38 signaling in cardiac fibroblasts may be involved and important in the pathophysiology of RV fibrosis in PH.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Kelly A O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ulrike Mende
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
8
|
Chan ESL, Liu H, Fernandez P, Luna A, Perez-Aso M, Bujor AM, Trojanowska M, Cronstein BN. Adenosine A(2A) receptors promote collagen production by a Fli1- and CTGF-mediated mechanism. Arthritis Res Ther 2014; 15:R58. [PMID: 23663495 PMCID: PMC4060252 DOI: 10.1186/ar4229] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/25/2013] [Accepted: 05/11/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Adenosine, acting through the A2A receptor, promotes tissue matrix production in the skin and the liver and induces the development of dermal fibrosis and cirrhosis in murine models. Since expression of A2A receptors is increased in scleroderma fibroblasts, we examined the mechanisms by which the A2A receptor produces its fibrogenic effects. Methods The effects of A2A receptor ligation on the expression of the transcription factor, Fli1, a constitutive repressor for the synthesis of matrix proteins, such as collagen, is studied in dermal fibroblasts. Fli1 is also known to repress the transcription of CTGF/CCN2, and the effects of A2A receptor stimulation on CTGF and TGF-β1 expression are also examined. Results A2A receptor occupancy suppresses the expression of Fli1 by dermal fibroblasts. A2A receptor activation induces the secretion of CTGF by dermal fibroblasts, and neutralization of CTGF abrogates the A2A receptor-mediated enhancement of collagen type I production. A2AR activation, however, resulted in a decrease in TGF-β1 protein release. Conclusions Our results suggest that Fli1 and CTGF are important mediators of the fibrogenic actions of adenosine and the use of small molecules such as adenosine A2A receptor antagonists may be useful in the therapy of dermal fibrosis in diseases such as scleroderma.
Collapse
|
9
|
Kudo H, Jinnin M, Asano Y, Trojanowska M, Nakayama W, Inoue K, Honda N, Kajihara I, Makino K, Fukushima S, Ihn H. Decreased interleukin-20 expression in scleroderma skin contributes to cutaneous fibrosis. Arthritis Rheumatol 2014; 66:1636-47. [PMID: 24470401 DOI: 10.1002/art.38380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 01/21/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To clarify the role of interleukin-20 (IL-20) in the regulatory mechanism of extracellular matrix expression and to determine the contribution of IL-20 to the phenotype of systemic sclerosis (SSc). METHODS Protein and messenger RNA (mRNA) levels of collagen, Fli-1, IL-20, and IL-20 receptor (IL-20R) were analyzed using polymerase chain reaction (PCR) array, immunoblotting, immunohistochemical staining, enzyme-linked immunosorbent assay, and real-time PCR. RESULTS PCR array revealed that IL-20 decreased gene expression of α2(I) collagen (0.03-fold), Smad3 (0.02-fold), and endoglin (0.05-fold) in cultured normal dermal fibroblasts. Fli-1 protein expression was induced by IL-20 (~2-fold). The inhibition of collagen by IL-20, the induction of Fli-1 by IL-20, and the reduction of Smad3 and endoglin by IL-20 were also observed in SSc fibroblasts. Serum IL-20 levels were reduced only slightly in SSc patients but were significantly decreased in patients with scleroderma spectrum disorders (the prodromal stage of SSc) compared with those in normal subjects (111.3 pg/ml versus 180.4 pg/ml; P < 0.05). On the other hand, IL-20 mRNA expression in SSc skin was decreased compared with that in normal skin (P < 0.05), which may result in the induction of collagen synthesis in SSc dermal fibroblasts. IL-20R was expressed in normal and SSc fibroblasts. Moreover, IL-20 supplementation by injection into the skin reversed skin fibrosis induced by bleomycin in mice (~0.5-fold). CONCLUSION IL-20 reduces basal collagen transcription via Fli-1 induction, while down-regulation of Smad3 and endoglin may cancel the effect of transforming growth factor β in SSc fibroblasts. To confirm the therapeutic value of IL-20 and IL-20R, their function and expression in vivo should be further studied.
Collapse
|
10
|
Akamata K, Asano Y, Aozasa N, Noda S, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Sato S. Bosentan reverses the pro-fibrotic phenotype of systemic sclerosis dermal fibroblasts via increasing DNA binding ability of transcription factor Fli1. Arthritis Res Ther 2014; 16:R86. [PMID: 24708674 PMCID: PMC4060196 DOI: 10.1186/ar4529] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 03/21/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Although the pathogenesis of systemic sclerosis (SSc) still remains unknown, recent studies have demonstrated that endothelins are deeply involved in the developmental process of fibrosis and vasculopathy associated with SSc, and a dual endothelin receptor antagonist, bosentan, has a potential to serve as a disease modifying drug for this disorder. Importantly, endothelin-1 (ET-1) exerts a pro-fibrotic effect on normal dermal fibroblasts and bosentan reverses the pro-fibrotic phenotype of SSc dermal fibroblasts. The purpose of this study was to clarify the details of molecular mechanisms underlying the effects of ET-1 and bosentan on dermal fibroblasts, which have not been well studied. Methods The mRNA levels of target genes and the expression and phosphorylation levels of target proteins were determined by reverse transcription real-time PCR and immunoblotting, respectively. Promoter assays were performed using a sequential deletion of human α2 (I) collagen (COL1A2) promoter. DNA affinity precipitation and chromatin immunoprecipitation were employed to evaluate the DNA binding ability of Fli1. Fli1 protein levels in murine skin were evaluated by immunostaining. Results In normal fibroblasts, ET-1 activated c-Abl and protein kinase C (PKC)-δ and induced Fli1 phosphorylation at threonine 312, leading to the decreased DNA binding of Fli1, a potent repressor of the COL1A2 gene, and the increase in type I collagen expression. On the other hand, bosentan reduced the expression of c-Abl and PKC-δ, the nuclear localization of PKC-δ, and Fli1 phosphorylation, resulting in the increased DNA binding of Fli1 and the suppression of type I collagen expression in SSc fibroblasts. In bleomycin-treated mice, bosentan prevented dermal fibrosis and increased Fli1 expression in lesional dermal fibroblasts. Conclusions ET-1 exerts a potent pro-fibrotic effect on normal fibroblasts by activating “c-Abl - PKC-δ - Fli1” pathway. Bosentan reverses the pro-fibrotic phenotype of SSc fibroblasts and prevents the development of dermal fibrosis in bleomycin-treated mice by blocking this signaling pathway. Although the efficacy of bosentan for dermal and pulmonary fibrosis is limited in SSc, the present observation definitely provides us with a useful clue to further explore the potential of the upcoming new dual endothelin receptor antagonists as disease modifying drugs for SSc.
Collapse
|
11
|
Haller ST, Drummond CA, Yan Y, Liu J, Tian J, Malhotra D, Shapiro JI. Passive immunization against marinobufagenin attenuates renal fibrosis and improves renal function in experimental renal disease. Am J Hypertens 2014; 27:603-9. [PMID: 24014658 DOI: 10.1093/ajh/hpt169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have shown that the cardiotonic steroid marinobufagenin (MBG) is elevated in clinical and experimental renal disease, and significantly contributes to the development of experimental uremic cardiomyopathy induced by removal of five-sixths of the kidney (5/6 nephrectomy; PNx) in the rat. We have demonstrated that both active and passive immunization against MBG with an anti-MBG monoclonal antibody (mAb 3E9) significantly attenuated cardiac fibrosis following PNx. In the present study we sought to determine whether the use of mAb 3E9 could improve renal function following PNx. METHODS Sprague-Dawley rats were treated with either mAb 3E9 or with DigiFab (an affinity-purified anti-digoxin antibody formerly named Digibind) during the fourth week after PNx. Sham-operated animals and PNx animals treated with an IgG antibody served as controls. Plasma, urine, and renal tissue were collected at the completion of the study to determine the effects of antibody treatment on renal function. RESULTS In PNx rats, treatments with mAb 3E9 and DigiFab, respectively, significantly reduced plasma creatinine, improved creatinine clearance, and reduced proteinuria below the values of these three measures in IgG-treated PNx controls. Additionally, treatment with mAb 3E9 and DigiFab significantly reduced renal fibrosis as measured with Western blotting and Sirius red/Fast green staining. CONCLUSIONS Passive immunization against MBG significantly improved renal function and markedly reduced renal fibrosis following the experimental induction of renal disease. The work in the study reported here adds to a growing body of knowledge implicating MBG in the development of chronic renal disease. Passive immunization against cardiotonic steroids may serve as a promising treatment for chronic renal disease.
Collapse
|
12
|
Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res 2014; 119:1-61. [PMID: 23870508 DOI: 10.1016/b978-0-12-407190-2.00001-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Asano Y, Trojanowska M. Fli1 represses transcription of the human α2(I) collagen gene by recruitment of the HDAC1/p300 complex. PLoS One 2013; 8:e74930. [PMID: 24058639 PMCID: PMC3772867 DOI: 10.1371/journal.pone.0074930] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 12/28/2022] Open
Abstract
Fli1, a member of the Ets transcription factor family, is a key repressor of the human α2(I) collagen (COL1A2) gene. Although our previous studies have delineated that TGF-β induces displacement of Fli1 from the COL1A2 promoter through sequential post-translational modifications, the detailed mechanism by which Fli1 functions as a potent transcriptional repressor of the COL1A2 gene has not been fully investigated. To address this issue, we carried out a series of experiments especially focusing on protein-protein interaction and epigenetic transcriptional regulation. The combination of tandem affinity purification and mass spectrometry identified HDAC1 as a Fli1 interacting protein. Under quiescent conditions, HDAC1 induced deacetylation of Fli1 resulting in an increase of Fli1 DNA binding ability and p300 enhanced this process by promoting the formation of a Fli1-HDAC1-p300 complex. TGF-β-induced phosphorylation of Fli1 at threonine 312 led to disassembly of this protein complex. In quiescent dermal fibroblasts Fli1, HDAC1, and p300 occupied the −404 to −237 region, including the Fli1 binding site, of the COL1A2 promoter. TGF-β induced Fli1 and HDAC1 dissociation from the COL1A2 promoter, while promoting Ets1 and p300 recruitment. Furthermore, acetylation levels of histone H3 around the Fli1 binding site in the COL1A2 promoter inversely correlated with the DNA occupancy of Fli1 and HDAC1, while positively correlating with that of Ets1 and p300. In the functional studies, HDAC1 overexpression magnified the inhibitory effect of Fli1 on the COL1A2 promoter. Moreover, pharmacological blockade of HDAC1 by entinostat enhanced collagen production in dermal fibroblasts. Collectively, these results indicate that under quiescent conditions Fli1 recruits HDAC1/p300 to the COL1A2 promoter and suppresses the expression of the COL1A2 gene by chromatin remodeling through histone deacetylation. TGF-β-dependent phosphorylation of Fli1 at threonine 312 is a critical step regulating the remodeling of the Fli1 transcription repressor complex, leading to transcriptional activation of the COL1A2 gene.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Noda S, Asano Y, Akamata K, Aozasa N, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Sumida H, Yanaba K, Tada Y, Sugaya M, Kadono T, Sato S. Constitutive activation of c-Abl/protein kinase C-δ/Fli1 pathway in dermal fibroblasts derived from patients with localized scleroderma. Br J Dermatol 2012; 167:1098-105. [PMID: 22591006 DOI: 10.1111/j.1365-2133.2012.11055.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A noncanonical pathway of transforming growth factor-β signalling, the c-Abl/protein kinase C-δ (PKC-δ)/Friend leukemia virus integration 1 (Fli1) axis, is a powerful regulator of collagen synthesis in dermal fibroblasts. OBJECTIVES To investigate the significance of the c-Abl/PKC-δ/Fli1 pathway for the establishment of the profibrotic phenotype in lesional dermal fibroblasts from patients with localized scleroderma (LSc). METHODS The activation status of the c-Abl/PKC-δ/Fli1 pathway was evaluated by immunoblotting and chromatin immunoprecipitation using cultured dermal fibroblasts from patients with LSc and closely matched healthy controls and by immunostaining on skin sections. The effects of a platelet-derived growth factor receptor inhibitor AG1296 and gene silencing of c-Abl on the expression levels of type I collagen were evaluated by immunoblotting. RESULTS The phosphorylation levels of Fli1 at threonine 312 were increased, while the total Fli1 levels and the binding of Fli1 to the COL1A2 promoter were decreased, in cultured LSc fibroblasts compared with cultured normal fibroblasts. Furthermore, in cultured LSc fibroblasts, the expression levels of c-Abl were elevated compared with cultured normal fibroblasts and PKC-δ was preferentially localized in the nucleus. These findings were also confirmed in vivo by immunohistochemistry using skin sections. Moreover, gene silencing of c-Abl, but not AG1296, significantly suppressed the expression of type I collagen in cultured LSc fibroblasts. CONCLUSIONS Constitutive activation of the c-Abl/PKC-δ/Fli1 pathway at least partially contributes to the establishment of the profibrotic phenotype in LSc dermal fibroblasts, which provides a novel molecular basis to explain the efficacy of imatinib against skin sclerosis in a certain subset of LSc.
Collapse
Affiliation(s)
- S Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee GW, Park HS, Kim EJ, Cho YW, Kim GT, Mun YJ, Choi EJ, Lee JS, Han J, Kang D. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel. Acta Physiol (Oxf) 2012; 204:513-24. [PMID: 21910834 DOI: 10.1111/j.1748-1716.2011.02359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIM Many kinds of K(+) channels are expressed in a variety of cells, including cancer cells. However, only a small amount of research has explored the relationship between voltage-independent K(+) channels and breast cancer. This study was performed to investigate whether changes in two-pore domain K(+) (K(2P) ) channel expression levels are related to the migration of human breast cancer cells. METHODS K(2P) channel gene/protein expression levels were compared between MCF-7 (a non-invasive cell) and MDA-MB-231 (an invasive cell) using reverse transcriptase (RT)-polymerase chain reaction (PCR), real-time PCR, Western blotting and immunocytochemistry. The relationship between K(2P) channel expression level and cell migration was analysed using gene overexpression and knock-down techniques. Functional expression of TASK-3 in MCF-7 and MDA-MB-231 cells was recorded using patch-clamp technique. RESULTS Of K(2P) channels, TASK-3 mRNA and protein were highly expressed in MCF-7 cells compared with those in MDA-MB-231 cells. Overexpression of TASK-3 in breast cancer cells reduced migration and invasion, whereas silencing of TASK-3 increased the migration and invasion. The TASK-3 expression level was decreased by phorbol myristate acetate (PMA), a PKC activator. PMA also enhanced the cell migration in MDA-MB-231 cells. CONCLUSION These results show that an increase in TASK-3 expression levels, which could be modulated by PKC activation, reduces cell migration/invasion in breast cancer cells and suggest that modulation of TASK-3 expression may regulate metastasis of breast cancer cells.
Collapse
Affiliation(s)
- G-W Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bujor AM, Asano Y, Haines P, Lafyatis R, Trojanowska M. The c-Abl tyrosine kinase controls protein kinase Cδ-induced Fli-1 phosphorylation in human dermal fibroblasts. ARTHRITIS AND RHEUMATISM 2011; 63:1729-37. [PMID: 21321929 PMCID: PMC3381734 DOI: 10.1002/art.30284] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We have previously demonstrated that in response to transforming growth factor β (TGFβ), Fli-1 activity is repressed through a series of sequential posttranslational modifications, consisting of protein kinase Cδ (PKCδ)-induced Thr312 phosphorylation, acetylation by p300/CREB binding protein-associated factor, and detachment from the collagen promoter. The purpose of this study was to further investigate the upstream events that lead to Fli-1 phosphorylation in response to TGFβ. METHODS Dermal fibroblasts were isolated from systemic sclerosis (SSc) patients and healthy control subjects matched for age, sex, and ethnicity. Western blotting was used to analyze protein levels and real-time quantitative reverse transcription-polymerase chain reaction analysis was used to measure messenger RNA expression. Cells were transduced with constitutively active PKCδ adenovirus or were transiently transfected with a Bcr-Abl-overexpressing plasmid. Subcellular localization of PKCδ was examined by immunocytochemistry. RESULTS Western blot analysis of cell lysates demonstrated that the levels of phospho-Fli-1 (Thr312) were up-regulated in SSc fibroblasts, correlating with increased levels of type I collagen and c-Abl protein. Experiments using a constitutively activated form of c-Abl, small interfering RNA against c-Abl and the specific tyrosine kinase inhibitor imatinib, demonstrated the requirement of c-Abl for the TGFβ-induced phosphorylation of Fli-1. Additionally, we showed that c-Abl kinase activity was required for nuclear localization of PKCδ. CONCLUSION Our results demonstrate that in SSc fibroblasts, c-Abl is an upstream regulator of the profibrotic PKCδ/phospho-Fli-1 pathway, via induction of PKCδ nuclear localization. Additionally, the finding that Fli-1 is phosphorylated at higher levels in SSc fibroblasts supports the notion that the c-Abl/PKCδ/phospho-Fli-1 pathway is constitutively activated in these cells. Thus, blocking the TGFβ/c-Abl/PKCδ/phospho-Fli-1 pathway could be an attractive alternative approach to therapy for scleroderma.
Collapse
Affiliation(s)
- Andreea M Bujor
- Boston University School of Medicine, Arthritis Center-Rheumatology, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Systemic sclerosis (SSc) is characterized by vascular alterations, activation of the immune system and tissue fibrosis. Vascular insufficiency manifests early in the disease, and although there is evidence of an active repair process, capillaries deteriorate and regress. Factors that contribute to the failure of vascular regeneration might include persistent injury, an imbalance between proangiogenic and antiangiogenic mediators, intrinsic abnormal properties of the cellular components of the vessels, and the presence of fibroblast-derived antiangiogenic factors. In addition, circulating dysfunctional endothelial progenitor cells might further exacerbate vessel deterioration. Abnormal expression of transcription factors, including Fra2 and Fli1, has been proposed to contribute to SSc vasculopathy. Fli1 regulates genes that are involved in vessel maturation and stabilization, suggesting that reduced levels of Fli1 in SSc vasculature could contribute to the development of unstable vessels that are prone to regression. Conversely, proliferating endothelial cells and pericytes, in the presence of an appropriate stimulus, might transdifferentiate into collagen-producing cells, and thus contribute to the initiation of fibrosis. Despite progress in treating the symptoms of vascular disease in SSc, the underlying mechanisms remain poorly understood. An improved knowledge of the molecular and cellular pathways that contribute to SSc vasculopathy could help in the design of effective therapies in the future.
Collapse
|
19
|
Mobley S, Shookhof JM, Foshay K, Park M, Gallicano GI. PKG and PKC Are Down-Regulated during Cardiomyocyte Differentiation from Embryonic Stem Cells: Manipulation of These Pathways Enhances Cardiomyocyte Production. Stem Cells Int 2010; 2010:701212. [PMID: 21048852 PMCID: PMC2963170 DOI: 10.4061/2010/701212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 11/26/2009] [Accepted: 01/20/2010] [Indexed: 12/19/2022] Open
Abstract
Understanding signal transduction mechanisms that drive differentiation of adult or embryonic stem cells (ESCs) is imperative if they are to be used to cure disease. While the list of signaling pathways regulating stem cell differentiation is growing, it is far from complete. Indentifying regulatory mechanisms and timecourse commitment to cell lineages is needed for generating pure populations terminally differentiated cell types, and in ESCs, suppression of teratoma formation. To this end, we investigated specific signaling mechanisms involved in cardiomyogenesis, followed by manipulation of these pathways to enhance differentiation of ESCs into cardiomyocytes. Subjecting nascent ESC-derived cardiomyocytes to a proteomics assay, we found that cardiomyogenesis is influenced by up- and down-regulation of a number of kinases, one of which, cGMP-dependent protein kinase (PKG), is markedly down-regulated during differentiation. Delving further, we found that manipulating the PKG pathway using PKG-specific inhibitors produced significantly more cardiomyocytes from ESCs when compared to ESCs left to differentiate without inhibitors. In addition, we found combinatorial effects when culturing ESCs in inhibitors to PKG and PKC isotypes. Consequently, we have generated a novel hypothesis: Down-regulation of PKG and specific PKC pathways are necessary for cardiomyogenesis, and when manipulated, these pathways produce significantly more cardiomyocytes than untreated ESCs.
Collapse
Affiliation(s)
- Stephen Mobley
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Med/Dent Building NE205, 3900 Reservoir Road NW, Washington, DC 20057-1455, USA
| | | | | | | | | |
Collapse
|
20
|
Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G, Watson DK, Trojanowska M. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1983-98. [PMID: 20228226 DOI: 10.2353/ajpath.2010.090593] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis or scleroderma (SSc) is a complex autoimmune connective tissue disease characterized by obliterative vasculopathy and tissue fibrosis. The molecular mechanisms underlying SSc vasculopathy are largely unknown. Friend leukemia integration factor 1 (Fli1), an important regulator of immune function and collagen fibrillogenesis, is expressed at reduced levels in endothelial cells in affected skin of patients with SSc. To develop a disease model and to investigate the function of Fli1 in the vasculature, we generated mice with a conditional deletion of Fli1 in endothelial cells (Fli1 CKO). Fli1 CKO mice showed a disorganized dermal vascular network with greatly compromised vessel integrity and markedly increased vessel permeability. We show that Fli1 regulates expression of genes involved in maintaining vascular homeostasis including VE-cadherin, platelet endothelial cell adhesion molecule 1, type IV collagen, matrix metalloproteinase 9, platelet-derived growth factor B, and S1P(1) receptor. Accordingly, Fli1 CKO mice are characterized by down-regulation of VE-cadherin and platelet endothelial cell adhesion molecule 1, impaired development of basement membrane, and a decreased presence of alpha-smooth muscle actin-positive cells in dermal microvessels. This phenotype is consistent with a role of Fli1 as a regulator of vessel maturation and stabilization. Importantly, vascular characteristics of Fli1 CKO mice are recapitulated by SSc microvasculature. Thus, persistently reduced levels of Fli1 in endothelial cells may play a critical role in the development of SSc vasculopathy.
Collapse
Affiliation(s)
- Yoshihide Asano
- Arthritis Center, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Elkareh J, Periyasamy SM, Shidyak A, Vetteth S, Schroeder J, Raju V, Hariri IM, El-Okdi N, Gupta S, Fedorova L, Liu J, Fedorova OV, Kahaleh MB, Xie Z, Malhotra D, Watson DK, Bagrov AY, Shapiro JI. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am J Physiol Renal Physiol 2009; 296:F1219-26. [PMID: 19261738 PMCID: PMC2681369 DOI: 10.1152/ajprenal.90710.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/23/2009] [Indexed: 11/22/2022] Open
Abstract
The cardiotonic steroid marinobufagenin (MBG) has been implicated in the pathogenesis of experimental uremic cardiomyopathy, which is characterized by progressive cardiac fibrosis. We examined whether the transcription factor Friend leukemia integration-1 (Fli-1) might be involved in this process. Fli-1-knockdown mice demonstrated greater cardiac collagen-1 expression and fibrosis compared with wild-type mice; both developed increased cardiac collagen expression and fibrosis after 5/6 nephrectomy. There was a strong inverse relationship between the expressions of Fli-1 and procollagen in primary culture of rat cardiac and human dermal fibroblasts as well as a cell line derived from renal fibroblasts and MBG-induced decreases in nuclear Fli-1 as well as increases in procollagen-1 expression in these cells. Transfection of a Fli-1 expression vector prevented increased procollagen-1 expression from MBG. MBG exposure induced a rapid translocation of the delta-isoform of protein kinase C (PKCdelta) to the nucleus. This translocation was prevented by pharmacological inhibition of phospholipase C, and MBG-induced increases in procollagen-1 expression were prevented with a PKCdelta- but not a PKCalpha-specific inhibitor. Finally, immunoprecipitation studies strongly suggest that MBG induced phosphorylation of Fli-1. We feel these data support a causal relationship with MBG-induced translocation of PKCdelta, which results in phosphorylation of as well as decreases in nuclear Fli-1 expression, which, in turn, leads to increases in collagen production. Should these findings be confirmed, we speculate that this pathway may represent a therapeutic target for uremic cardiomyopathy as well as other conditions associated with excessive fibrosis.
Collapse
Affiliation(s)
- Jihad Elkareh
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Phosphorylation of Fli1 at threonine 312 by protein kinase C delta promotes its interaction with p300/CREB-binding protein-associated factor and subsequent acetylation in response to transforming growth factor beta. Mol Cell Biol 2009; 29:1882-94. [PMID: 19158279 DOI: 10.1128/mcb.01320-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have shown that transforming growth factor beta (TGF-beta)-induced collagen gene expression involves acetylation-dependent dissociation from the human alpha2(I) collagen (COL1A2) promoter of the transcriptional repressor Fli1. The goal of this study was to elucidate the regulatory steps preceding the acetylation of Fli1. We first showed that TGF-beta induces Fli1 phosphorylation on a threonine residue(s). The major phosphorylation site was localized to threonine 312 located in the DNA binding domain of Fli1. Using several independent approaches, we demonstrated that Fli1 is directly phosphorylated by protein kinase C delta (PKC delta). Additional experiments showed that in response to TGF-beta, PKC delta is recruited to the collagen promoter to phosphorylate Fli1 and that this step is a prerequisite for the subsequent interaction of Fli1 with p300/CREB-binding protein-associated factor (PCAF) and an acetylation event. The phosphorylation of endogenous Fli1 preceded its acetylation in response to TGF-beta stimulation, and the blockade of PKC delta abrogated both the phosphorylation and acetylation of Fli1 in dermal fibroblasts. Promoter studies showed that a phosphorylation-deficient mutant of Fli1 exhibited an increased inhibitory effect on the COL1A2 gene, which could not be reversed by the forced expression of PCAF or PKC delta. These data strongly suggest that the phosphorylation-acetylation cascade triggered by PKC delta represents the primary mechanism whereby TGF-beta regulates the transcriptional activity of Fli1 in the context of the collagen promoter.
Collapse
|
25
|
PENG HAIBING, TAN LUJIAN, OSAKI MAKOTO, ZHAN YUMEI, IJIRI KOSEI, TSUCHIMOCHI KANEYUKI, OTERO MIGUEL, WANG HONG, CHOY BOBK, GRALL FRANCKT, GU XUESONG, LIBERMANN TOWIAA, OETTGEN PETER, GOLDRING MARYB. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. J Cell Physiol 2008; 215:562-73. [PMID: 18044710 PMCID: PMC3937869 DOI: 10.1002/jcp.21338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epithelium-specific ETS (ESE)-1 transcription factor is induced in chondrocytes by interleukin-1beta (IL-1beta). We reported previously that early activation of EGR-1 by IL-1beta results in suppression of the proximal COL2A1 promoter activity by displacement of Sp1 from GC boxes. Here we report that ESE-1 is a potent transcriptional suppressor of COL2A1 promoter activity in chondrocytes and accounts for the sustained, NF-kappaB-dependent inhibition by IL-1beta. Of the ETS factors tested, this response was specific to ESE-1, since ESE-3, which was also induced by IL-1beta, suppressed COL2A1 promoter activity only weakly. In contrast, overexpression of ETS-1 increased COL2A1 promoter activity and blocked the inhibition by IL-1beta. These responses to ESE-1 and ETS-1 were confirmed using siRNA-ESE1 and siRNA-ETS1. In transient cotransfections, the inhibitory responses to ESE-1 and IL-1beta colocalized in the -577/-132 bp promoter region, ESE-1 bound specifically to tandem ETS sites at -403/-381 bp, and IL-1-induced binding of ESE-1 to the COL2A1 promoter was confirmed in vivo by ChIP. Our results indicate that ESE-1 serves a potent repressor function by interacting with at least two sites in the COL2A1 promoter. However, the endogenous response may depend upon the balance of other ETS factors such as ETS-1, and other IL-1-induced factors, including EGR-1 at any given time. Intracellular ESE-1 staining in chondrocytes in cartilage from patients with osteoarthritis (OA), but not in normal cartilage, further suggests a fundamental role for ESE-1 in cartilage degeneration and suppression of repair.
Collapse
Affiliation(s)
- HAIBING PENG
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - LUJIAN TAN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - MAKOTO OSAKI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - YUMEI ZHAN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - KOSEI IJIRI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - KANEYUKI TSUCHIMOCHI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| | - MIGUEL OTERO
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| | - HONG WANG
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - BOB K. CHOY
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - FRANCK T. GRALL
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - XUESONG GU
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - TOWIA A. LIBERMANN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - PETER OETTGEN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - MARY B. GOLDRING
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| |
Collapse
|
26
|
Huang SK, Wettlaufer SH, Chung J, Peters-Golden M. Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am J Respir Cell Mol Biol 2008; 39:482-9. [PMID: 18421013 DOI: 10.1165/rcmb.2008-0080oc] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Via their capacities for proliferation and synthesis of matrix proteins such as collagen, fibroblasts are key effectors in the pathogenesis of fibrotic disorders such as idiopathic pulmonary fibrosis. Prostaglandin E(2) (PGE(2)) potently inhibits these functions in lung fibroblasts through receptor ligation and production of the second messenger cAMP, but the downstream pathways mediating such actions have not been fully characterized. We sought to investigate the roles of the cAMP effectors protein kinase A (PKA) and exchange protein activated by cAMP-1 (Epac-1) in modulating these two functions in primary human fetal lung IMR-90 fibroblasts. The specific roles of these two effector pathways were examined by treating cells with PKA-specific (6-bnz-cAMP) and Epac-specific (8-pCPT-2'-O-Me-cAMP) agonists, inhibiting PKA with the inhibitor KT 5720, overexpressing the PKA catalytic subunit, and silencing Epac-1 using short hairpin RNA. PGE(2) inhibition of collagen I expression was mediated exclusively by activation of PKA, while inhibition of fibroblast proliferation was mediated exclusively by activation of Epac-1. PGE(2) and Epac-1 inhibited cell proliferation through activation of the small GTPase Rap1, since decreasing Rap1 activity by transfection with Rap1GAP or the dominant-negative Rap1N17 prevented, and transfection with the constitutively active Rap1V12 mimicked, the anti-proliferative effects of PGE(2). On the other hand, PKA inhibition of collagen was dependent on inhibition of protein kinase C-delta. The selective use of PKA and Epac-1 pathways to inhibit distinct aspects of fibroblast activation illustrate the pleiotropic ability of PGE(2) to inhibit diverse fibroblast functions.
Collapse
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5642, USA
| | | | | | | |
Collapse
|
27
|
Villar J, Arenas MI, MacCarthy CM, Blánquez MJ, Tirado OM, Notario V. PCPH/ENTPD5 Expression Enhances the Invasiveness of Human Prostate Cancer Cells by a Protein Kinase Cδ–Dependent Mechanism. Cancer Res 2007; 67:10859-68. [DOI: 10.1158/0008-5472.can-07-2041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Asano Y, Czuwara J, Trojanowska M. Transforming growth factor-beta regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem 2007; 282:34672-83. [PMID: 17884818 DOI: 10.1074/jbc.m703907200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fli1, a member of Ets transcriptional factors, has been shown to be a negative regulator of collagen gene expression in dermal fibroblasts. Although Fli1 down-regulation is implicated in pathological matrix remodeling such as cutaneous fibrosis in scleroderma, very little is known about the post-translational mechanisms regulating Fli1 function. The aim of this study was to investigate the role of acetylation, one of the main post-translational regulatory mechanisms, in regulating Fli1 activity. We initially demonstrated that Fli1 is acetylated by transforming growth factor (TGF)-beta1 in dermal fibroblasts. An in vivo acetylation assay using 293T cells revealed that Fli1 is mainly acetylated by the histone acetyltransferase activity of p300/CBP-associated factor (PCAF) at lysine 380. Acetylation of Fli1 resulted in a decreased stability of Fli1 protein. More importantly, reduced binding of acetylated Fli1 to the human alpha2(I) collagen (COL1A2) promoter was observed in DNA affinity precipitation and chromatin immunoprecipitation. Conversely, a Fli1 K380R mutant that is resistant to acetylation by PCAF showed increased DNA binding ability. Furthermore, PCAF overexpression reversed the inhibitory effect of Fli1 on TGF-beta1-mediated COL1A2 promoter activity. In contrast, the Fli1 K380R mutant had a greater inhibitory effect on TGF-beta1-induced COL1A2 promoter activity than wild-type Fli1, and PCAF failed to reverse this effect. These results indicate that PCAF-dependent acetylation of lysine 380 abrogates repressor function of Fli1 with respect to collagen gene expression. Furthermore, these data strongly suggest that the TGF-beta-dependent acetylation of Fli1 may represent the principal mechanism responsible for the TGF-beta-induced dissociation of Fli1 from the collagen promoter.
Collapse
Affiliation(s)
- Yoshihide Asano
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
29
|
He L, Nan X, Wang Y, Guan L, Bai C, Shi S, Yuan H, Chen L, Liu D, Pei X. Full-thickness tissue engineered skin constructed with autogenic bone marrow mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 50:429-37. [PMID: 17653662 DOI: 10.1007/s11427-007-0069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/13/2007] [Indexed: 12/14/2022]
Abstract
To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesenchymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented with different inducing factors and biomaterials to construct functional tissueengineered skin. The results showed that after 72 h induction, BMSCs displayed morphologic changes such as typical epidermal cell arrangement, from spindle shape to round or oval; tonofibrils, melanosomes and keratohyaline granules were observed under a transmission electronic microscope. The differentiated cells expressed epidermal stem cell surface marker CK19 (59.66% +/- 4.2%) and epidermal cells differentiation marker CK10. In addition, the induced epidermal cells acquired the anti-radiation capacity featured by lowered apoptosis following exposure to UVB. On the other hand, the collagen microfibrils deposition was noticed under a transmission electronic microscope after differentiating into dermis fibroblasts; RT-PCR identified collagen type I mRNA expression in differentiated cells; radioimmunoassay detected the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8) (up to 115.06 pg/mL and 0.84 ng/mL, respectively). Further in vivo implanting BMSCs with scaffold material shortened skin wound repair significantly. In one word, autogenic BMSCs have the potential to differentiate into epidermal cells and fibroblasts in vitro, and show clinical feasibility acting as epidermis-like and dermis-like seed cells in skin engineering.
Collapse
Affiliation(s)
- LiJuan He
- Laboratory of Stem Cells and Regenerative Medicine, Institute of Blood Transfusion, Academy of Military Medical Sciences, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kinoshita K, Iimuro Y, Otogawa K, Saika S, Inagaki Y, Nakajima Y, Kawada N, Fujimoto J, Friedman SL, Ikeda K. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut 2007; 56:706-14. [PMID: 17127702 PMCID: PMC1942155 DOI: 10.1136/gut.2006.092460] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Liver cirrhosis, which is caused by the accumulation of extracellular matrix materials, is a serious clinical problem that can progress to hepatic failure. Transforming growth factor-beta (TGFbeta) plays a pivotal role in extracellular matrix production, but bone morphogenetic protein (BMP)-7, a member of the TGFbeta superfamily, can antagonise the fibrogenic activity of TGFbeta. AIM In this study, we examined whether adenovirus-mediated overexpression of BMP-7 (Ad-BMP-7) antagonised the effect of TGFbeta in vitro and in vivo. METHODS AND RESULTS In primary cultured rat stellate cells and the LX-2 human stellate cell line, induction of BMP-7 by Ad-BMP-7 infection decreased the expression of collagen 1A2 mRNA and smooth muscle alpha-actin in the presence or absence of TGFbeta, via Smad 1/5/8 phosphorylation. BMP-7 triggered the mRNA expression of inhibitors of differentiation 2 (Id2) in LX-2. Although endogenous expression of BMP-7 was hardly detectable, Smad1 and Id2 overexpression increased BMP-7 expression in LX-2. A liver fibrosis model was induced by the repetitive intraperitoneal injection of thioacetamide (200 mg/kg body weight) twice per week for up to 7 weeks. In rats administered Ad-BMP-7 via the tail vein, hydroxyproline content and the areas stained by Sirius red dye in the liver were significantly reduced compared to controls. Ad-Id2 also reduced fibrosis. CONCLUSION These data demonstrate that BMP-7, Smad 1/5/8 and Ids interact to antagonise hepatic fibrogenesis.
Collapse
Affiliation(s)
- Kohji Kinoshita
- First Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohguchi K, Banno Y, Akao Y, Nozawa Y. Involvement of phospholipase D1 in collagen type I production of human dermal fibroblasts. Biochem Biophys Res Commun 2006; 348:1398-402. [PMID: 16919239 DOI: 10.1016/j.bbrc.2006.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 08/02/2006] [Indexed: 11/30/2022]
Abstract
In the current study, the involvement of phospholipase D (PLD) in the regulation of collagen type I production was examined using human dermal fibroblasts. Procollagen I production in the cells overexpressing PLD1, but not PLD2, was found to be increased compared with those in the vector control cells. To investigate the role of PLD1, we examined the effect of knockdown of endogenous PLD1 by small interference RNA (siRNA) on collagen production. The reduction of expression levels of PLD1 by siRNA transfection was accompanied by diminution of procollagen biosynthesis and also ribosomal S6 kinase 1 (S6K1) phosphorylation. The activity of mammalian target of rapamycin (mTOR) is essential for phosphorylation of S6K1 and the treatment of dermal fibroblasts with rapamycin, a potent inhibitor of mTOR abolished procollagen I production. These results suggest that PLD1 plays a crucial role in collagen type I production through mTOR signaling in human dermal fibroblast.
Collapse
Affiliation(s)
- Kenji Ohguchi
- Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu 504-0838, Japan.
| | | | | | | |
Collapse
|
32
|
Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkötter O, Sies H, Brenneisen P. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 2006; 119:2727-38. [PMID: 16757516 DOI: 10.1242/jcs.03011] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. Using an in vitro tumor-stroma model of skin carcinogenesis, we report here that tumor-cell-derived transforming growth factor β1 (TGFβ1) initiates reactive oxygen species-dependent expression of α-smooth muscle actin, a biomarker for myofibroblastic cells belonging to a group of late-responsive genes. Moreover, protein kinase C (PKC) is involved in lipid hydroperoxide-triggered molecular events underlying transdifferentiation of fibroblasts to myofibroblasts (mesenchymal-mesenchymal transition, MMT). In contrast to fibroblasts, myofibroblasts secrete large amounts of hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), resulting in a significant increase in the invasive capacity of tumor cells. The thiol N-acetyl-L-cysteine, the micronutrient selenite as well as selenoprotein P and the lipid peroxidation inhibitors α-tocopherol and butylated hydroxytoluene significantly lower both the number of TGFβ1-initiated myofibroblasts and the secretion of HGF, VEGF and IL-6, correlating with a diminished invasive capacity of tumor cells. This novel concept of stromal therapy, namely the protection of stromal cells against the dominating influence of tumor cells in tumor-stroma interaction by antioxidants and micronutrients, may form the basis for prevention of MMT in strategies for chemoprevention of tumor invasion.
Collapse
Affiliation(s)
- Bahar Cat
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Ishida W, Mori Y, Lakos G, Sun L, Shan F, Bowes S, Josiah S, Lee WC, Singh J, Ling LE, Varga J. Intracellular TGF-beta receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J Invest Dermatol 2006; 126:1733-44. [PMID: 16741519 DOI: 10.1038/sj.jid.5700303] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fibrosis, the hallmark of scleroderma, is characterized by excessive synthesis of collagen and extracellular matrix proteins and accumulation of myofibroblasts. Transforming growth factor-beta (TGF-beta), a potent inducer of collagen synthesis, cytokine production, and myofibroblast transdifferentiation, is implicated in fibrosis. Profibrotic TGF-beta responses are induced primarily via the type I activin-like receptor kinase 5 (ALK5) TGF-beta receptor coupled to Smad signal transducers. Here, we investigated the effect of blocking ALK5 function with SM305, a novel small-molecule kinase inhibitor, on fibrotic TGF-beta responses. In normal dermal fibroblasts, SM305 abrogated the ligand-induced phosphorylation, nuclear import, and DNA-binding activity of Smad2/3 and Smad4, and inhibited Smad2/3-dependent transcriptional responses. Furthermore, SM305 blocked TGF-beta-induced extracellular matrix gene expression, cytokine production, and myofibroblast transdifferentiation. In unstimulated scleroderma fibroblasts, SM305 caused a variable and modest reduction in type I collagen levels, and failed to abrogate constitutive nuclear accumulation of Smad2/3, or alter the proportion of smooth muscle actin stress fiber-positive fibroblasts. In vivo, SM305 prevented TGF-beta-induced Smad2/3 phosphorylation type I collagen (COL1)A2 promoter activation in dermal fibroblasts. Taken together, these results indicate that SM305 inhibits intracellular TGF-beta signaling through selective interference with ALK5-mediated Smad activation, resulting in marked suppression of profibrotic responses induced by TGF-beta in vivo and in vitro.
Collapse
Affiliation(s)
- Wataru Ishida
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jinnin M, Ihn H, Mimura Y, Asano Y, Tamaki K. Potential regulatory elements of the constitutive up-regulated α2(I) collagen gene in scleroderma dermal fibroblasts. Biochem Biophys Res Commun 2006; 343:904-9. [PMID: 16564026 DOI: 10.1016/j.bbrc.2006.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 11/23/2022]
Abstract
The promoter activity of the full-length alpha2(I) collagen gene is higher in scleroderma fibroblasts, when compared to normal fibroblasts. In this study, to investigate the molecular mechanisms up-regulating the expression of the alpha2(I) collagen gene in scleroderma dermal fibroblasts more clearly, we compared promoter activities of serial 5'-deletion mutants and the substitution mutants of the alpha2(I) collagen promoter constructs between normal and scleroderma fibroblasts. The transient transfection assays using a series of 5'-deletions of the promoter revealed that the up-regulated fold-increase in scleroderma fibroblasts relative to that in normal fibroblasts was significantly decreased by the removal of bp -353 to -264 fragment or bp -264 to -186 fragment. The substitution mutations introduced into binding sites of Sp1 (bp -303 and -271), Ets1 (bp -285 and -282), as well as Smad (bp -263 and -258) also abrogated the fold-increase in promoter activity in scleroderma fibroblasts synergistically. A DNA affinity precipitation assay showed that the binding activity of Ets1 as well as Smad3 to their binding sites was increased in scleroderma fibroblasts compared with normal cells. Taken together, our promoter analysis emphasized that Ets1 form a transcriptionally active complex with Smad and Sp1 by autocrine transforming growth factor (TGF)-beta signaling, leading to the intrinsic up-regulation of alpha2(I) collagen promoter activity in scleroderma fibroblasts. The blockade of autocrine TGF-beta signaling is thought to be one of the most reliable approaches in the treatment of scleroderma, and further study targeting Ets1, Smad or Sp1 may contribute to this blockade.
Collapse
Affiliation(s)
- Masatoshi Jinnin
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
35
|
Luzina IG, Highsmith K, Pochetuhen K, Nacu N, Rao JN, Atamas SP. PKCalpha mediates CCL18-stimulated collagen production in pulmonary fibroblasts. Am J Respir Cell Mol Biol 2006; 35:298-305. [PMID: 16601239 PMCID: PMC2643282 DOI: 10.1165/rcmb.2006-0033oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A CC chemokine, CCL18, has been previously reported to stimulate collagen production in pulmonary fibroblasts. This study focused on the role of protein kinase C (PKC) in the profibrotic signaling activated by CCL18 in pulmonary fibroblasts. Of the three PKC isoforms that are predominantly expressed in fibroblasts (PKCalpha, PKCdelta, and PKCepsilon), two isoforms (PKCdelta and PKCepsilon) have been implicated in profibrotic intracellular signaling. The role of PKCalpha-mediated signaling in the regulation of collagen production remains unclear. In this study, PKCalpha was found mostly in the cytoplasm, whereas PKCdelta and PKCepsilon were found mostly in the nucleus of cultured primary pulmonary fibroblasts. In response to stimulation with CCL18, PKCalpha but not PKCdelta or PKCepsilon underwent rapid (within 5-10 min) transient phosphorylation and nuclear translocation. Inhibition with dominant-negative mutants of PKCalpha and ERK2, but not PKCdelta or PKCepsilon, abrogated CCL18-stimulated ERK2 phosphorylation and collagen production. The effect of CCL18 on collagen production and the activity of collagen promoter reporter constructs were also abrogated by a selective pharmacologic inhibitor of PKCalpha Gö6976. Stimulation of fibroblasts with CCL18 caused an increase in intracellular calcium concentration. Consistent with the known calcium dependence of PKCalpha signaling, blocking of the calcium signaling with the intracellular calcium-chelating agent BAPTA led to abrogation of PKCalpha nuclear translocation, ERK2 phosphorylation, and collagen production. These observations suggest that in primary pulmonary fibroblasts, PKCalpha but not PKCdelta or PKCepsilon mediate the profibrotic effect of CCL18. PKCalpha may therefore become a viable target for future antifibrotic therapies.
Collapse
Affiliation(s)
- Irina G Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ryer EJ, Hom RP, Sakakibara K, Nakayama KI, Nakayama K, Faries PL, Liu B, Kent KC. PKCδ Is Necessary for Smad3 Expression and Transforming Growth Factor β–Induced Fibronectin Synthesis in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2006; 26:780-6. [PMID: 16469949 DOI: 10.1161/01.atv.0000209517.00220.cd] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective—
The purpose of these studies is to investigate the mechanism by which transforming growth factor (TGF)β1 regulates the synthesis of the extracellular matrix protein fibronectin (FN).
Methods and Results—
TGFβ1 elicited a time-dependent induction of FN protein and mRNA in A10 rat aortic smooth muscle cells (SMCs). Ectopic expression of Smad3 in A10 cells stimulated both basal and TGFβ1-induced FN expression, whereas expression of Smad7 eliminated the TGFβ response. Because TGFβ activated PKCδ in SMCs, we tested the role of PKCδ in regulation of FN expression. Inhibition of PKCδ activity by rottlerin or dominant-negative adenovirus (AdPKCδ DN) blocked TGFβ1’s induction of FN, whereas overexpression of PKCδ enhanced TGFβ’s effect. Moreover, aortic SMCs isolated from PKCδ
−/−
mice exhibited diminished FN induction in response to TGFβ. Furthermore, we found that Smad3 protein and mRNA were markedly reduced in AdPKCδ DN-treated A10 cells and in PKCδ null cells. Finally, restoring Smad3 in rottlerin-treated A10 and PKCδ null cells rescues the ability of TGFβ to upregulate FN protein and mRNA expression.
Conclusion—
Our data suggest that TGFβ-activated PKCδ is critical to maintain normal expression of Smad3, which in turn is required for the induction of fibronectin. PKCδ represents a promising target for treating the fibroproliferative response after arterial injury.
Collapse
Affiliation(s)
- Evan J Ryer
- Division of Vascular Surgery, New York Presbyterian Hospital, Weill Medical School, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|