1
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
2
|
Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii. G3-GENES GENOMES GENETICS 2019; 9:3345-3358. [PMID: 31427453 PMCID: PMC6778800 DOI: 10.1534/g3.119.400428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
Collapse
|
3
|
Shastry S, Steinberg-Neifach O, Lue N, Stone MD. Direct observation of nucleic acid binding dynamics by the telomerase essential N-terminal domain. Nucleic Acids Res 2018; 46:3088-3102. [PMID: 29474579 PMCID: PMC5887506 DOI: 10.1093/nar/gky117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/31/2018] [Accepted: 02/17/2018] [Indexed: 11/12/2022] Open
Abstract
Telomerase is a specialized enzyme that maintains telomere length by adding DNA repeats to chromosome ends. The catalytic protein subunit of telomerase utilizes the integral telomerase RNA to direct telomere DNA synthesis. The telomerase essential N-terminal (TEN) domain is required for enzyme function; however, the precise mechanism of the TEN domain during catalysis is not known. We report a single-molecule study of dynamic TEN-induced conformational changes in its nucleic acid substrates. The TEN domain from the yeast Candida parapsilosis (Cp) exhibits a strong binding preference for double-stranded nucleic acids, with particularly high affinity for an RNA-DNA hybrid mimicking the template-product complex. Surprisingly, the telomere DNA repeat sequence from C. parapsilosis forms a DNA hairpin that also binds CpTEN with high affinity. Mutations to several residues in a putative nucleic acid-binding patch of CpTEN significantly reduced its affinity to the RNA-DNA hybrid and telomere DNA hairpin. Substitution of comparable residues in the related Candida albicans TEN domain caused telomere maintenance defects in vivo and decreased primer extension activity in vitro. Collectively, our results support a working model in which dynamic interactions with telomere DNA and the template-product hybrid underlie the functional requirement for the TEN domain during the telomerase catalytic cycle.
Collapse
Affiliation(s)
- Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Olga Steinberg-Neifach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal Lue
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes and maintain the genomic integrity through multiple cell divisions. Telomeres protect the chromosome ends from degradation, end-to-end fusion and abnormal recombination and they also promote the end replication. The budding yeast Saccharomyces cerevisiae is the most well-studied model system with regard to telomere and telomerase regulation. Recently, the opportunistic fungal pathogen Candida albicans has emerged as an attractive model system for investigating telomere biology. Candida underwent rapid evolutionary divergence with respect to telomere sequences. Concomitant with the evolutionary divergence of telomere sequences, telomere repeat binding factors and telomerase components have also evolved, leading to differences in their functions and domain structures. Thus, the comparative analysis of the telomeres and telomerase-related factors in the budding yeast has provided a better understanding on both conserved and variable aspects of telomere regulation. In this review, I will discuss telomeres and telomerase-related factors and their functions in telomere and telomerase regulation in C. albicans.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, NY 10065, USA.
| |
Collapse
|
5
|
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1563-83. [PMID: 21417995 DOI: 10.1134/s0006297910130055] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.
Collapse
Affiliation(s)
- M I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
6
|
Recombination can cause telomere elongations as well as truncations deep within telomeres in wild-type Kluyveromyces lactis cells. EUKARYOTIC CELL 2010; 10:226-36. [PMID: 21148753 DOI: 10.1128/ec.00209-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis.
Collapse
|
7
|
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the two components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBPalpha-beta complex.
Collapse
|
8
|
Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination. Mol Cell Biol 2009; 30:1254-68. [PMID: 20008550 DOI: 10.1128/mcb.00986-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a conserved multifunctional protein initially identified as a transcriptional regulator of ribosomal protein genes in Saccharomyces cerevisiae but subsequently shown to play diverse functions at multiple chromosomal loci, including telomeres. The function of Rap1 appears to be evolutionarily plastic, especially in the budding yeast lineages. We report here our biochemical and molecular genetic characterizations of Candida albicans Rap1, which exhibits an unusual, miniaturized domain organization in comparison to the S. cerevisiae homologue. We show that in contrast to S. cerevisiae, C. albicans RAP1 is not essential for cell viability but is critical for maintaining normal telomere length and structure. The rap1 null mutant exhibits drastic telomere-length dysregulation and accumulates high levels of telomere circles, which can be largely attributed to aberrant recombination activities at telomeres. Analysis of combination mutants indicates that Rap1 and other telomere proteins mediate overlapping but nonredundant roles in telomere protection. Consistent with the telomere phenotypes of the mutant, C. albicans Rap1 is localized to telomeres in vivo and recognizes the unusual telomere repeat unit with high affinity and sequence specificity in vitro. The DNA-binding Myb domain of C. albicans Rap1 is sufficient to suppress most of the telomere aberrations observed in the null mutant. Notably, we were unable to detect specific binding of C. albicans Rap1 to gene promoters in vivo or in vitro, suggesting that its functions are more circumscribed in this organism. Our findings provide insights on the evolution and mechanistic plasticity of a widely conserved and functionally critical telomere component.
Collapse
|
9
|
Yu EY, Wang F, Lei M, Lue NF. A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nat Struct Mol Biol 2008; 15:985-9. [PMID: 19172753 PMCID: PMC2656765 DOI: 10.1038/nsmb.1471] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ever shorter telomeres 3 (Est3) is an essential telomerase regulatory subunit thought to be unique to budding yeasts. Here we use multiple sequence alignment and hidden Markov model-hidden Markov model (HMM-HMM) comparison to uncover potential similarities between Est3 and the mammalian telomeric protein Tpp1. Analysis of site-specific mutants of Candida albicans Est3 revealed functional distinctions between residues that are conserved between Est3 and Tpp1 and those that are unique to Est3. Although both types of residues are important for telomere maintenance in vivo, only the former contributes to telomerase activity in vitro and facilitates the association of Est3 with telomerase core components. Consistent with a function in protein-protein interaction, the residues common to Est3 and Tpp1 map to one face of an OB-fold model structure, away from the canonical nucleic acid binding surface. We propose that Est3 and the OB-fold domain of Tpp1 mediate a conserved function in telomerase regulation.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | | | | | |
Collapse
|
10
|
Hsu M, McEachern MJ, Dandjinou AT, Tzfati Y, Orr E, Blackburn EH, Lue NF. Telomerase core components protect Candida telomeres from aberrant overhang accumulation. Proc Natl Acad Sci U S A 2007; 104:11682-7. [PMID: 17609387 PMCID: PMC1913905 DOI: 10.1073/pnas.0700327104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Indexed: 12/14/2022] Open
Abstract
Telomerase is a cellular reverse transcriptase that extends one strand (the G-strand) of the telomere terminal repeats. Aside from this role in telomere length maintenance, telomerase has been proposed to serve a protective function at chromosome ends, although this is not well understood mechanistically. Earlier analysis suggests that, in the pathogenic yeast Candida albicans, the catalytic reverse transcriptase subunit of telomerase (TERT/EST2) can protect telomeres against nucleolytic degradation. In this report we demonstrate that the RNA component (TER1) has a similar function; in addition to complete loss of telomerase activity and progressive telomere attrition, the ter1-DeltaDelta strains manifested a dramatic increase in the amount of G-strand overhangs, consistent with aberrant degradation of the complementary C-strand. We also demonstrate that a catalytically incompetent EST2 protein can suppress such overhang accumulation in the est2-DeltaDelta mutant to the same extent as the wild-type protein. Altogether, our data support the notion that the Candida telomerase core components mediate a protective function through a mechanism that is independent of its catalytic activity.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Hsu M, Yu EY, Singh SM, Lue NF. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. EUKARYOTIC CELL 2007; 6:1330-8. [PMID: 17545315 PMCID: PMC1951134 DOI: 10.1128/ec.00069-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Telomerase is an RNA-protein complex responsible for extending one strand of the telomere terminal repeats. Analysis of the telomerase complex in budding yeasts has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The TERT subunit is essential for telomerase catalysis, while the functions of Est1p and Est3p have not been precisely elucidated. In an earlier study, we showed that telomerase derived from a Candida est1-null mutant is defective in primer utilization in vitro; it exhibits reduced initiation and processivity on primers that terminate in two regions of the telomere repeat. Here we show that telomerase derived from a Candida est3-null mutant has nearly identical defects in primer utilization and processivity. Further analysis revealed an unexpected mutual dependence of Est1p and Est3p in their assembly into the full telomerase complex, which accounts for the similarity between the mutant enzymes. We also developed an affinity isolation and an in vitro reconstitution protocol for the telomerase complex that will facilitate future mechanistic studies.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|