1
|
Li Z, Fang X, Zhao B, Liu R, Shen Y, Li T, Wang Y, Guo Z, Wang W, Zhang B, Han Q, Xu X, Wang K, Yin L, Gong W, Li A, Zhou T, Li T, Li W. Liquid-liquid phase separation of LARP7 restrains HIV-1 replication. EMBO Rep 2025; 26:1935-1956. [PMID: 40113991 PMCID: PMC12019422 DOI: 10.1038/s44319-025-00421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
HIV-1 initiates replication by its transactivator Tat, hijacking the positive transcription elongation factor b (P-TEFb) in the host cell. Most P-TEFb is maintained in an inactive state by 7SK snRNP until it is brought to the transcription initiation complex by cellular or viral transactivators that accelerate transcription and facilitate the production of full-length viral transcripts. Here, we report that HIV-1 infection triggers liquid-liquid phase separation of LARP7, a central component of 7SK snRNP. Tat is incorporated into HIV-1-induced LARP7 condensates after infection. Conserved lysine residues in the intrinsically disordered region of LARP7 are essential for both its phase separation and the inhibition of Tat-mediated transcription. These findings identify a mechanism wherein P-TEFb and Tat are sequestered within LARP7 condensates, restraining HIV-1 transcription.
Collapse
Affiliation(s)
- Zhuoxin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xiya Fang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Bing Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ran Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yezhuang Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tingting Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yining Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zenglin Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Biyu Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin Xu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Kai Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Libing Yin
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Weili Gong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Teng Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Weihua Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| |
Collapse
|
2
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Yang Y, Murrali MG, Wang Y, Galvan S, Ajjampore N, Feigon J. HEXIM1 homodimer binds two sites on 7SK RNA to release autoinhibition for P-TEFb inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617642. [PMID: 39416148 PMCID: PMC11482958 DOI: 10.1101/2024.10.10.617642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hexim proteins are RNA-dependent regulators whose main target is 7SK long non-coding RNA, a major regulator of eukaryotic mRNA transcription. 7SK RNPs control available intracellular concentrations of the kinase P-TEFb (Cdk9-CyclinT1/2) by sequestering it in an inactive form. Active P-TEFb phosphorylates NELF, DSIF, and the RNA polymerase II CTD to transition it from promoter-proximal pausing to productive elongation. P-TEFb associates with 7SK RNP via Hexim, which directly binds 7SK RNA. However, free Hexim is in an autoinhibited state that cannot inactivate P-TEFb, and how Hexim autoinhibition is released by 7SK remains unknown. Here, we show that one Hexim1 homodimer binds two sites on linear 7SK RNA in a manner that exposes the Cdk9 binding sites, which are otherwise masked within the autoinhibited dimer. These results provide mechanistic insights into Hexim-RNA specificity and explain how P-TEFb can be effectively regulated to respond to changing levels of transcriptional signaling.
Collapse
|
4
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Wilhelm E, Poirier M, Da Rocha M, Bédard M, McDonald PP, Lavigne P, Hunter CL, Bell B. Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression. PLoS Pathog 2024; 20:e1011821. [PMID: 38781120 PMCID: PMC11115230 DOI: 10.1371/journal.ppat.1011821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.
Collapse
Affiliation(s)
| | | | - Morgane Da Rocha
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke; and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Pierre Lavigne
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | | | - Brendan Bell
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
6
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Wu Y, Sun A, Yang Q, Wang M, Tian B, Yang Q, Jia R, Chen S, Ou X, Huang J, Sun D, Zhu D, Liu M, Zhang S, Zhao XX, He Y, Wu Z, Cheng A. An alpha-herpesvirus employs host HEXIM1 to promote viral transcription. J Virol 2024; 98:e0139223. [PMID: 38363111 PMCID: PMC10949456 DOI: 10.1128/jvi.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anyang Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiqi Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xin-Xin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
8
|
Shmakova A, Hugot C, Kozhevnikova Y, Schwager Karpukhina A, Tsimailo I, Gérard L, Boutboul D, Oksenhendler E, Szewczyk-Roszczenko O, Roszczenko P, Buzun K, Sheval EV, Germini D, Vassetzky Y. Chronic HIV-1 Tat action induces HLA-DR downregulation in B cells: A mechanism for lymphoma immune escape in people living with HIV. J Med Virol 2024; 96:e29423. [PMID: 38285479 DOI: 10.1002/jmv.29423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.
Collapse
Affiliation(s)
- Anna Shmakova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Coline Hugot
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yana Kozhevnikova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Anna Schwager Karpukhina
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Ivan Tsimailo
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Laurence Gérard
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Eric Oksenhendler
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Buzun
- Department of Pharmaceutical Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, Lomonosov Moscow State University, Moscow, Russia
| | - Diego Germini
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yegor Vassetzky
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
9
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
10
|
Fujinaga K, Huang F, Peterlin BM. P-TEFb: The master regulator of transcription elongation. Mol Cell 2023; 83:393-403. [PMID: 36599353 PMCID: PMC9898187 DOI: 10.1016/j.molcel.2022.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.
Collapse
Affiliation(s)
- Koh Fujinaga
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Fang Huang
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Clark IC, Mudvari P, Thaploo S, Smith S, Abu-Laban M, Hamouda M, Theberge M, Shah S, Ko SH, Pérez L, Bunis DG, Lee JS, Kilam D, Zakaria S, Choi S, Darko S, Henry AR, Wheeler MA, Hoh R, Butrus S, Deeks SG, Quintana FJ, Douek DC, Abate AR, Boritz EA. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 2023; 614:318-325. [PMID: 36599978 PMCID: PMC9908556 DOI: 10.1038/s41586-022-05556-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Smith
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mohammad Abu-Laban
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Hamouda
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc Theberge
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sakshi Shah
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana Pérez
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel G Bunis
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James S Lee
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Divya Kilam
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Saami Zakaria
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sally Choi
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Valyaeva AA, Tikhomirova MA, Potashnikova DM, Bogomazova AN, Snigiryova GP, Penin AA, Logacheva MD, Arifulin EA, Shmakova AA, Germini D, Kachalova AI, Saidova AA, Zharikova AA, Musinova YR, Mironov AA, Vassetzky YS, Sheval EV. Ectopic expression of HIV-1 Tat modifies gene expression in cultured B cells: implications for the development of B-cell lymphomas in HIV-1-infected patients. PeerJ 2022; 10:e13986. [PMID: 36275462 PMCID: PMC9586123 DOI: 10.7717/peerj.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Tikhomirova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Daria M. Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra N. Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Diego Germini
- UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Anastasia I. Kachalova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleena A. Saidova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Anastasia A. Zharikova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana R. Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Andrey A. Mironov
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Institute for Information Transmission Problems, Moscow, Russia
| | - Yegor S. Vassetzky
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Eugene V. Sheval
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Kim HI, Kim GN, Yu KL, Park SH, You JC. Identification of Novel Nucleocapsid Chimeric Proteins Inhibiting HIV-1 Replication. Int J Mol Sci 2022; 23:ijms232012340. [PMID: 36293198 PMCID: PMC9604505 DOI: 10.3390/ijms232012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is an essential factor that induces transcription elongation and is also negatively regulated by the cellular factor HEXIM1. Previously, the chimeric protein HEXIM1-Tat (HT) was demonstrated to inhibit human immunodeficiency virus-1 (HIV)-1 transcription. In this study, we attempted to develop an improved antiviral protein that specifically binds viral RNA (vRNA) by fusing HT to HIV-1 nucleocapsid (NC). Thus, we synthesized NC-HEXIM1-Tat (NHT) and HEXIM1-Tat-NC (HTN). NHT and HTN inhibited virus proliferation more effectively than HT, and they did not attenuate the function of HT. Notably, NHT and HTN inhibited the infectivity of the progeny virus, whereas HT had no such effect. NHT and HTN selectively and effectively interacted with vRNA and inhibited the proper packaging of the HIV-1 genome. Taken together, our results illustrated that the novel NC-fused chimeric proteins NHT and HTN display novel mechanisms of anti-HIV effects by inhibiting both HIV-1 transcription and packaging.
Collapse
Affiliation(s)
- Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Seong-Hyun Park
- Graduate Program in Bio-industrial Engineering, College of Life Science and Biotechnology, The Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
14
|
Pham VV, Gao M, Meagher JL, Smith JL, D'Souza VM. A structure-based mechanism for displacement of the HEXIM adapter from 7SK small nuclear RNA. Commun Biol 2022; 5:819. [PMID: 35970937 PMCID: PMC9378691 DOI: 10.1038/s42003-022-03734-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Productive transcriptional elongation of many cellular and viral mRNAs requires transcriptional factors to extract pTEFb from the 7SK snRNP by modulating the association between HEXIM and 7SK snRNA. In HIV-1, Tat binds to 7SK by displacing HEXIM. However, without the structure of the 7SK-HEXIM complex, the constraints that must be overcome for displacement remain unknown. Furthermore, while structure details of the TatNL4-3-7SK complex have been elucidated, it is unclear how subtypes with more HEXIM-like Tat sequences accomplish displacement. Here we report the structures of HEXIM, TatG, and TatFin arginine rich motifs in complex with the apical stemloop-1 of 7SK. While most interactions between 7SK with HEXIM and Tat are similar, critical differences exist that guide function. First, the conformational plasticity of 7SK enables the formation of three different base pair configurations at a critical remodeling site, which allows for the modulation required for HEXIM binding and its subsequent displacement by Tat. Furthermore, the specific sequence variations observed in various Tat subtypes all converge on remodeling 7SK at this region. Second, we show that HEXIM primes its own displacement by causing specific local destabilization upon binding - a feature that is then exploited by Tat to bind 7SK more efficiently.
Collapse
Affiliation(s)
- Vincent V Pham
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Michael Gao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
16
|
Skalska L, Begley V, Beltran M, Lukauskas S, Khandelwal G, Faull P, Bhamra A, Tavares M, Wellman R, Tvardovskiy A, Foster BM, Ruiz de Los Mozos I, Herrero J, Surinova S, Snijders AP, Bartke T, Jenner RG. Nascent RNA antagonizes the interaction of a set of regulatory proteins with chromatin. Mol Cell 2021; 81:2944-2959.e10. [PMID: 34166609 DOI: 10.1016/j.molcel.2021.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/30/2022]
Abstract
A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.
Collapse
Affiliation(s)
- Lenka Skalska
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Victoria Begley
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Peter Faull
- The Francis Crick Institute, London NW1 1AT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Rachel Wellman
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Javier Herrero
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | | | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
17
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
18
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
19
|
Combinatorial Use of Both Epigenetic and Non-Epigenetic Mechanisms to Efficiently Reactivate HIV Latency. Int J Mol Sci 2021; 22:ijms22073697. [PMID: 33918134 PMCID: PMC8036438 DOI: 10.3390/ijms22073697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
The persistence of latent HIV provirus pools in different resting CD4+ cell subsets remains the greatest obstacle in the current efforts to treat and cure HIV infection. Recent efforts to purge out latently infected memory CD4+ T-cells using latency-reversing agents have failed in clinical trials. This review discusses the epigenetic and non-epigenetic mechanisms of HIV latency control, major limitations of the current approaches of using latency-reversing agents to reactivate HIV latency in resting CD4+ T-cells, and potential solutions to these limitations.
Collapse
|
20
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
21
|
Taylor JP, Armitage LH, Aldridge DL, Cash MN, Wallet MA. Harmine enhances the activity of the HIV-1 latency-reversing agents ingenol A and SAHA. Biol Open 2020; 9:bio.052969. [PMID: 33234703 PMCID: PMC7774897 DOI: 10.1242/bio.052969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with human immunodeficiency virus 1 (HIV-1) remains incurable because long-lived, latently-infected cells persist during prolonged antiretroviral therapy. Attempts to pharmacologically reactivate and purge the latent reservoir with latency reactivating agents (LRAs) such as protein kinase C (PKC) agonists (e.g. ingenol A) or histone deacetylase (HDAC) inhibitors (e.g. SAHA) have shown promising but incomplete efficacy. Using the J-Lat T cell model of HIV latency, we found that the plant-derived compound harmine enhanced the efficacy of existing PKC agonist LRAs in reactivating latently-infected cells. Treatment with harmine increased not only the number of reactivated cells but also increased HIV transcription and protein expression on a per-cell basis. Importantly, we observed a synergistic effect when harmine was used in combination with ingenol A and the HDAC inhibitor SAHA. An investigation into the mechanism revealed that harmine, when used with LRAs, increased the activity of NFκB, MAPK p38, and ERK1/2. Harmine treatment also resulted in reduced expression of HEXIM1, a negative regulator of transcriptional elongation. Thus, harmine enhanced the effects of LRAs by increasing the availability of transcription factors needed for HIV reactivation and promoting transcriptional elongation. Combination therapies with harmine and LRAs could benefit patients by achieving deeper reactivation of the latent pool of HIV provirus.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lucas H Armitage
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel L Aldridge
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Melanie N Cash
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark A Wallet
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Abstract
Antiretroviral therapy (ART) can effectively inhibit human immunodeficiency virus-1 (HIV-1) replication, but is not curative due to the existence of a stable viral latent reservoir harboring replication-competent proviruses. In order to reduce or eliminate the HIV-1 latent reservoir, characteristics of the latently infected cells need to be intensively studied, and a comprehensive understanding of the heterogenous nature of the latent reservoir will be critical to develop novel therapeutic strategies. Here, we discuss the different cell types and mechanisms contributing to the complexity and heterogeneity of HIV-1 latent reservoirs, and summarize the key challenges to the development of cure strategies for acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Jia-Cong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
23
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
24
|
Brillet K, Martinez-Zapien D, Bec G, Ennifar E, Dock-Bregeon AC, Lebars I. Different views of the dynamic landscape covered by the 5'-hairpin of the 7SK small nuclear RNA. RNA (NEW YORK, N.Y.) 2020; 26:1184-1197. [PMID: 32430362 PMCID: PMC7430674 DOI: 10.1261/rna.074955.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The 7SK small nuclear RNA (7SKsnRNA) plays a key role in the regulation of RNA polymerase II by sequestrating and inhibiting the positive transcription elongation factor b (P-TEFb) in the 7SK ribonucleoprotein complex (7SKsnRNP), a process mediated by interaction with the protein HEXIM. P-TEFb is also an essential cellular factor recruited by the viral protein Tat to ensure the replication of the viral RNA in the infection cycle of the human immunodeficiency virus (HIV-1). Tat promotes the release of P-TEFb from the 7SKsnRNP and subsequent activation of transcription, by displacing HEXIM from the 5'-hairpin of the 7SKsnRNA. This hairpin (HP1), comprising the signature sequence of the 7SKsnRNA, has been the subject of three independent structural studies aimed at identifying the structural features that could drive the recognition by the two proteins, both depending on arginine-rich motifs (ARM). Interestingly, four distinct structures were determined. In an attempt to provide a comprehensive view of the structure-function relationship of this versatile RNA, we present here a structural analysis of the models, highlighting how HP1 is able to adopt distinct conformations with significant impact on the compactness of the molecule. Since these models are solved under different conditions by nuclear magnetic resonance (NMR) and crystallography, the impact of the buffer composition on the conformational variation was investigated by complementary biophysical approaches. Finally, using isothermal titration calorimetry, we determined the thermodynamic signatures of the Tat-ARM and HEXIM-ARM peptide interactions with the RNA, showing that they are associated with distinct binding mechanisms.
Collapse
Affiliation(s)
- Karl Brillet
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Denise Martinez-Zapien
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch Cedex, France
| | - Guillaume Bec
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models (LBI2M), Sorbonne University-CNRS UMR 8227, Station Biologique de Roscoff, 29680 Roscoff Cedex, France
| | - Isabelle Lebars
- Université de Strasbourg, Architecture et Réactivité de l'ARN - CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, F-67084 Strasbourg, France
| |
Collapse
|
25
|
L ARP7 Is a BRCA1 Ubiquitinase Substrate and Regulates Genome Stability and Tumorigenesis. Cell Rep 2020; 32:107974. [DOI: 10.1016/j.celrep.2020.107974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
|
26
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
27
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
28
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
29
|
Röder K, Stirnemann G, Dock-Bregeon AC, Wales DJ, Pasquali S. Structural transitions in the RNA 7SK 5' hairpin and their effect on HEXIM binding. Nucleic Acids Res 2020; 48:373-389. [PMID: 31732748 PMCID: PMC7145557 DOI: 10.1093/nar/gkz1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
7SK RNA, as part of the 7SK ribonucleoprotein complex, is crucial to the regulation of transcription by RNA-polymerase II, via its interaction with the positive transcription elongation factor P-TEFb. The interaction is induced by binding of the protein HEXIM to the 5′ hairpin (HP1) of 7SK RNA. Four distinct structural models have been obtained experimentally for HP1. Here, we employ computational methods to investigate the relative stability of these structures, transitions between them, and the effects of mutations on the observed structural ensembles. We further analyse the results with respect to mutational binding assays, and hypothesize a mechanism for HEXIM binding. Our results indicate that the dominant structure in the wild type exhibits a triplet involving the unpaired nucleotide U40 and the base pair A43-U66 in the GAUC/GAUC repeat. This conformation leads to an open major groove with enough potential binding sites for peptide recognition. Sequence mutations of the RNA change the relative stability of the different structural ensembles. Binding affinity is consequently lost if these changes alter the dominant structure.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Anne-Catherine Dock-Bregeon
- Laboratoire de Biologie Intégrative des Modèles Marins, UMR CNRS 8227, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Samuela Pasquali
- Laboratoire CiTCoM, CNRS UMR 8038, Université de Paris, 4 Avenue de l'observatoire, 75270 Paris, France
| |
Collapse
|
30
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
32
|
Mediouni S, Kessing CF, Jablonski JA, Thenin-Houssier S, Clementz M, Kovach MD, Mousseau G, de Vera IMS, Li C, Kojetin DJ, Evans DT, Valente ST. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation. FASEB J 2019; 33:8280-8293. [PMID: 31021670 DOI: 10.1096/fj.201801165r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity. In human CD4+ T cells isolated from aviremic individuals and in the humanized mouse model of latency, combining dCA with antiretroviral therapy accelerates HIV-1 suppression and delays viral rebound upon treatment interruption. This drug class is amenable to block-and-lock functional cure approaches, aimed at a durable state of latency. Simian immunodeficiency virus (SIV) infection of rhesus macaques (RhMs) is the best-characterized model for AIDS research. Here, we demonstrate, using in vitro and cell-based assays, that dCA directly binds to SIV Tat's basic domain. dCA specifically inhibits SIV Tat binding to TAR, but not a Tat-Rev fusion protein, which activates transcription when Rev binds to its cognate RNA binding site replacing the apical region of TAR. Tat-TAR inhibition results in loss of RNA polymerase II recruitment to the SIV promoter. Importantly, dCA potently inhibits SIV reactivation from latently infected Hut78 cells and from primary CD4+ T cells explanted from SIVmac239-infected RhMs. In sum, dCA's remarkable breadth of activity encourages SIV-infected RhM use for dCA preclinical evaluation.-Mediouni, S., Kessing, C. F., Jablonski, J. A., Thenin-Houssier, S., Clementz, M., Kovach, M. D., Mousseau, G., de Vera, I.M.S., Li, C., Kojetin, D. J., Evans, D. T., Valente, S. T. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cari F Kessing
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Joseph A Jablonski
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Suzie Thenin-Houssier
- Institute of Human Genetics (IGH), CNRS-University of Montpelier, Montpelier, France
| | - Mark Clementz
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Melia D Kovach
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
33
|
Bugai A, Quaresma AJC, Friedel CC, Lenasi T, Düster R, Sibley CR, Fujinaga K, Kukanja P, Hennig T, Blasius M, Geyer M, Ule J, Dölken L, Barborič M. P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Mol Cell 2019; 74:254-267.e10. [PMID: 30824372 PMCID: PMC6482433 DOI: 10.1016/j.molcel.2019.01.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.
Collapse
Affiliation(s)
- Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Alexandre J C Quaresma
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Christopher R Sibley
- Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK; MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Koh Fujinaga
- Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Petra Kukanja
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland
| | - Thomas Hennig
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Jernej Ule
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
34
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
35
|
Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat. mBio 2019; 10:mBio.02662-18. [PMID: 30723126 PMCID: PMC6368365 DOI: 10.1128/mbio.02662-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available. The small molecule didehydro-cortistatin A (dCA) inhibits Tat, locking HIV-1 in persistent latency, blocking viral rebound. We generated chemical derivatives of dCA that rationalized molecular docking of dCA to an active and specific Tat conformer. These revealed the importance of the cycloheptene ring and the isoquinoline nitrogen's positioning in the interaction with specific residues of Tat's basic domain. These features are distinct from the ones required for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known ligand of dCA. Besides, we demonstrated that dCA activity on HIV-1 transcription is independent of CDK8. The binding of dCA to Tat with nanomolar affinity alters the local protein environment, rendering Tat more resistant to proteolytic digestion. dCA thus locks a transient conformer of Tat, specifically blocking functions dependent of its basic domain, namely the Tat-TAR interaction; while proteins with similar basic patches are unaffected by dCA. Our results improve our knowledge of the mode of action of dCA and support structure-based design strategies targeting Tat, to help advance development of dCA, as well as novel Tat inhibitors.IMPORTANCE Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA's activity on HIV-1 transcription. Binding of dCA to Tat's basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA's mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.
Collapse
|
36
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
37
|
Leoz M, Kukanja P, Luo Z, Huang F, Cary DC, Peterlin BM, Fujinaga K. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog 2018; 14:e1007402. [PMID: 30395647 PMCID: PMC6245832 DOI: 10.1371/journal.ppat.1007402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/20/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Transcription of HIV provirus is a key step of the viral cycle, and depends on the recruitment of the cellular positive transcription elongation factor b (P-TEFb) to the HIV promoter. The viral transactivator Tat can displace P-TEFb from the 7SK small nuclear ribonucleoprotein, where it is bound and inactivated by HEXIM1, and bring it to TAR, which allows the stalled RNA polymerase II to transition to successful transcription elongation. In this study, we designed a chimeric inhibitor of HIV transcription by combining functional domains from HEXIM1 and Tat. The chimera (HT1) potently inhibited gene expression from the HIV promoter, by competing with Tat for TAR and P-TEFb binding, while keeping the latter inactive. HT1 inhibited spreading infection as well as viral reactivation in lymphocyte T cell line models of HIV latency, with little effect on cellular transcription and metabolism. This proof-of-concept study validates an innovative approach to interfering with HIV transcription via peptide mimicry and competition for RNA-protein interactions. HT1 represents a new candidate for HIV therapy, or HIV cure via the proposed block and lock strategy.
Collapse
Affiliation(s)
- Marie Leoz
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Petra Kukanja
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Zeping Luo
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Fang Huang
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Daniele C. Cary
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| | - Koh Fujinaga
- Department of Medicine, Microbiology and Immunology, UCSF, San Francisco, California, United States of America
| |
Collapse
|
38
|
Furlan A, Agbazahou F, Henry M, Gonzalez-Pisfil M, Le Nézet C, Champelovier D, Fournier M, Vandenbunder B, Bidaux G, Héliot L. P-TEFb et Brd4. Med Sci (Paris) 2018; 34:685-692. [DOI: 10.1051/medsci/20183408015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
La physiologie d’une cellule est dictée par l’intégration des signaux qu’elle reçoit et la mise en place de réponses adaptées par le biais, entre autres, de programmes transcriptionnels adéquats. Pour assurer un contrôle optimal de ces réponses, des mécanismes de régulation ont été sélectionnés, dont un processus de pause transcriptionnelle et de levée de cette pause par P-TEFb (positive transcription elongation factor) et Brd4 (bromodomain-containing protein 4). Le dérèglement de ce processus peut conduire à l’apparition de pathologies. P-TEFb et Brd4 ont ainsi émergé au cours des dernières années comme des cibles thérapeutiques potentielles dans le cadre des cancers et du syndrome d‘immunodéficience acquise (sida) notamment.
Collapse
|
39
|
Rice AP. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Curr Pharm Des 2018; 23:4098-4102. [PMID: 28677507 DOI: 10.2174/1381612823666170704130635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
The general mechanism involved in Tat activation of RNA Polymerase II (RNAP II) elongation of the integrated HIV-1 was elucidated over 20 years ago. This mechanism involves Tat binding to the TAR RNA element that forms at the 5' end of viral transcripts and recruiting a general RNAP II elongation factor termed as PTEFb. This elongation factor consists of CDK9 and Cyclin T1, and when recruited by Tat to TAR RNA, CDK9 was proposed to phosphorylate the carboxyl terminal domain of RNAP II and thereby activate elongation. Research in the past two decades has shown that the mechanism of Tat action is considerably more complicated than this simple model. In metabolically active cells, CDK9 and Cyclin T1 are now known to be largely sequestered in a RNA-protein complex termed the 7SK RNP. CDK9 and Cyclin T1 are released from the 7SK RNP by mechanisms not yet fully elucidated and along with Tat, bind to TAR RNA and orchestrate the assembly of a Super Elongation Complex (SEC) containing several additional proteins. CDK9 in the SEC then phosphorylates multiple substrates in the RNAP II complex to activate elongation. Importantly for therapeutic strategies, CDK9 and Cyclin T1 functions are down-regulated in resting CD4+ T cells that harbor latent HIV-1, and their up-regulation is required for reactivation of latent virus. Current strategies for a functional cure of HIV-1 infection therefore are likely to require development of latency reversal agents that up-regulate CDK9 and Cyclin T1 function in resting CD4+ T cells.
Collapse
Affiliation(s)
- Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030. United States
| |
Collapse
|
40
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
41
|
Faust TB, Li Y, Bacon CW, Jang GM, Weiss A, Jayaraman B, Newton BW, Krogan NJ, D'Orso I, Frankel AD. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. eLife 2018; 7:31879. [PMID: 29845934 PMCID: PMC5999396 DOI: 10.7554/elife.31879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/26/2018] [Indexed: 12/12/2022] Open
Abstract
The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Curtis W Bacon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Amit Weiss
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,J David Gladstone Institutes, San Francisco, United States
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
42
|
Khoury G, Mota TM, Li S, Tumpach C, Lee MY, Jacobson J, Harty L, Anderson JL, Lewin SR, Purcell DFJ. HIV latency reversing agents act through Tat post translational modifications. Retrovirology 2018; 15:36. [PMID: 29751762 PMCID: PMC5948896 DOI: 10.1186/s12977-018-0421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Different classes of latency reversing agents (LRAs) are being evaluated to measure their effects in reactivating HIV replication from latently infected cells. A limited number of studies have demonstrated additive effects of LRAs with the viral protein Tat in initiating transcription, but less is known about how LRAs interact with Tat, particularly through basic residues that may be post-translationally modified to alter the behaviour of Tat for processive transcription and co-transcriptional RNA processing. Results Here we show that various lysine and arginine mutations reduce the capacity of Tat to induce both transcription and mRNA splicing. The lysine 28 and lysine 50 residues of Tat, or the acetylation and methylation modifications of these basic amino acids, were essential for Tat transcriptional control, and also for the proviral expression effects elicited by histone deacetylase inhibitors (HDACi) or the bromodomain inhibitor JQ1. We also found that JQ1 was the only LRA tested that could induce HIV mRNA splicing in the absence of Tat, or rescue splicing for Tat lysine mutants in a BRD4-dependent manner. Conclusions Our data provide evidence that Tat activities in both co-transcriptional RNA processing together with transcriptional initiation and processivity are crucial during reactivation of latent HIV infection. The HDACi and JQ1 LRAs act with Tat to increase transcription, but JQ1 also enables post-transcriptional mRNA splicing. Tat residues K28 and K50, or their modifications through acetylation or methylation, are critical for LRAs that function in conjunction with Tat. Electronic supplementary material The online version of this article (10.1186/s12977-018-0421-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Talia M Mota
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Shuang Li
- School of Life Sciences, Peking University, Beijing, China
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Michelle Y Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leigh Harty
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jenny L Anderson
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
43
|
Asamitsu K, Fujinaga K, Okamoto T. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies. Molecules 2018; 23:E933. [PMID: 29673219 PMCID: PMC6017356 DOI: 10.3390/molecules23040933] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022] Open
Abstract
Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | - Koh Fujinaga
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, CA 94143-0703, USA.
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
44
|
Abstract
Hexim1 acts as a tumor suppressor and is involved in the regulation of innate immunity. It was initially described as a non-coding RNA-dependent regulator of transcription. Here, we detail how 7SK RNA binds to Hexim1 and turns it into an inhibitor of the positive transcription elongation factor (P-TEFb). In addition to its action on P-TEFb, it plays a role in a variety of different mechanisms: it controls the stability of transcription factor components and assists binding of transcription factors to their targets.
Collapse
Affiliation(s)
- Annemieke A Michels
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| | - Olivier Bensaude
- a IBENS , Ecole Normale Supérieure UMR CNRS 8107, UA INSERM 1024 , 46 rue d'Ulm Paris Cedex France
| |
Collapse
|
45
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
46
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Brogie JE, Price DH. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res 2017; 45:6864-6880. [PMID: 28431135 PMCID: PMC5499737 DOI: 10.1093/nar/gkx262] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) plays a central role in RNA polymerase II elongation control by regulating the availability of active P-TEFb. We optimized conditions for analyzing 7SK RNA by SHAPE and demonstrated a hysteretic effect of magnesium on 7SK folding dynamics including a 7SK GAUC motif switch. We also found evidence that the 5΄ end pairs alternatively with two different regions of 7SK giving rise to open and closed forms that dictate the state of the 7SK motif. We then used recombinant P-TEFb, HEXIM1, LARP7 and MEPCE to reconstruct a functional 7SK snRNP in vitro. Stably associated P-TEFb was highly inhibited, but could still be released and activated by HIV-1 Tat. Notably, P-TEFb association with both in vitro-reconstituted and cellular snRNPs led to similar changes in SHAPE reactivities, confirming that 7SK undergoes a P-TEFb-dependent structural change. We determined that the xRRM of LARP7 binds to the 3΄ stem loop of 7SK and inhibits the methyltransferase activity of MEPCE through a C-terminal MEPCE interaction domain (MID). Inhibition of MEPCE is dependent on the structure of the 3΄ stem loop and the closed form of 7SK RNA. This study provides important insights into intramolecular interactions within the 7SK snRNP.
Collapse
Affiliation(s)
- John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
48
|
Faust TB, Binning JM, Gross JD, Frankel AD. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription. Annu Rev Virol 2017; 4:241-260. [PMID: 28961413 DOI: 10.1146/annurev-virology-101416-041654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viruses are completely dependent upon cellular machinery to support replication and have therefore developed strategies to co-opt cellular processes to optimize infection and counter host immune defenses. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode a relatively small number of genes. Viruses with limited genetic content often encode multifunctional proteins that function at multiple stages of the viral replication cycle. In this review, we discuss the functions of HIV-1 regulatory (Tat and Rev) and accessory (Vif, Vpr, Vpu, and Nef) proteins. Each of these proteins has a highly conserved primary activity; however, numerous additional activities have been attributed to these viral proteins. We explore the possibility that HIV-1 proteins leverage their multifunctional nature to alter host transcriptional networks to elicit a diverse set of cellular responses. Although these transcriptional effects appear to benefit the virus, it is not yet clear whether they are strongly selected for during viral evolution or are a ripple effect from the primary function. As our detailed knowledge of these viral proteins improves, we will undoubtedly uncover how the multifunctional nature of these HIV-1 regulatory and accessory proteins, and in particular their transcriptional functions, work to drive viral pathogenesis.
Collapse
Affiliation(s)
- Tyler B Faust
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; ,
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158; ,
| |
Collapse
|
49
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Eilebrecht S, Benecke BJ, Benecke AG. Latent HIV-1 TAR Regulates 7SK-responsive P-TEFb Target Genes and Targets Cellular Immune Responses in the Absence of Tat. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:313-323. [PMID: 29037489 PMCID: PMC5673678 DOI: 10.1016/j.gpb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 01/04/2023]
Abstract
The transactivating response element (TAR) structure of the nascent HIV-1 transcript is critically involved in the recruitment of inactive positive transcription elongation factor b (P-TEFb) to the promoter proximal paused RNA polymerase II. The viral transactivator Tat is responsible for subsequent P-TEFb activation in order to start efficient viral transcription elongation. In the absence of the viral transactivator of transcription (Tat), e.g., during latency or in early stages of HIV transcription, TAR mediates an interaction of P-TEFb with its inhibitor hexamethylene bis-acetamide-inducible protein 1 (HEXIM1), keeping P-TEFb in its inactive form. In this study, we address the function of HIV-1 TAR in the absence of Tat by analyzing consequences of HIV-1 TAR overexpression on host cellular gene expression. An RNA chimera consisting of Epstein-Barr virus-expressed RNA 2 (EBER2) and HIV-1 TAR was developed to assure robust overexpression of TAR in HEK293 cells. The overexpression results in differential expression of more than 800 human genes. A significant proportion of these genes is involved in the suppression of cellular immune responses, including a significant set of 7SK-responsive P-TEFb target genes. Our findings identify a novel role for HIV-1 TAR in the absence of Tat, involving the interference with host cellular immune responses by targeting 7SK RNA-mediated gene expression and P-TEFb inactivation.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; ACSIOMA GmbH, Technologiezentrum Ruhr, Bochum 44799, Germany.
| | | | - Arndt G Benecke
- CNRS UMR8246, Université Pierre et Marie Curie, Paris 75005, France; Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|