1
|
Dederer HG. Human health and genetic technology. Trends Biotechnol 2025; 43:522-532. [PMID: 40015249 DOI: 10.1016/j.tibtech.2024.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
The 1975 Asilomar conference contributed to the misperception that recombinant DNA (rDNA) technology is inherently risky to human health and the environment. It thus paved the way toward process-based regulation of genetically modified organisms (GMOs), such as in the EU. Initially, this regulatory approach obstructed technological uses of rDNA related to human health. However, regulators gradually softened the rules applicable to laboratories or industrial facilities. This encouraged R&D and production of pharmaceuticals derived from GMOs. Nevertheless, administering pharmaceuticals containing GMOs to patients may still be confronted with burdensome process-based GMO law on the deliberate release of GMOs into the environment. On the other hand, pharmaceutical law may need to be updated regarding, for example, novel gene therapies or xenotransplantation.
Collapse
|
2
|
Wang C, Sun C, Shi L, Zhou J, Liu S, Bai Y, Yu W. Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax. CRISPR J 2025; 8:51-59. [PMID: 39804663 DOI: 10.1089/crispr.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated. The purpose of this study was to investigate the potential of genome editing in flax by establishing the clustered regularly interspaced short palindromic repeats (CR ISPR)-CRISPR-associated protein 9 (CRISPR-Cas9) genome editing system using the phytoene desaturase (PDS) gene, which produces albino mutants that are easily identifiable. Four sgRNAs were designed from two PDS genes of Flax (LuPDS1 and LuPDS2), and CRISPR-Cas9 genome editing vectors were constructed. After gene transformation, albino phenotypes were observed in transformed callus and regenerated plantlets on selection media. Polymerase chain reaction (PCR) amplification and sequencing of the PDS genes revealed deletions and insertions in the albino tissues, indicating successful editing of the PDS genes. Potential off-target sites were analyzed, but no off-target mutations were found, indicating the specificity of the CRISPR-Cas9 system. The establishment of a flax genome editing system using the CRISPR-Cas9 technology opens up new possibilities for the genetic engineering of flax. This study demonstrates the potential of genome editing in creating elite cultivars that can be easily cultivated, which can have significant implications for the flax industry.
Collapse
Affiliation(s)
- Chunming Wang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
| | - Chao Sun
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Shi
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yongsheng Bai
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- China Good Crop Company (Shenzhen) Limited, Shenzhen, China
| |
Collapse
|
3
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
4
|
van Ravesteyn TW, Arranz Dols M, Pieters W, Dekker M, te Riele H. Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells. PLoS Genet 2020; 16:e1009041. [PMID: 33119594 PMCID: PMC7595315 DOI: 10.1371/journal.pgen.1009041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Through transfection of short single-stranded oligodeoxyribonucleotides (ssODNs) small genomic alterations can be introduced into mammalian cells with high precision. ssODNs integrate into the genome during DNA replication, but the resulting heteroduplex is prone to detection by DNA mismatch repair (MMR), which prevents effective gene modification. We have previously demonstrated that the suppressive action of MMR can be avoided when the mismatching nucleotide in the ssODN is a locked nucleic acid (LNA). Here, we reveal that LNA-modified ssODNs (LMOs) are not integrated as intact entities in mammalian cells, but are severely truncated before and after target hybridization. We found that single additional (non-LNA-modified) mutations in the 5’-arm of LMOs influenced targeting efficiencies negatively and activated the MMR pathway. In contrast, additional mutations in the 3’-arm did not affect targeting efficiencies and were not subject to MMR. Even more strikingly, homology in the 3’-arm was largely dispensable for effective targeting, suggestive for extensive 3’-end trimming. We propose a refined model for LMO-directed gene modification in mammalian cells that includes LMO degradation. The first step of many gene editing approaches in mammalian cells is to generate a targeted DNA lesion. By administering a repair template as second step, endogenous DNA repair mechanisms can be misled to introduce specific gene variants. However, subtle gene modification can also be achieved with high precision through a one-action protocol in the absence of DNA breaks. We have shown before that short single-stranded DNA molecules (LMOs) are very useful to introduce and study genetic variants that may predispose patients to cancer. While LMOs are known to integrate into the genome during DNA replication, the precise mechanism is poorly understood. We targeted mouse embryonic stem cells with differently designed LMOs to examine their effectiveness and editing outcomes. Based on these results we conclude that the two LMO termini are processed at different moments during the gene editing process. While the 3’-arm is degraded prior to LMO binding to the target site, the 5’-arm is degraded afterwards. Counterintuitively we also observe that partial degradation of the 3’-arm increases targeting efficiencies. Taken together our data provides novel mechanistic insight into our understanding of replication-coupled gene editing and may guide future LMO design strategies.
Collapse
Affiliation(s)
- Thomas W. van Ravesteyn
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marcos Arranz Dols
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
5
|
Houlleberghs H, Dekker M, Lusseveld J, Pieters W, van Ravesteyn T, Verhoef S, Hofstra RMW, Te Riele H. Three-step site-directed mutagenesis screen identifies pathogenic MLH1 variants associated with Lynch syndrome. J Med Genet 2019; 57:308-315. [PMID: 31784484 DOI: 10.1136/jmedgenet-2019-106520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inactivating mutations in the MLH1 DNA mismatch repair (MMR) gene underlie 42% of Lynch syndrome (LS) cases. LS is a cancer predisposition causing early onset colorectal and endometrial cancer. Nonsense and frameshift alterations unambiguously cause LS. The phenotype of missense mutations that only alter a single amino acid is often unclear. These variants of uncertain significance (VUS) hinder LS diagnosis and family screening and therefore functional tests are urgently needed. We developed a functional test for MLH1 VUS termed 'oligonucleotide-directed mutation screening' (ODMS). METHODS The MLH1 variant was introduced by oligonucleotide-directed gene modification in mouse embryonic stem cells that were subsequently exposed to the guanine analogue 6-thioguanine to determine whether the variant abrogated MMR. RESUTS In a proof-of-principle analysis, we demonstrate that ODMS can distinguish pathogenic and non-pathogenic MLH1 variants with a sensitivity of >95% and a specificity of >91%. We subsequently applied the screen to 51 MLH1 VUS and identified 31 pathogenic variants. CONCLUSION ODMS is a reliable tool to identify pathogenic MLH1 variants. Implementation in clinical diagnostics will improve clinical care of patients with suspected LS and their relatives.
Collapse
Affiliation(s)
- Hellen Houlleberghs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jarnick Lusseveld
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas van Ravesteyn
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Senno Verhoef
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Harmsen T, Klaasen S, van de Vrugt H, Te Riele H. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res 2019; 46:2945-2955. [PMID: 29447381 PMCID: PMC5888797 DOI: 10.1093/nar/gky076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3' half of the ssODN. Furthermore, protecting the ssODN 3' end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair.
Collapse
Affiliation(s)
- Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sjoerd Klaasen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Henri van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
7
|
Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc Natl Acad Sci U S A 2018; 115:E5726-E5735. [PMID: 29871954 PMCID: PMC6016788 DOI: 10.1073/pnas.1801646115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.
Collapse
|
8
|
Houlleberghs H, Goverde A, Lusseveld J, Dekker M, Bruno MJ, Menko FH, Mensenkamp AR, Spaander MCW, Wagner A, Hofstra RMW, te Riele H. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity. PLoS Genet 2017; 13:e1006765. [PMID: 28531214 PMCID: PMC5460888 DOI: 10.1371/journal.pgen.1006765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/06/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer predisposition caused by inactivating mutations in DNA mismatch repair (MMR) genes. Mutations in the MSH6 DNA MMR gene account for approximately 18% of LS cases. Many LS-associated sequence variants are nonsense and frameshift mutations that clearly abrogate MMR activity. However, missense mutations whose functional implications are unclear are also frequently seen in suspected-LS patients. To conclusively diagnose LS and enroll patients in appropriate surveillance programs to reduce morbidity as well as mortality, the functional consequences of these variants of uncertain clinical significance (VUS) must be defined. We present an oligonucleotide-directed mutagenesis screen for the identification of pathogenic MSH6 VUS. In the screen, the MSH6 variant of interest is introduced into mouse embryonic stem cells by site-directed mutagenesis. Subsequent selection for MMR-deficient cells using the DNA damaging agent 6-thioguanine (6TG) allows the identification of MMR abrogating VUS because solely MMR-deficient cells survive 6TG exposure. We demonstrate the efficacy of the genetic screen, investigate the phenotype of 26 MSH6 VUS and compare our screening results to clinical data from suspected-LS patients carrying these variant alleles. The colorectal and endometrial cancer predisposition Lynch syndrome (LS) is caused by an inherited heterozygous defect in one of four DNA mismatch repair (MMR) genes. Deleterious mutations (e.g., protein-deleting or -truncating) in DNA MMR genes unambiguously allow for the clinical diagnosis LS and hence enable appropriate surveillance measures to be taken to reduce cancer risk and ensure early detection of tumors. However, currently about one-third of detected MMR gene variants are subtle with less clear functional consequences: missense mutations affecting a single amino acid may be innocuous, hence not causing LS, or partially or fully destroy protein function. As long as uncertainty exists about their pathogenicity, such mutations are labeled ‘variants of uncertain (clinical) significance’ (VUS). VUS hamper genetic counseling and therefore the need for functional testing of VUS is widely recognized. To functionally annotate MMR gene VUS, we have developed a high content cellular assay in which the VUS is introduced in a cell culture by oligonucleotide-directed gene modification. Should the VUS be deleterious for MMR, the modified cells survive exposure to the guanine analog 6-thioguanine (6TG) and 6TG-resistant colonies appear. Should the mutation not affect MMR, no colonies appear. Here we present the adaptation and application of this protocol to the functional annotation of variants of the MMR gene MSH6. Implementation of our assay in clinical genetics laboratories will provide clinicians with information for proper counseling of mutation carriers and treatment of their of tumors.
Collapse
Affiliation(s)
- Hellen Houlleberghs
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jarnick Lusseveld
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fred H. Menko
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arjen R. Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hein te Riele
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Drost R, Dhillon KK, van der Gulden H, van der Heijden I, Brandsma I, Cruz C, Chondronasiou D, Castroviejo-Bermejo M, Boon U, Schut E, van der Burg E, Wientjens E, Pieterse M, Klijn C, Klarenbeek S, Loayza-Puch F, Elkon R, van Deemter L, Rottenberg S, van de Ven M, Dekkers DHW, Demmers JAA, van Gent DC, Agami R, Balmaña J, Serra V, Taniguchi T, Bouwman P, Jonkers J. BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1. J Clin Invest 2016; 126:2903-18. [PMID: 27454287 DOI: 10.1172/jci70196] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.
Collapse
|
10
|
Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA, Beetham PR, Schöpke CR, Gocal GFW. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants. PLANT PHYSIOLOGY 2016; 170:1917-28. [PMID: 26864017 PMCID: PMC4825113 DOI: 10.1104/pp.15.01696] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/01/2016] [Indexed: 05/19/2023]
Abstract
Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone. Using this site-specific approach, we applied the combination of ssODN and CRISPR/Cas9 to develop an herbicide tolerance trait in flax (Linum usitatissimum) by precisely editing the 5'-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) genes. EPSPS edits occurred at sufficient frequency that we could regenerate whole plants from edited protoplasts without employing selection. These plants were subsequently determined to be tolerant to the herbicide glyphosate in greenhouse spray tests. Progeny (C1) of these plants showed the expected Mendelian segregation of EPSPS edits. Our findings show the enormous potential of using a genome-editing platform for precise, reliable trait development in crop plants.
Collapse
|
11
|
LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc Natl Acad Sci U S A 2016; 113:4122-7. [PMID: 26951689 DOI: 10.1073/pnas.1513315113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.
Collapse
|
12
|
Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci U S A 2016; 113:4128-33. [PMID: 26951660 DOI: 10.1073/pnas.1520813113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.
Collapse
|
13
|
Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schöpke CR, Gocal GFW. Oligonucleotide-directed mutagenesis for precision gene editing. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:496-502. [PMID: 26503400 PMCID: PMC5057361 DOI: 10.1111/pbi.12496] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 05/23/2023]
Abstract
Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.
Collapse
|
14
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
15
|
Xu K, Stewart AF, Porter AC. Stimulation of oligonucleotide-directed gene correction by Redβ expression and MSH2 depletion in human HT1080 cells. Mol Cells 2015; 38:33-9. [PMID: 25431426 PMCID: PMC4314130 DOI: 10.14348/molcells.2015.2163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023] Open
Abstract
The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of Redβ, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that Redβ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of Redβ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.
Collapse
Affiliation(s)
- Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052,
China
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| | - A. Francis Stewart
- Genomics, Bio Innovations Zentrum, Technische Universitaet Dresden, 01307 Dresden,
Germany
| | - Andrew C.G. Porter
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| |
Collapse
|
16
|
Abstract
CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos.
Collapse
|
17
|
Vormer TL, Wojciechowicz K, Dekker M, de Vries S, van der Wal A, Delzenne-Goette E, Naik SH, Song JY, Dannenberg JH, Hansen JB, te Riele H. RB Family Tumor Suppressor Activity May Not Relate to Active Silencing of E2F Target Genes. Cancer Res 2014; 74:5266-76. [DOI: 10.1158/0008-5472.can-13-3706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|
19
|
Nyerges Á, Csorgő B, Nagy I, Latinovics D, Szamecz B, Pósfai G, Pál C. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res 2014; 42:e62. [PMID: 24500200 PMCID: PMC4005651 DOI: 10.1093/nar/gku105] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strategy for mismatch repair evasion using temperature-sensitive DNA repair mutants and temporal inactivation of the mismatch repair protein complex in Escherichia coli. Our method relies on the transient suppression of DNA repair during mismatch carrying oligonucleotide integration. Using temperature-sensitive control of methyl-directed mismatch repair protein activity during multiplex genome engineering, we reduced the number of off-target mutations by 85%, concurrently maintaining highly efficient and unbiased allelic replacement.
Collapse
Affiliation(s)
- Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary and Symbiosis and Functional Genomics Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Wielders EAL, Hettinger J, Dekker R, Kets CM, Ligtenberg MJ, Mensenkamp AR, van den Ouweland AMW, Prins J, Wagner A, Dinjens WNM, Dubbink HJ, van Hest LP, Menko F, Hogervorst F, Verhoef S, te Riele H. Functional analysis of MSH2 unclassified variants found in suspected Lynch syndrome patients reveals pathogenicity due to attenuated mismatch repair. J Med Genet 2014; 51:245-53. [PMID: 24501230 DOI: 10.1136/jmedgenet-2013-101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lynch syndrome, an autosomal-dominant disorder characterised by high colorectal and endometrial cancer risks, is caused by inherited mutations in DNA mismatch repair (MMR) genes. Mutations fully abrogating gene function are unambiguously disease causing. However, missense mutations often have unknown functional implications, hampering genetic counselling. We have applied a novel approach to study three MSH2 unclassified variants (UVs) found in Dutch families with suspected Lynch syndrome. METHODS The three mutations were recreated in the endogenous Msh2 gene in mouse embryonic stem cells by oligonucleotide-directed gene modification. The effect of the UVs on MMR activity was then tested using a set of functional assays interrogating the main MMR functions. RESULTS We recreated and functionally tested three MSH2 UVs: MSH2-Y165D (c.493T>G), MSH2-Q690E (c.2068C>G) and MSH2-M813V (c.2437A>G). We observed reduced levels of MSH2-Y165D and MSH2-Q690E but not MSH2-M813V proteins. MSH2-M813V was able to support all MMR functions similar to wild-type MSH2, whereas MSH2-Y165D and MSH2-Q690E showed partial defects. CONCLUSIONS Based on the results from our functional assays, we conclude that the MSH2-M813V variant is not disease causing. The MSH2-Y165D and MSH2-Q690E variants affect MMR function and are therefore likely the underlying cause of familial cancer predisposition. Since the MMR defect is partial, these variants may represent low penetrance alleles.
Collapse
Affiliation(s)
- Eva A L Wielders
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Functional analysis in mouse embryonic stem cells reveals wild-type activity for three MSH6 variants found in suspected Lynch syndrome patients. PLoS One 2013; 8:e74766. [PMID: 24040339 PMCID: PMC3769292 DOI: 10.1371/journal.pone.0074766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 08/06/2013] [Indexed: 02/02/2023] Open
Abstract
Lynch syndrome confers an increased risk to various types of cancer, in particular early onset colorectal and endometrial cancer. Mutations in mismatch repair (MMR) genes underlie Lynch syndrome, with the majority of mutations found in MLH1 and MSH2. Mutations in MSH6 have also been found but these do not always cause a clear cancer predisposition phenotype and MSH6-defective tumors often do not show the standard characteristics of MMR deficiency, such as microsatellite instability. In particular, the consequences of MSH6 missense mutations are challenging to predict, which further complicates genetic counseling. We have previously developed a method for functional characterization of MSH2 missense mutations of unknown significance. This method is based on endogenous gene modification in mouse embryonic stem cells using oligonucleotide-directed gene targeting, followed by a series of functional assays addressing the MMR functions. Here we have adapted this method for the characterization of MSH6 missense mutations. We recreated three MSH6 variants found in suspected Lynch syndrome families, MSH6-P1087R, MSH6-R1095H and MSH6-L1354Q, and found all three to behave like wild type MSH6. Thus, despite suspicion for pathogenicity from clinical observations, our approach indicates these variants are not disease causing. This has important implications for counseling of mutation carriers.
Collapse
|
22
|
Reshat R, Priestley CC, Gooderham NJ. Mutagenesis by an antisense oligonucleotide and its degradation product. Toxicol Sci 2012; 130:319-27. [PMID: 22872057 DOI: 10.1093/toxsci/kfs247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The European Medicines Agency has expressed concern regarding (1) the potential for antisense oligonucleotide (ASO) therapeutics to induce sequence-specific mutation at genomic DNA and (2) the capability of ASO degradation products (nucleotide analogues) to incorporate into newly synthesized genomic DNA via DNA polymerase and cause mutation if base pairing occurs with reduced fidelity. Treating human lymphoblastoid cells with a biologically active antisense molecule induced sequence-specific mutation within genomic DNA over fourfold, in a system where RAD51 protein expression was induced. This finding has implications for ASO therapeutics with individuals with an induced DNA damage response, such as cancer patients. Furthermore, a phosphorothioate nucleotide analogue potently induced mutation at genomic DNA two orders of magnitude above control. This study shows that a biologically active ASO molecule can induce heritable sequence alterations, and if degraded, its respective analogue may incorporate into genomic DNA with mutagenic consequences.
Collapse
Affiliation(s)
- Reshat Reshat
- Biomolecular Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
23
|
Papaioannou I, Simons JP, Owen JS. Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther 2012; 12:329-42. [PMID: 22321001 DOI: 10.1517/14712598.2012.660522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene editing, as defined here, uses short synthetic oligonucleotides to introduce small, site-specific changes into mammalian genomes, including repair of genetic point mutations. Early RNA-DNA oligonucleotides (chimeraplasts) were problematic, but application of single-stranded all-DNA molecules (ssODNs) has matured the technology into a reproducible tool with therapeutic potential. AREAS COVERED The review illustrates how gene-editing mechanisms are linked to DNA repair systems and DNA replication, and explains that while homologous recombination (HR) and nucleotide excision repair (NER) are implicated, the mismatch repair (MMR) system is inhibitory. Although edited cells often arrest in late S-phase or G2-phase, alternative ssODN chemistries can improve editing efficiency and cell viability. The final section focuses on the exciting tandem use of ssODNs with zinc finger nucleases to achieve high frequency genome editing. EXPERT OPINION For a decade, changing the genetic code of cells via ssODNs was largely done in reporter gene systems to optimize methods and as proof-of-principle. Today, editing endogenous genes is advancing, driven by a clearer understanding of mechanisms, by effective ssODN designs and by combination with engineered endonuclease technologies. Success is becoming routine in vitro and ex vivo, which includes editing embryonic stem (ES) and induced pluripotent stem (iPS) cells, suggesting that in vivo organ gene editing is a future option.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- UCL Medical School, Division of Medicine (Upper 3rd Floor), Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
24
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
25
|
Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides. Mutat Res 2011; 715:52-60. [PMID: 21801734 DOI: 10.1016/j.mrfmmm.2011.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 01/27/2023]
Abstract
Short synthetic single-stranded oligodeoxyribonucleotides (ssODNs) can be used to introduce subtle modifications into the genome of mouse embryonic stem cells (ESCs). We have previously shown that effective application of ssODN-mediated gene targeting in ESC requires (transient) suppression of DNA mismatch repair (MMR). However, whereas transient down-regulation of the mismatch recognition protein MSH2 allowed substitution of 3 or 4 nucleotides, 1 or 2 nucleotide substitutions were still suppressed. We now demonstrate that single- or dinucleotide substitution can effectively be achieved by transient down-regulation of the downstream MMR protein MLH1. By exploiting highly specific real-time PCR, we demonstrate the feasibility of substituting a single basepair in a non-selectable gene. However, disabling the MMR machinery may lead to inadvertent mutations. To obtain insight into the mutation rate associated with transient MMR suppression, we have compared the impact of transient and constitutive MMR deficiency on the repair of frameshift intermediates at mono- and dinucleotide repeats. Repair at these repeats relied on the substrate specificity and functional redundancy of the MSH2/MSH6 and MSH2/MSH3 MMR complexes. MLH1 knockdown increased the level of spontaneous mutagenesis, but modified ESCs remained germ line competent. Thus, transient MLH1 suppression provides a valuable extension of the MSH2 knockdown strategy, allowing rapid generation of mice carrying single basepair alterations in their genome.
Collapse
|
26
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
27
|
Wielders EAL, Dekker RJ, Holt I, Morris GE, te Riele H. Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells. Hum Mutat 2011; 32:389-96. [PMID: 21309037 DOI: 10.1002/humu.21448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/21/2010] [Indexed: 12/30/2022]
Abstract
Mutations in the mismatch repair gene MSH2 underlie hereditary nonpolyposis colorectal cancer (Lynch syndrome). Whereas disruptive mutations are overtly pathogenic, the implications of missense mutations found in sporadic colorectal cancer patients or in suspected Lynch syndrome families are often unknown. Adequate genetic counseling of mutation carriers requires phenotypic characterization of the variant allele. We present a novel approach to functionally characterize MSH2 missense mutations. Our approach involves introduction of the mutation into the endogenous gene of murine embryonic stem cells (ESC) by oligonucleotide-directed gene modification, a technique we recently developed in our lab. Subsequently, the mismatch repair capacity of mutant ESC is determined using a set of validated functional assays. We have evaluated four clinically relevant MSH2 variants and found one to completely lack mismatch repair capacity while three behaved as wild-type MSH2 and can therefore be considered as polymorphisms. Our approach contributes to an adequate risk assessment of mismatch repair missense mutations. We have also shown that oligonucleotide-directed gene modification provides a straightforward approach to recreate allelic variants in the endogenous gene in murine ESC. This approach can be extended to other hereditary conditions.
Collapse
Affiliation(s)
- Eva A L Wielders
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Falgowski K, Falgowski C, York-Vickers C, Kmiec EB. Strand bias influences the mechanism of gene editing directed by single-stranded DNA oligonucleotides. Nucleic Acids Res 2011; 39:4783-94. [PMID: 21343181 PMCID: PMC3113578 DOI: 10.1093/nar/gkr061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene editing directed by modified single-stranded DNA oligonucleotides has been used to alter a single base pair in a variety of biological systems. It is likely that gene editing is facilitated by the direct incorporation of the oligonucleotides via replication and/or by direct conversion, most likely through the DNA mismatch repair pathway. The phenomenon of strand bias, however, as well as its importance to the gene editing reaction itself, has yet to be elucidated in terms of mechanism. We have taken a reductionist approach by using a genetic readout in Eschericha coli and a plasmid-based selectable system to evaluate the influence of strand bias on the mechanism of gene editing. We show that oligonucleotides (ODNs) designed to anneal to the lagging strand generate 100-fold greater 'editing' efficiency than 'those that anneal to' the leading strand. The majority of editing events (∼70%) occur by the incorporation of the ODN during replication within the lagging strand. Conversely, ODNs that anneal to the leading strand generate fewer editing events although this event may follow either the incorporation or direct conversion pathway. In general, the influence of DNA replication is independent of which ODN is used suggesting that the importance of strand bias is a reflection of the underlying mechanism used to carry out gene editing.
Collapse
Affiliation(s)
- Kerry Falgowski
- Marshall Institute for Interdisciplinary Research, Marshall University, Robert C. Byrd Biotechnology Science Center, 1700 Third Avenue, Suite 220, Huntington, WV 25755, USA
| | | | | | | |
Collapse
|
29
|
Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sørensen CB, Bolund L, Jensen TG. An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 2011; 18:10. [PMID: 21284895 PMCID: PMC3042377 DOI: 10.1186/1423-0127-18-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.
Collapse
Affiliation(s)
- Nanna M Jensen
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Aarts M, te Riele H. Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther 2010; 18:213-9. [PMID: 21160530 DOI: 10.1038/gt.2010.161] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising technique for introducing site-specific sequence alterations without affecting the genomic organization of the target locus. Here, we discuss the significant progress that has been made over the last 5 years in unraveling the mechanisms and reaction parameters underlying ssODN-mediated gene targeting. We will specifically focus on ssODN-mediated gene targeting in murine embryonic stem cells (ESCs) and the impact of the DNA mismatch repair (MMR) system on the targeting process. Implications of novel findings for routine application of ssODN-mediated gene targeting and challenges that need to be overcome for future therapeutic applications are highlighted.
Collapse
Affiliation(s)
- M Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Aarts M, te Riele H. Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res 2010; 38:6956-67. [PMID: 20601408 PMCID: PMC2978364 DOI: 10.1093/nar/gkq589] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ssODNs. The slower appearance of green fluorescent cells with sense ssODNs as compared to anti-sense ssODNs is consistent with physical incorporation of the ssODN into the genome. Thus, the supremacy of anti-sense ssODNs, previously reported by others, may be an artefact of early readout of the EGFP reporter. Importantly, gene correction by unmodified ssODNs only mildly affected the viability of targeted cells and did not induce genomic DNA double-stranded breaks (DSBs). In contrast, ssODNs that were end-protected by phosphorothioate (PTO) linkages caused increased H2AX phosphorylation and impaired cell cycle progression in both corrected and non-corrected cells due to induction of genomic DSBs. Our results demonstrate that the use of unmodified rather than PTO end-protected ssODNs allows stable gene modification without compromising the genomic integrity of the cell, which is crucial for application of ssODN-mediated gene targeting in (embryonic) stem cells.
Collapse
Affiliation(s)
- Marieke Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
McLachlan J, Fernandez S, Helleday T, Bryant HE. Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination. DNA Repair (Amst) 2009; 8:1424-33. [PMID: 19854687 DOI: 10.1016/j.dnarep.2009.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 09/23/2009] [Accepted: 09/29/2009] [Indexed: 01/29/2023]
Abstract
The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.
Collapse
Affiliation(s)
- Jennifer McLachlan
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | |
Collapse
|
33
|
Breyer D, Herman P, Brandenburger A, Gheysen G, Remaut E, Soumillion P, Van Doorsselaere J, Custers R, Pauwels K, Sneyers M, Reheul D. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge? ACTA ACUST UNITED AC 2009; 8:57-64. [PMID: 19833073 DOI: 10.1051/ebr/2009007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.
Collapse
Affiliation(s)
- Didier Breyer
- Scientific Institute of Public Health, Division of Biosafety and Biotechnology, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is emerging as a powerful tool for the introduction of subtle gene modifications in mouse embryonic stem (ES) cells and the generation of mutant mice. Here, we have studied the role of ssODN composition, transcription and replication of the target locus, and DNA repair pathways to gain more insight into the parameters governing ssODN-mediated gene targeting in mouse ES cells. We demonstrated that unmodified ssODNs of 35–40 nt were most efficient in correcting a chromosomally integrated mutant neomycin reporter gene. Addition of chemical modifications did not further enhance the efficacy of these ssODNs. The observed strand bias was not affected by transcriptional activity and may rather be caused by the different accessibility of the DNA strands during DNA replication. Consistently, targeting frequencies were enhanced when cells were treated with hydroxyurea to reduce the rate of replication fork progression. Transient down-regulation of various DNA repair genes by RNAi had no effect on the targeting frequency. Taken together, our data suggest that ssODN-mediated gene targeting occurs within the context of a replication fork. This implies that any given genomic sequence, irrespective of transcriptional status, should be amenable to ssODN-mediated gene targeting. The ability of ES cells to differentiate into various cell types after ssODN-mediated gene targeting may offer opportunities for future therapeutic applications.
Collapse
Affiliation(s)
- Marieke Aarts
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
Papaioannou I, Disterer P, Owen JS. Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med 2009; 11:267-74. [PMID: 19153972 DOI: 10.1002/jgm.1296] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gene editing is potentially a powerful technology for introducing genetic changes by using short single-stranded DNA oligonucleotides (ssODNs). However, their efficiency is reduced by the mismatch repair system, especially MSH2, which may suppress gene editing, although findings vary depending on readout and type of oligonucleotide used. Additionally, successfully edited cells are reported to arrest at the S- or G2-phase. In the present study, we evaluate whether a novel ssODN design and down-regulation of MSH2 expression allows the isolation of replicating gene-edited cells. METHODS Cultured Chinese hamster ovary cells expressing mutated enhanced green fluorescent protein were targeted with ssODNs of varying design, all capable of restoring fluorescence, which allows the monitoring of correction events by flow cytometry. Converted cells were isolated by cell sorting and grown to determine colony formation efficiencies. MSH2 expression was suppressed with small interfering RNA and the cell cycle distribution of cells transfected with ssODN was quantified by flow cytometry, following propidium iodide or DRAQ5 staining. RESULTS Although efficiency was higher using ssODN end-protected with phosphorothioate, the potential of edited cells to form colonies was lower than those targeted with unmodified ssODN. We established that ssODN transfection itself perturbs the cell cycle and that MSH2 gene silencing increases correction efficiency. In both cases, however, the effect was dependent on the positioning of the protected nucleotides. Importantly, when internally protected ssODN was used in combination with MSH2 suppression, a higher proportion of G1-phase corrected cells was observed 48-64 h after transfection. CONCLUSIONS Use of internally protected ssODN and downregulating cellular MSH2 activity may facilitate isolation of viable, actively replicating gene-edited cells.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Department of Medicine, Royal Free and University College Medical School, Royal Free Campus, London, UK
| | | | | |
Collapse
|
36
|
Abstract
Several independent groups have reported targeted genomic editing in mammalian cells mediated by synthetic oligonucleotides. Nevertheless, the validity of data has been disputed because of experimental artefacts, inconsistent findings and low reproducibility. Here, we describe experiments designed to meet stringent criteria and completely eliminate artefactual results. In particular, by targeting cells expressing mutated enhanced green fluorescence protein (EGFP), which allow editing measurements at the protein level, and analyzing corrected clones by Southern blotting, we rigorously excluded spontaneous reversion, contamination artefacts, false-positives, or overestimation. Our findings provide unequivocal authentication that oligonucleotide-mediated gene editing is a real, not artefactual, phenomenon--a vital starting point from which to develop the technology into practical applications.
Collapse
|
37
|
Genetic correction of splice site mutation in purified and enriched myoblasts isolated from mdx5cv mice. BMC Mol Biol 2009; 10:15. [PMID: 19236710 PMCID: PMC2654480 DOI: 10.1186/1471-2199-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Duchenne Muscular Dystrophy (DMD) is an X-linked genetic disorder that results in the production of a dysfunctional form of the protein, dystrophin. The mdx5cv mouse is a model of DMD in which a point mutation in exon 10 of the dystrophin gene creates an artificial splice site. As a result, a 53 base pair deletion of exon 10 occurs with a coincident creation of a frameshift and a premature stop codon. Using primary myoblasts from mdx5cv mice, single-stranded DNA oligonucleotides were designed to correct this DNA mutation. Results Single-stranded DNA oligonucleotides that were designed to repair this splice site mutation corrected the mutation in the gene and restored expression of wild-type dystrophin. This repair was validated at the DNA, RNA and protein level. We also report that the frequency of genetic repair of the mdx mutation can be enhanced if RNAi is used to suppress expression of the recombinase inhibitor protein Msh2 in cultures containing myoblasts but not in those heavily enriched in myoblasts. Conclusion Exogenous manipulations, such as RNAi, are certainly feasible and possibly required to increase the successful application of gene repair in some primary or progenitor muscle cells.
Collapse
|
38
|
Abstract
In this chapter we give an overview of mutagenesis methods in the mouse as they evolved over the last two decades, an outlook of ongoing and future developments and advice for choosing a mutagenesis strategy. Where appropriate, reference is given to relevant chapters of this book, key original articles and links of web-based resources for mouse mutagenesis.
Collapse
Affiliation(s)
- Ralf Kühn
- Institute for Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | | |
Collapse
|
39
|
Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 2008; 8:298-308. [PMID: 19071233 DOI: 10.1016/j.dnarep.2008.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 01/27/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for gamma-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.
Collapse
|
40
|
Adams DJ, van der Weyden L. Contemporary approaches for modifying the mouse genome. Physiol Genomics 2008; 34:225-38. [PMID: 18559964 PMCID: PMC2519963 DOI: 10.1152/physiolgenomics.90242.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/11/2008] [Indexed: 12/05/2022] Open
Abstract
The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a "how-to" guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice.
Collapse
Affiliation(s)
- David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
41
|
Majumdar A, Muniandy PA, Liu J, Liu JL, Liu ST, Cuenoud B, Seidman MM. Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide. J Biol Chem 2008; 283:11244-52. [PMID: 18303025 DOI: 10.1074/jbc.m800607200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammalian cells. Co-introduction of duplex DNA with target region homology resulted in precise knock in of the donor at frequencies 2-3 orders of magnitude greater than with donor alone. Knock-in was eliminated in cells deficient in ERCC1-XPF, which is involved in recombinational pathways as well as cross-link repair. Separately, single strand oligonucleotide donors (SSO) were co-introduced with the pso-TFO. These were 10-fold more active than the duplex knock-in donor. SSO efficacy was further elevated in cells deficient in ERCC1-XPF, in contrast to the duplex donor. Resected single strand ends have been implicated as critical intermediates in sequence modulation by SSO, as well as duplex donor knock in. We asked whether there would be a competition between the donor species for these ends if both were present with the pso-TFO. The frequency of duplex donor knock in was unaffected by a 100-fold molar excess of the SSO. The same result was obtained when the homing endonuclease I-SceI was used to initiate HDR at the target site. We conclude that the entry of double strand breaks into distinct HDR pathways is controlled by factors other than the nucleic acid partners in those pathways.
Collapse
Affiliation(s)
- Alokes Majumdar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hegele H, Wuepping M, Ref C, Kenner O, Kaufmann D. Simultaneous targeted exchange of two nucleotides by single-stranded oligonucleotides clusters within a region of about fourteen nucleotides. BMC Mol Biol 2008; 9:14. [PMID: 18226192 PMCID: PMC2266939 DOI: 10.1186/1471-2199-9-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/28/2008] [Indexed: 11/23/2022] Open
Abstract
Background Transfection of cells with gene-specific, single-stranded oligonucleotides can induce the targeted exchange of one or two nucleotides in the targeted gene. To characterize the features of the DNA-repair mechanisms involved, we examined the maximal distance for the simultaneous exchange of two nucleotides by a single-stranded oligonucleotide. The chosen experimental system was the correction of a hprt-point mutation in a hamster cell line, the generation of an additional nucleotide exchange at a variable distance from the first exchange position and the investigation of the rate of simultaneous nucleotide exchanges. Results The smaller the distance between the two exchange positions, the higher was the probability of a simultaneous exchange. The detected simultaneous nucleotide exchanges were found to cluster in a region of about fourteen nucleotides upstream and downstream from the first exchange position. Conclusion We suggest that the mechanism involved in the repair of the targeted DNA strand utilizes only a short sequence of the single-stranded oligonucleotide, which may be physically incorporated into the DNA or be used as a matrix for a repair process.
Collapse
Affiliation(s)
- Heike Hegele
- Institute of Human Genetics, University of Ulm, D 89070 Ulm, Germany.
| | | | | | | | | |
Collapse
|
43
|
Parekh-Olmedo H, Kmiec EB. Progress and Prospects: targeted gene alteration (TGA). Gene Ther 2007; 14:1675-80. [DOI: 10.1038/sj.gt.3303053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF. Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci U S A 2007; 104:11352-7. [PMID: 17592146 PMCID: PMC2040902 DOI: 10.1073/pnas.0704695104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transformation of both prokaryotes and eukaryotes with single-stranded oligonucleotides can transfer sequence information from the oligonucleotide to the chromosome. We have studied this process using oligonucleotides that correct a -1 frameshift mutation in the LYS2 gene of Saccharomyces cerevisiae. We demonstrate that transformation by oligonucleotides occurs preferentially on the lagging strand of replication and is strongly inhibited by the mismatch-repair system. These results are consistent with a mechanism in which oligonucleotides anneal to single-stranded regions of DNA at a replication fork and serve as primers for DNA synthesis. Because the mispairs the primers create are efficiently removed by the mismatch-repair system, single-stranded oligonucleotides can be used to probe mismatch-repair function in a chromosomal context. Removal of mispairs created by annealing of the single-stranded oligonucleotides to the chromosomal DNA is as expected, with 7-nt loops being recognized solely by MutS beta and 1-nt loops being recognized by both MutS alpha and MutS beta. We also find evidence for Mlh1-independent repair of 7-nt, but not 1-nt, loops. Unexpectedly, we find a strand asymmetry of mismatch-repair function; transformation is blocked more efficiently by MutS alpha on the lagging strand of replication, whereas MutS beta does not show a significant strand bias. These results suggest an inherent strand-related difference in how the yeast MutS alpha and MutS beta complexes access and/or repair mismatches that arise in the context of DNA replication.
Collapse
Affiliation(s)
| | | | | | | | - Gray F. Crouse
- Biology, Emory University, Atlanta, GA 30322
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|