1
|
Dai J, Liu R, He S, Li T, Hu Y, Huang H, Li Y, Guo X. The Role of SF1 and SF2 Helicases in Biotechnological Applications. Appl Biochem Biotechnol 2024; 196:9064-9084. [PMID: 39093351 DOI: 10.1007/s12010-024-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Helicases, which utilize ATP hydrolysis to separate nucleic acid duplexes, play crucial roles in DNA and RNA replication, repair, recombination, and transcription. Categorized into the major groups superfamily 1 (SF1) and superfamily 2 (SF2), alongside four minor groups, these proteins exhibit a conserved catalytic core indicative of a shared evolutionary origin while displaying functional diversity through interactions with various substrates. This review summarizes the structures, functions and mechanisms of SF1 and SF2 helicases, with an emphasis on conserved ATPase sites and RecA-like domains essential for their enzymatic and nucleic acid binding capabilities. It highlights the unique 1B and 2B domains in SF1 helicases and their impact on enzymatic activity. The DNA unwinding process is detailed, covering substrate recognition, ATP hydrolysis, and conformational changes, while addressing debates over the active form of UvrD helicase and post-unwinding dissociation. More importantly, this review discusses the biotechnological potential of helicases in emerging technologies such as nanopore sequencing, protein sequencing, and isothermal amplification, focusing on their use in pathogen detection, biosensor enhancement, and cancer treatment. As understanding deepens, innovative applications in genome editing, DNA sequencing, and synthetic biology are anticipated.
Collapse
Affiliation(s)
- Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Tie Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Yuhang Hu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Yi Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
2
|
The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition. Proc Natl Acad Sci U S A 2022; 119:e2116462119. [PMID: 35658074 DOI: 10.1073/pnas.2116462119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SignificanceBloom syndrome helicase (BLM) is a multifunctional helicase that primarily catalyzes the separation of two single strands of DNA. Here, using a single-molecule optical tweezers approach combined with confocal microscopy, we monitored both the enzymatic activity and oligomeric status of BLM at the same time. Strikingly, a head-on collision of BLM-medicated DNA unwinding forks was found to effectively switch their oligomeric state and activity. Specifically, BLMs, upon collision, immediately fuse across the fork junctions and covert their activities from dsDNA unwinding to ssDNA translocation and protein displacement. These findings explain how BLM plays multiple functional roles in homologous recombination (HR). The single-molecule approach used here provides a reference model for investigating the relationship between protein oligomeric state and function.
Collapse
|
3
|
Yokota H. Quantitative and kinetic single-molecule analysis of DNA unwinding by <i>Escherichia coli</i> UvrD helicase. Biophys Physicobiol 2022; 19:1-16. [PMID: 35435650 PMCID: PMC8967476 DOI: 10.2142/biophysico.bppb-v19.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes involved in the maintenance of genome integrity. Helicases share several “helicase motifs” that are highly conserved amino acid sequences and are classified into six superfamilies (SFs). The helicase SFs are further grouped into two classes based on their functional units. One class that includes SFs 3–6 functions as a hexamer that can form a ring around DNA. Another class that includes SFs 1 and 2 functions in a non-hexameric form. The high homology in the primary and tertiary structures among SF1 helicases suggests that SF1 helicases have a common underlying mechanism. However, two opposing models for the functional unit, monomer and dimer models, have been proposed to explain DNA unwinding by SF1 helicases. This paper briefly describes the classification of helicase SFs and discusses the structural homology and the two opposing non-hexameric helicase models of SF1 helicases by focusing on Escherichia coli SF1 helicase UvrD, which plays a significant role in both nucleotide-excision repair and methyl-directed mismatch repair. This paper reviews past and recent studies on UvrD, including the author's single-molecule direct visualization of wild-type UvrD and a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C), the latter of which was used in genetic and biochemical assays that supported the monomer model. The visualization revealed that multiple UvrDΔ40C molecules jointly unwind DNA, presumably in an oligomeric form, similar to wild-type UvrD. Therefore, single-molecule direct visualization of nucleic acid-binding proteins can provide quantitative and kinetic information to reveal their fundamental mechanisms.
Collapse
Affiliation(s)
- Hiroaki Yokota
- The Graduate School for the Creation of New Photonics Industries
| |
Collapse
|
4
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
5
|
Yokota H. Roles of the C-Terminal Amino Acids of Non-Hexameric Helicases: Insights from Escherichia coli UvrD. Int J Mol Sci 2021; 22:ijms22031018. [PMID: 33498436 PMCID: PMC7864180 DOI: 10.3390/ijms22031018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| |
Collapse
|
6
|
Yokota H. DNA-Unwinding Dynamics of Escherichia coli UvrD Lacking the C-Terminal 40 Amino Acids. Biophys J 2020; 118:1634-1648. [PMID: 32142643 DOI: 10.1016/j.bpj.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
The E. coli UvrD protein is a nonhexameric DNA helicase that belongs to superfamily I and plays a crucial role in both nucleotide excision repair and methyl-directed mismatch repair. Previous data suggested that wild-type UvrD has optimal activity in its oligomeric form. However, crystal structures of the UvrD-DNA complex were only resolved for monomeric UvrD, using a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C). However, biochemical findings performed using UvrDΔ40C indicated that this mutant failed to dimerize, although its DNA-unwinding activity was comparable to that of wild-type UvrD. Although the C-terminus plays essential roles in nucleic acid binding for many proteins with helicase and dimerization activities, the exact function of the C-terminus is poorly understood. Thus, to understand the function of the C-terminal amino acids of UvrD, we performed single-molecule direct visualization. Photobleaching of dye-labeled UvrDΔ40C molecules revealed that two or three UvrDΔ40C molecules could bind simultaneously to an 18-bp double-stranded DNA with a 20-nucleotide, 3' single-stranded DNA tail in the absence of ATP. Simultaneous visualization of association/dissociation of the mutant with/from DNA and the DNA-unwinding dynamics of the mutant in the presence of ATP demonstrated that, as with wild-type UvrD, two or three UvrDΔ40C molecules were primarily responsible for DNA unwinding. The determined association/dissociation rate constants for the second bound monomer were ∼2.5-fold larger than that of wild-type UvrD. The involvement of multiple UvrDΔ40C molecules in DNA unwinding was also observed under a physiological salt concentration (200 mM NaCl). These results suggest that multiple UvrDΔ40C molecules, which may form an oligomer, play an active role in DNA unwinding in vivo and that deleting the C-terminal 40 residues altered the interaction of the second UvrD monomer with DNA without affecting the interaction with the first bound UvrD monomer.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
7
|
Li A, Li J, Bao Y, Yuan D, Huang Z. Xuebijing injection alleviates cytokine-induced inflammatory liver injury in CLP-induced septic rats through induction of suppressor of cytokine signaling 1. Exp Ther Med 2016; 12:1531-1536. [PMID: 27602076 DOI: 10.3892/etm.2016.3476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of inflammatory cytokines and liver injury are associated with the pathogenesis of sepsis. Xuebijing injection, a Chinese herbal medicine, has been used in the treatment of sepsis and can contribute to the improvement of patients' health. However, the underlying molecular mechanisms are not yet clearly illuminated. In the present study, a septic rat model with liver injury was established by the cecal ligation and puncture (CLP) method. Histological alterations to the liver, activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), levels of inflammatory cytokine secretion and the expression of suppressors of cytokine signaling 1 (SOCS-1) in the CLP model rats with and without Xuebijing treatment were determined. The results showed that Xuebijing injection ameliorated the pathological changes in liver tissues caused by sepsis, and reduced the sepsis-induced elevation in serum ALT and AST levels. Furthermore, Xuebijing injection markedly downregulated the expression of tumor necrosis factor α and interleukin (IL)-6, and upregulated the expression of IL-10. More importantly, SOCS1 expression levels at the protein and mRNA levels were further increased by Xuebijing. These findings demonstrate that Xuebijing injection can significantly alleviate liver injury in CLP-induced septic rats via the regulation of inflammatory cytokine secretion and the promotion of SOCS1 expression. The protective effects of Xuebijing injection suggest its therapeutic potential in the treatment of CLP-induced liver injury.
Collapse
Affiliation(s)
- Ailin Li
- Department of Emergency Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Yuhua Bao
- Department of Emergency Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dingshan Yuan
- Department of Emergency Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhongwei Huang
- Department of Emergency Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
9
|
Constantinescu-Aruxandei D, Petrovic-Stojanovska B, Schiemann O, Naismith JH, White MF. Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR. Nucleic Acids Res 2016; 44:954-68. [PMID: 26657627 PMCID: PMC4737156 DOI: 10.1093/nar/gkv1373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.
Collapse
Affiliation(s)
| | | | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
10
|
Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 2015; 51:15-25. [DOI: 10.3109/10409238.2015.1102195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Xie P. A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases. J Theor Biol 2015; 380:359-66. [PMID: 26092375 DOI: 10.1016/j.jtbi.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
DNA helicases are enzymes that use the chemical energy to separate DNA duplex into their single-stranded forms. The ribosome, which catalyzes the translation of messenger RNAs (mRNAs) into proteins, can also unwind mRNA duplex. According to their structures, the DNA helicases can fall broadly into hexameric and monomeric forms. A puzzling issue for the monomeric helicases is that although they have similar structures, in vitro biochemical data showed convincingly that in the monomeric forms some have very weak DNA unwinding activities, some have relatively high unwinding activities while others have high unwinding activities. However, in the dimeric or oligomeric forms all of them have high unwinding activities. In addition, in the monomeric forms all of them can translocate efficiently along the single-stranded DNA (ssDNA). Here, we propose a model of the translocation along the ssDNA and DNA unwinding by the monomeric helicases, providing a consistent explanation of these in vitro experimental data. Moreover, by comparing the present model for the monomeric helicases with the model for the hexameric helicases and that for the ribosome which were proposed before, a unified model of nucleic acid unwinding by the three enzymes is proposed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
12
|
Dewhare SS, Umesh TG, Muniyappa K. Molecular and Functional Characterization of RecD, a Novel Member of the SF1 Family of Helicases, from Mycobacterium tuberculosis. J Biol Chem 2015; 290:11948-68. [PMID: 25802334 DOI: 10.1074/jbc.m114.619395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 01/14/2023] Open
Abstract
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5' overhangs relative to the 3' overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having ≥18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3' overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5' overhangs, it could also catalyze significant unwinding of substrates containing 3' overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5' → 3' and weak 3' → 5' unwinding activities. The extent of unwinding of Y-shaped DNA structures was ∼3-fold lower compared with duplexes with 5' overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.
Collapse
Affiliation(s)
| | - T G Umesh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
14
|
Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. Int J Mol Sci 2014; 15:9670-717. [PMID: 24886813 PMCID: PMC4100115 DOI: 10.3390/ijms15069670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022] Open
Abstract
DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and in vivo. It is emphasized that the problem is complicated and successful detection of a pathogenic mutation frequently requires a combination of several methods and a knowledge of the biological phenomena associated with the corresponding macromolecules.
Collapse
|
15
|
Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 2013; 8:e78141. [PMID: 24147116 PMCID: PMC3797733 DOI: 10.1371/journal.pone.0078141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.
Collapse
Affiliation(s)
- Emma J. Gwynn
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Colin P. Guy
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter McGlynn
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Weller SK, Kuchta RD. The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets 2013; 17:1119-32. [PMID: 23930666 DOI: 10.1517/14728222.2013.827663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. AREAS COVERED This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase- primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. EXPERT OPINION The outstanding safety profile of existing nucleoside analogues for α-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain.
Collapse
Affiliation(s)
- Sandra K Weller
- University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology , Farmington CT 06030 , USA +1 860 679 2310 ;
| | | |
Collapse
|
17
|
Yokota H, Chujo YA, Harada Y. Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase. Biophys J 2013; 104:924-33. [PMID: 23442971 DOI: 10.1016/j.bpj.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Superfamily I helicases are nonhexameric helicases responsible for the unwinding of nucleic acids. However, whether they unwind DNA in the form of monomers or oligomers remains a controversy. In this study, we addressed this question using direct single-molecule fluorescence visualization of Escherichia coli UvrD, a superfamily I DNA helicase. We performed a photobleaching-step analysis of dye-labeled helicases and determined that the helicase is bound to 18-basepair (bp) double-stranded DNA (dsDNA) with a 3' single-stranded DNA (ssDNA) tail (12, 20, or 40 nt) in a dimeric or trimeric form in the absence of ATP. We also discovered through simultaneous visualization of association/dissociation of the helicase with/from DNA and the DNA unwinding dynamics of the helicase in the presence of ATP that these dimeric and trimeric forms are responsible for the unwinding of DNA. We can therefore propose a new kinetic scheme for the helicase-DNA interaction in which not only a dimeric helicase but also a trimeric helicase can unwind DNA. This is, to our knowledge, the first direct single-molecule nonhexameric helicase quantification study, and it strongly supports a model in which an oligomer is the active form of the helicase, which carries important implications for the DNA unwinding mechanism of all superfamily I helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Kyoto, Japan.
| | | | | |
Collapse
|
18
|
Ramanagoudr-Bhojappa R, Chib S, Byrd AK, Aarattuthodiyil S, Pandey M, Patel SS, Raney KD. Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA. J Biol Chem 2013; 288:16185-95. [PMID: 23596008 DOI: 10.1074/jbc.m113.470013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.
Collapse
|
19
|
Chisty LT, Toseland CP, Fili N, Mashanov GI, Dillingham MS, Molloy JE, Webb MR. Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD. Nucleic Acids Res 2013; 41:5010-23. [PMID: 23535146 PMCID: PMC3643603 DOI: 10.1093/nar/gkt194] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA.
Collapse
Affiliation(s)
- Liisa T Chisty
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Thomas J, Lee CA, Grossman AD. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element. PLoS Genet 2013; 9:e1003198. [PMID: 23326247 PMCID: PMC3542172 DOI: 10.1371/journal.pgen.1003198] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE–encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP), encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability. Integrative and conjugative elements (ICEs) are mobile DNA elements that transfer genetic material between bacteria, driving bacterial evolution and the acquisition of new traits, including the spread of antibiotic resistances. ICEs typically reside integrated in a bacterial chromosome and are passively propagated along with the host genome. Under some conditions, an ICE can excise from the chromosome to form a circle and, if appropriate recipient bacteria are present, can transfer from donor to recipient. It has recently been recognized that some, and perhaps many, ICEs undergo autonomous replication after excision from the host chromosome and that replication is important for stability and propagation of these ICEs in growing cells. Using ICEBs1, an ICE from Bacillus subtilis, we found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication. We found that this gene, helP, encodes a helicase processivity factor that associates with ICEBs1 DNA and enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA, making a template for both conjugation and DNA replication. Homologues of helP are found in many ICEs, indicating that this mechanism of unwinding is likely conserved among these elements.
Collapse
Affiliation(s)
- Jacob Thomas
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Catherine A. Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
22
|
Abstract
Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
23
|
Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem Pharmacol 2012; 84:1351-8. [PMID: 22935448 PMCID: PMC7092843 DOI: 10.1016/j.bcp.2012.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/21/2022]
Abstract
Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase—nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications.
Collapse
|
24
|
Xu YN, Bazeille N, Ding XY, Lu XM, Wang PY, Bugnard E, Grondin V, Dou SX, Xi XG. Multimeric BLM is dissociated upon ATP hydrolysis and functions as monomers in resolving DNA structures. Nucleic Acids Res 2012; 40:9802-14. [PMID: 22885301 PMCID: PMC3479192 DOI: 10.1093/nar/gks728] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bloom (BLM) syndrome is an autosomal recessive disorder characterized by an increased risk for many types of cancers. Previous studies have shown that BLM protein forms a hexameric ring structure, but its oligomeric form in DNA unwinding is still not well clarified. In this work, we have used dynamic light scattering and various stopped-flow assays to study the active form and kinetic mechanism of BLM in DNA unwinding. It was found that BLM multimers were dissociated upon ATP hydrolysis. Steady-state and single-turnover kinetic studies revealed that BLM helicase always unwound duplex DNA in the monomeric form under conditions of varying enzyme and ATP concentrations as well as 3'-ssDNA tail lengths, with no sign of oligomerization being discerned. Measurements of ATPase activity further indicated that BLM helicase might still function as monomers in resolving highly structured DNAs such as Holliday junctions and D-loops. These results shed new light on the underlying mechanism of BLM-mediated DNA unwinding and on the molecular and functional basis for the phenotype of heterozygous carriers of BLM syndrome.
Collapse
Affiliation(s)
- Ya-Nan Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fagerburg MV, Schauer GD, Thickman KR, Bianco PR, Khan SA, Leuba SH, Anand SP. PcrA-mediated disruption of RecA nucleoprotein filaments--essential role of the ATPase activity of RecA. Nucleic Acids Res 2012; 40:8416-24. [PMID: 22743269 PMCID: PMC3458574 DOI: 10.1093/nar/gks641] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The essential DNA helicase, PcrA, regulates recombination by displacing the recombinase RecA from the DNA. The nucleotide-bound state of RecA determines the stability of its nucleoprotein filaments. Using single-molecule fluorescence approaches, we demonstrate that RecA displacement by a translocating PcrA requires the ATPase activity of the recombinase. We also show that in a ‘head-on collision’ between a polymerizing RecA filament and a translocating PcrA, the RecA K72R ATPase mutant, but not wild-type RecA, arrests helicase translocation. Our findings demonstrate that translocation of PcrA is not sufficient to displace RecA from the DNA and assigns an essential role for the ATPase activity of RecA in helicase-mediated disruption of its filaments.
Collapse
Affiliation(s)
- Matt V Fagerburg
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Sharma R, Rao DN. Functional characterization of UvrD helicases from Haemophilus influenzae and Helicobacter pylori. FEBS J 2012; 279:2134-55. [PMID: 22500516 DOI: 10.1111/j.1742-4658.2012.08599.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Haemophilus influenzae and Helicobacter pylori are major bacterial pathogens that face high levels of genotoxic stress within their host. UvrD, a ubiquitous bacterial helicase that plays important roles in multiple DNA metabolic pathways, is essential for genome stability and might, therefore, be crucial in bacterial physiology and pathogenesis. In this study, the functional characterization of UvrD helicase from Haemophilus influenzae and Helicobacter pylori is reported. UvrD from Haemophilus influenzae (HiUvrD) and Helicobacter pylori (HpUvrD) exhibit strong single-stranded DNA-specific ATPase and 3'-5' helicase activities. Mutation of highly conserved arginine (R288) in HiUvrD and glutamate (E206) in HpUvrD abrogated their activities. Both the proteins were able to bind and unwind a variety of DNA structures including duplexes with strand discontinuities and branches, three- and four-way junctions that underpin their role in DNA replication, repair and recombination. HiUvrD required a minimum of 12 nucleotides, whereas HpUvrD preferred 20 or more nucleotides of 3'-single-stranded DNA tail for efficient unwinding of duplex DNA. Interestingly, HpUvrD was able to hydrolyze and utilize GTP for its helicase activity although not as effectively as ATP, which has not been reported to date for UvrD characterized from other organisms. HiUvrD and HpUvrD were found to exist predominantly as monomers in solution together with multimeric forms. Noticeably, deletion of distal C-terminal 48 amino acid residues disrupted the oligomerization of HiUvrD, whereas deletion of 63 amino acids from C-terminus of HpUvrD had no effect on its oligomerization. This study presents the characteristic features and comparative analysis of Haemophilus influenzae and Helicobacter pylori UvrD, and constitutes the basis for understanding the role of UvrD in the biology and virulence of these pathogens.
Collapse
Affiliation(s)
- Ruchika Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
27
|
Jia H, Korolev S, Niedziela-Majka A, Maluf NK, Gauss GH, Myong S, Ha T, Waksman G, Lohman TM. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 2011; 411:633-48. [PMID: 21704638 DOI: 10.1016/j.jmb.2011.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a "closed" state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an "open" state that differs by an ∼160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.
Collapse
Affiliation(s)
- Haifeng Jia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.
Collapse
Affiliation(s)
- Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
29
|
Yeeles JTP, Gwynn EJ, Webb MR, Dillingham MS. The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain. Nucleic Acids Res 2010; 39:2271-85. [PMID: 21071401 PMCID: PMC3064778 DOI: 10.1093/nar/gkq1124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase–nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3′→5′ polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
Collapse
Affiliation(s)
- Joseph T P Yeeles
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
30
|
5'-Single-stranded/duplex DNA junctions are loading sites for E. coli UvrD translocase. EMBO J 2010; 29:3826-39. [PMID: 20877334 DOI: 10.1038/emboj.2010.242] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/06/2010] [Indexed: 01/05/2023] Open
Abstract
Escherichia coli UvrD is a 3'-5' superfamily 1A helicase/translocase involved in a variety of DNA metabolic processes. UvrD can function either as a helicase or only as an single-stranded DNA (ssDNA) translocase. The switch between these activities is controlled in vitro by the UvrD oligomeric state; a monomer has ssDNA translocase activity, whereas at least a dimer is needed for helicase activity. Although a 3'-ssDNA partial duplex provides a high-affinity site for a UvrD monomer, here we show that a monomer also binds with specificity to DNA junctions possessing a 5'-ssDNA flanking region and can initiate translocation from this site. Thus, a 5'-ss-duplex DNA junction can serve as a high-affinity loading site for the monomeric UvrD translocase, whereas a 3'-ss-duplex DNA junction inhibits both translocase and helicase activity of the UvrD monomer. Furthermore, the 2B subdomain of UvrD is important for this junction specificity. This highlights a separation of helicase and translocase function for UvrD and suggests that a monomeric UvrD translocase can be loaded at a 5'-ssDNA junction when translocation activity alone is needed.
Collapse
|
31
|
Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, Lohman TM, Ha T. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 2010; 142:544-55. [PMID: 20723756 DOI: 10.1016/j.cell.2010.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/02/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Translocation of helicase-like proteins on nucleic acids underlies key cellular functions. However, it is still unclear how translocation can drive removal of DNA-bound proteins, and basic properties like the elementary step size remain controversial. Using single-molecule fluorescence analysis on a prototypical superfamily 1 helicase, Bacillus stearothermophilus PcrA, we discovered that PcrA preferentially translocates on the DNA lagging strand instead of unwinding the template duplex. PcrA anchors itself to the template duplex using the 2B subdomain and reels in the lagging strand, extruding a single-stranded loop. Static disorder limited previous ensemble studies of a PcrA stepping mechanism. Here, highly repetitive looping revealed that PcrA translocates in uniform steps of 1 nt. This reeling-in activity requires the open conformation of PcrA and can rapidly dismantle a preformed RecA filament even at low PcrA concentrations, suggesting a mode of action for eliminating potentially deleterious recombination intermediates.
Collapse
Affiliation(s)
- Jeehae Park
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 2010; 43:185-217. [PMID: 20682090 DOI: 10.1017/s0033583510000107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Helicases are a class of nucleic acid (NA) motors that catalyze NTP-dependent unwinding of NA duplexes into single strands, a reaction essential to all areas of NA metabolism. In the last decade, single-molecule (sm) technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching has enabled the study of helicase conformational dynamics, force generation, step size, pausing, reversal and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multiprotein complexes. The contributions of these sm investigations to our understanding of helicase mechanism and function will be discussed.
Collapse
|
33
|
Eoff RL, Raney KD. Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA. Biochemistry 2010; 49:4543-53. [PMID: 20408588 DOI: 10.1021/bi100061v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods, we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from approximately 19 bp for the monomeric form to approximately 64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step size (3.2 +/- 0.7 bp) and unwinding rate (242 +/- 25 bp/s) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at rates similar to that of the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
34
|
Dou SX, Xi XG. Fluorometric assays for characterizing DNA helicases. Methods 2010; 51:295-302. [PMID: 20451616 DOI: 10.1016/j.ymeth.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 11/27/2022] Open
Abstract
DNA helicases belong to an important class of motor proteins and are involved in almost all aspects of DNA metabolism. They hydrolyze NTP to translocate along ssDNA and unwind dsDNA by relying on chemical to physical energy transfer processes that are achieved via nucleotide-state-dependent conformational changes. For understanding the mechanisms by which helicases unwind DNA as well as their cellular functions, various properties of helicases need to be characterized. For these purposes, many assays have been developed, among which fluorometric assays are in the majority. Fluorometric assays are generally simple, direct and convenient to perform. Here we introduce several frequently used fluorometric assays for determining the basic properties of DNA helicases such as equilibrium ATP and DNA binding, kinetics of dissociation from DNA substrate and kinetics of DNA unwinding. Problems that may be encountered in experiments and possible ways to circumvent them are discussed.
Collapse
Affiliation(s)
- Shuo-Xing Dou
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | |
Collapse
|
35
|
Shadrick WR, Julin DA. Kinetics of DNA unwinding by the RecD2 helicase from Deinococcus radiodurans. J Biol Chem 2010; 285:17292-300. [PMID: 20360003 DOI: 10.1074/jbc.m110.111427] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RecD2 from Deinococcus radiodurans is a superfamily 1 DNA helicase that is homologous to the Escherichia coli RecD protein but functions outside the context of RecBCD enzyme. We report here on the kinetics of DNA unwinding by RecD2 under single and multiple turnover conditions. There is little unwinding of 20-bp substrates by preformed RecD2-dsDNA complexes when excess ssDNA is present to trap enzyme molecules not bound to the substrate. A shorter 12-bp substrate is unwound rapidly under single turnover conditions. The 12-bp unwinding reaction could be simulated with a mechanism in which the DNA is unwound in two kinetic steps with rate constant of k(unw) = 5.5 s(-1) and a dissociation step from partially unwound DNA of k(off) = 1.9 s(-1). These results indicate a kinetic step size of about 3-4 bp, unwinding rate of about 15-20 bp/s, and low processivity (p = 0.74). The reaction time courses with 20-bp substrates, determined under multiple turnover conditions, could be simulated with a four-step mechanism and rate constant values very similar to those for the 12-bp substrate. The results indicate that the faster unwinding of a DNA substrate with a forked end versus only a 5'-terminal single-stranded extension can be accounted for by a difference in the rate of enzyme binding to the DNA substrates. Analysis of reactions done with different RecD2 concentrations indicates that the enzyme forms an inactive dimer or other oligomer at high enzyme concentrations. RecD2 oligomers can be detected by glutaraldehyde cross-linking but not by size exclusion chromatography.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
36
|
Yang Y, Dou SX, Xu YN, Bazeille N, Wang PY, Rigolet P, Xu HQ, Xi XG. Kinetic mechanism of DNA unwinding by the BLM helicase core and molecular basis for its low processivity. Biochemistry 2010; 49:656-68. [PMID: 20028084 DOI: 10.1021/bi901459c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. Understanding the functioning mechanism of the BLM protein may provide the opportunity to develop new effective therapy strategies. In this work, we studied the DNA unwinding kinetic mechanism of the helicase core of the BLM protein using various stopped-flow assays. We show that the helicase core of BLM unwinds duplex DNA as monomers even under conditions strongly favoring oligomerization. An unwinding rate of approximately 20 steps per second and a step size of 1 bp have been determined. We have observed that the helicase has a very low processivity. From dissociation and inhibition experiments, we have found that during its ATP hydrolysis cycle in DNA unwinding the helicase tends to dissociate from the DNA substrate in the ADP state. The experimental results imply that the BLM helicase core may unwind duplex DNA in an inchworm manner.
Collapse
Affiliation(s)
- Ye Yang
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pan BY, Dou SX, Yang Y, Xu YN, Bugnard E, Ding XY, Zhang L, Wang PY, Li M, Xi XG. Mutual inhibition of RecQ molecules in DNA unwinding. J Biol Chem 2010; 285:15884-93. [PMID: 20233727 DOI: 10.1074/jbc.m110.104299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicases make conformational changes and mechanical movements through hydrolysis of NTP to unwind duplex DNA (or RNA). Most helicases require a single-stranded overhang for loading onto the duplex DNA substrates. Some helicases have been observed to exhibit an enhanced unwinding efficiency with increasing length of the single-stranded DNA tail both by preventing reannealing of the unwound DNA and by compensating for premature dissociation of the leading monomers. Here we report a previously unknown mutual inhibition of neighboring monomers in DNA unwinding by the monomeric Escherichia coli RecQ helicase. With single molecule fluorescence resonance energy transfer microscopy, we observed that the unwinding initiation of RecQ at saturating concentrations was more delayed for a long rather than a short tailed DNA. In stopped-flow kinetic studies under both single and multiple turnover conditions, the unwinding efficiency decreased with increasing enzyme concentration for long tailed substrates. In addition, preincubation of RecQ and DNA in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate was observed to alleviate the inhibition. We propose that the mutual inhibition effect results from a forced closure of cleft between the two RecA-like domains of a leading monomer by a trailing one, hence the forward movements of both monomers are stalled by prohibition of ATP binding to the leading one. This effect represents direct evidence for the relative movements of the two RecA-like domains of RecQ in DNA unwinding. It may occur for all superfamily I and II helicases possessing two RecA-like domains.
Collapse
Affiliation(s)
- Bing-Yi Pan
- From the Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xi XG, Deprez E. Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy. Methods 2010; 51:289-94. [PMID: 20219681 DOI: 10.1016/j.ymeth.2010.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022] Open
Abstract
In order to elucidate molecular mechanism of helicases, we have developed two new rapid and sensitive fluorescence assays to measure helicase-mediated DNA unwinding. The fluorescence anisotropy (FA) assay takes the advantage of the substantial change in fluorescence polarization upon helicase binding to DNA and DNA unwinding. The extent of depolarization depends on the rate of tumbling of the fluorescently labeled DNA molecule, which decreases with increasing size. This assay therefore can simultaneously monitor the DNA binding of helicase and the subsequent helicase-catalyzed DNA unwinding in real-time. For size limitation reasons, the FA approach is more suitable for single-turnover kinetic studies. A fluorescence cross-correlation spectroscopy method (FCCS) is also described for measuring DNA unwinding. This assay is based on the degree of concomitant diffusion of the two complementary DNA strands in a small excitation volume, each labeled by a different color. The decrease in the amplitude of the cross-correlation signal is then directly related to the unwinding activity. By contrast with FA, the FCCS-based assay can be used to measure the unwinding activity under both single- and multiple-turnover conditions, with no limitation related to the size of the DNA strands constituting the DNA substrate. These methods used together have proven to be useful for studying molecular mechanism underlying efficient motor function of helicases. Here, we describe the theoretical basis and framework of FA and FCCS and some practical implications for measuring DNA binding and unwinding. We discuss sample preparation and potential troubleshooting. Special attention is paid to instrumentation, data acquisition and analysis.
Collapse
Affiliation(s)
- Xu Guang Xi
- Laboratoire de Stress Génotoxiques et Cancer, CNRS UMR3348, Institut Curie-Section de Recherche, Centre Universitaire, Bat 110, 91405 Orsay, France.
| | | |
Collapse
|
39
|
Li N, Henry E, Guiot E, Rigolet P, Brochon JC, Xi XG, Deprez E. Multiple Escherichia coli RecQ helicase monomers cooperate to unwind long DNA substrates: a fluorescence cross-correlation spectroscopy study. J Biol Chem 2010; 285:6922-36. [PMID: 20048388 DOI: 10.1074/jbc.m109.069286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3'-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 degrees C, whereas only modest or no cooperativity was observed at 25 degrees C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 degrees C but not at 25 degrees C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.
Collapse
Affiliation(s)
- Na Li
- Laboratoire de Biologie et Pharmacologie Appliquées, CNRS UMR8113, Ecole Normale Supérieure Cachan, Institut d'Alembert, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Toseland CP, Martinez-Senac MM, Slatter AF, Webb MR. The ATPase cycle of PcrA helicase and its coupling to translocation on DNA. J Mol Biol 2009; 392:1020-32. [PMID: 19647000 DOI: 10.1016/j.jmb.2009.07.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 11/16/2022]
Abstract
The superfamily 1 bacterial helicase PcrA has a role in the replication of certain plasmids, acting with the initiator protein (RepD) that binds to and nicks the double-stranded origin of replication. PcrA also translocates single-stranded DNA with discrete steps of one base per ATP hydrolyzed. Individual rate constants have been determined for the DNA helicase PcrA ATPase cycle when bound to either single-stranded DNA or a double-stranded DNA junction that also has RepD bound. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl)ATP was used throughout all experiments to provide a complete ATPase cycle for a single nucleotide species. Fluorescence intensity and anisotropy stopped-flow measurements were used to determine rate constants for binding and release. Quenched-flow measurements provided the kinetics of the hydrolytic cleavage step. The fluorescent phosphate sensor MDCC-PBP was used to measure phosphate release kinetics. The chemical cleavage step is the rate-limiting step in the cycle and is essentially irreversible and would result in the bound ATP complex being a major component at steady state. This cleavage step is greatly accelerated by bound DNA, producing the high activation of this protein compared to the protein alone. The data suggest the possibility that ADP is released in two steps, which would result in bound ADP also being a major intermediate, with bound ADP.P(i) being a very small component. It therefore seems likely that the major transition in structure occurs during the cleavage step, rather than P(i) release. ATP rebinding could then cause reversal of this structural transition. The kinetic mechanism of the PcrA ATPase cycle is very little changed by potential binding to RepD, supporting the idea that RepD increases the processivity of PcrA by increasing affinity to DNA rather than affecting the enzymatic properties per se.
Collapse
Affiliation(s)
- Christopher P Toseland
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
41
|
Slatter AF, Thomas CD, Webb MR. PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry 2009; 48:6326-34. [PMID: 19473041 PMCID: PMC2776994 DOI: 10.1021/bi900101h] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The plasmid replication initiator protein, RepD, greatly stimulates the ability of the DNA helicase, PcrA, to unwind plasmid lengths of DNA. Unwinding begins at oriD, the double-stranded origin of replication that RepD recognizes and covalently binds to initiate replication. Using a combination of plasmids containing oriD and oligonucleotide structures that mimic parts of oriD, the kinetics of DNA nicking and separation have been determined, along with the coupling ratio between base separation and ATP hydrolysis. At 30 °C, the rate of nicking is 1.0 s−1, and translocation is ∼30 bp s−1. During translocation, the coupling ratio is one ATP hydrolyzed per base pair separated, the same as the value previously reported for ATP hydrolyzed per base moved by PcrA along single-stranded DNA. The data suggest that processivity is high, such that several thousand base-pair plasmids are unwound by a single molecule of PcrA. In the absence of RepD, a single PcrA is unable to separate even short lengths (10 to 40 bp) of double stranded DNA.
Collapse
Affiliation(s)
- Andrew F Slatter
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | |
Collapse
|
42
|
Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 2008; 9:391-401. [PMID: 18414490 DOI: 10.1038/nrm2394] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.
Collapse
Affiliation(s)
- Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|