1
|
Quignon E, Ferhadian D, Hache A, Vivet-Boudou V, Isel C, Printz-Schweigert A, Donchet A, Crépin T, Marquet R. Structural Impact of the Interaction of the Influenza A Virus Nucleoprotein with Genomic RNA Segments. Viruses 2024; 16:421. [PMID: 38543786 PMCID: PMC10974462 DOI: 10.3390/v16030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.
Collapse
Affiliation(s)
- Erwan Quignon
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Damien Ferhadian
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Antoine Hache
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Catherine Isel
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Anne Printz-Schweigert
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Amélie Donchet
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Thibaut Crépin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| |
Collapse
|
2
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
3
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
4
|
René B, Mauffret O, Fossé P. Retroviral nucleocapsid proteins and DNA strand transfers. BIOCHIMIE OPEN 2018; 7:10-25. [PMID: 30109196 PMCID: PMC6088434 DOI: 10.1016/j.biopen.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
An infectious retroviral particle contains 1000-1500 molecules of the nucleocapsid protein (NC) that cover the diploid RNA genome. NC is a small zinc finger protein that possesses nucleic acid chaperone activity that enables NC to rearrange DNA and RNA molecules into the most thermodynamically stable structures usually those containing the maximum number of base pairs. Thanks to the chaperone activity, NC plays an essential role in reverse transcription of the retroviral genome by facilitating the strand transfer reactions of this process. In addition, these reactions are involved in recombination events that can generate multiple drug resistance mutations in the presence of anti-HIV-1 drugs. The strand transfer reactions rely on base pairing of folded DNA/RNA structures. The molecular mechanisms responsible for NC-mediated strand transfer reactions are presented and discussed in this review. Antiretroviral strategies targeting the NC-mediated strand transfer events are also discussed.
Collapse
Affiliation(s)
- Brigitte René
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Olivier Mauffret
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Philippe Fossé
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| |
Collapse
|
5
|
The multiple roles of the nucleocapsid in retroviral RNA conversion into proviral DNA by reverse transcriptase. Biochem Soc Trans 2017; 44:1427-1440. [PMID: 27911725 DOI: 10.1042/bst20160101-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/27/2023]
Abstract
Retroviruses are enveloped plus-strand RNA viruses that can cause cancer, immunodeficiency and neurological disorder in human and animals. Retroviruses have several unique properties, such as a genomic RNA in a dimeric form found in the virus, and a replication strategy called 'copy-and-paste' during which the plus-strand genomic RNA is converted into a double-stranded DNA, subsequently integrated into the cellular genome. Two essential viral enzymes, reverse transcriptase (RT) and integrase (IN), direct this 'copy-and-paste' replication. RT copies the genomic RNA generating the double-stranded proviral DNA, while IN catalyzes proviral DNA integration into the cellular DNA, then called the provirus. In that context, a major component of the virion core, the nucleocapsid protein (NC), was found to be a potent nucleic-acid chaperone that assists RT during the conversion of the genomic RNA into proviral DNA. Here we briefly review the interplay of NC with viral nucleic-acids, which enables rapid and faithful folding and hybridization of complementary sequences, and with active RT thus providing assistance to the synthesis of the complete proviral DNA. Because of its multiple roles in retrovirus replication, NC could be viewed as a two-faced Janus-chaperone acting on viral nucleic-acids and enzymes.
Collapse
|
6
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
7
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
8
|
Ferrer M, Clerté C, Chamontin C, Basyuk E, Lainé S, Hottin J, Bertrand E, Margeat E, Mougel M. Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies. Nucleic Acids Res 2016; 44:7922-34. [PMID: 27280976 PMCID: PMC5027490 DOI: 10.1093/nar/gkw511] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 11/15/2022] Open
Abstract
Dimerization is a unique and vital characteristic of retroviral genomes. It is commonly accepted that genomic RNA (gRNA) must be dimeric at the plasma membrane of the infected cells to be packaged during virus assembly. However, where, when and how HIV-1 gRNA find each other and dimerize in the cell are long-standing questions that cannot be answered using conventional approaches. Here, we combine two state-of-the-art, multicolor RNA labeling strategies with two single-molecule microscopy technologies to address these questions. We used 3D-super-resolution structured illumination microscopy to analyze and quantify the spatial gRNA association throughout the cell and monitored the dynamics of RNA-RNA complexes in living-cells by cross-correlation fluctuation analysis. These sensitive and complementary approaches, combined with trans-complementation experiments, reveal for the first time the presence of interacting gRNA in the cytosol, a challenging observation due to the low frequency of these events and their dilution among the bulk of other RNAs, and allow the determination of the subcellular orchestration of the HIV-1 dimerization process.
Collapse
Affiliation(s)
- Mireia Ferrer
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Caroline Clerté
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Célia Chamontin
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Sébastien Lainé
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Jérome Hottin
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Emmanuel Margeat
- CNRS UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France INSERM U1054, 34090 Montpellier, France Université de Montpellier, 34090 Montpellier, France
| | - Marylène Mougel
- Centre d'études d'agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
9
|
Racine PJ, Chamontin C, de Rocquigny H, Bernacchi S, Paillart JC, Mougel M. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Sci Rep 2016; 6:27536. [PMID: 27273064 PMCID: PMC4895152 DOI: 10.1038/srep27536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Célia Chamontin
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401, Illkirch Cedex, France
| | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Marylène Mougel
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
10
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
11
|
Chamontin C, Rassam P, Ferrer M, Racine PJ, Neyret A, Lainé S, Milhiet PE, Mougel M. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus. Nucleic Acids Res 2014; 43:336-47. [PMID: 25488808 PMCID: PMC4288153 DOI: 10.1093/nar/gku1232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HIV-1, the agent of the AIDS pandemic, is an RNA virus that reverse transcribes its RNA genome (gRNA) into DNA, shortly after its entry into cells. Within cells, retroviral assembly requires thousands of structural Gag proteins and two copies of gRNA as well as cellular factors, which converge to the plasma membrane in a finely regulated timeline. In this process, the nucleocapsid domain of Gag (GagNC) ensures gRNA selection and packaging into virions. Subsequent budding and virus release require the recruitment of the cellular ESCRT machinery. Interestingly, mutating GagNC results into the release of DNA-containing viruses, by promo-ting reverse transcription (RTion) prior to virus release, through an unknown mechanism. Therefore, we explored the biogenesis of these DNA-containing particles, combining live-cell total internal-reflection fluorescent microscopy, electron microscopy, trans-complementation assays and biochemical characterization of viral particles. Our results reveal that DNA virus production is the consequence of budding defects associated with Gag aggregation at the plasma membrane and deficiency in the recruitment of Tsg101, a key ESCRT-I component. Indeed, targeting Tsg101 to virus assembly sites restores budding, restricts RTion and favors RNA packaging into viruses. Altogether, our results highlight the role of GagNC in the spatiotemporal control of RTion, via an ESCRT-I-dependent mechanism.
Collapse
Affiliation(s)
- Célia Chamontin
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Patrice Rassam
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France
| | - Mireia Ferrer
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Jean Racine
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Aymeric Neyret
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lainé
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, UMR5048 CNRS, University of Montpellier, 34090 Montpellier, France U1054 INSERM, 30090 Montpellier, France
| | - Marylène Mougel
- CPBS, UMR5236 CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
12
|
Feng Y, Baig TT, Love RP, Chelico L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol 2014; 5:450. [PMID: 25206352 PMCID: PMC4144255 DOI: 10.3389/fmicb.2014.00450] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
13
|
Sleiman D, Bernacchi S, Xavier Guerrero S, Brachet F, Larue V, Paillart JC, Tisne C. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail. RNA Biol 2014; 11:906-20. [PMID: 25144404 DOI: 10.4161/rna.29546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.
Collapse
|
14
|
Pachulska-Wieczorek K, Stefaniak AK, Purzycka KJ. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro. Retrovirology 2014; 11:54. [PMID: 24992971 PMCID: PMC4227088 DOI: 10.1186/1742-4690-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. Results We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (−) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Conclusion Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5′UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may influence the efficiency of reverse transcription and other key steps of the HIV-2 replication cycle.
Collapse
|
15
|
da Costa KS, Leal E, dos Santos AM, Lima e Lima AH, Alves CN, Lameira J. Structural analysis of viral infectivity factor of HIV type 1 and its interaction with A3G, EloC and EloB. PLoS One 2014; 9:e89116. [PMID: 24586532 PMCID: PMC3935857 DOI: 10.1371/journal.pone.0089116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/15/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The virion infectivity factor (Vif) is an accessory protein, which is essential for HIV replication in host cells. Vif neutralizes the antiviral host protein APOBEC3 through recruitment of the E3 ubiquitin ligase complex. METHODOLOGY Fifty thousand Vif models were generated using the ab initio relax protocol of the Rosetta algorithm from sets of three- and nine-residue fragments using the fragment Monte Carlo insertion-simulated annealing strategy, which favors protein-like features, followed by an all-atom refinement. In the protocol, a constraints archive was used to define the spatial relationship between the side chains from Cys/His residues and zinc ions that formed the zinc-finger motif that is essential for Vif function. We also performed centroids analysis and structural analysis with respect to the formation of the zinc-finger, and the residue disposal in the protein binding domains. Additionally, molecular docking was used to explore details of Vif-A3G and Vif-EloBC interactions. Furthermore, molecular dynamics simulation was used to evaluate the stability of the complexes Vif-EloBC-A3G and Vif-EloC. PRINCIPAL FINDINGS The zinc in the HCCH domain significantly alters the folding of Vif and changes the structural dynamics of the HCCH region. Ab initio modeling indicated that the Vif zinc-finger possibly displays tetrahedral geometry as suggested by Mehle et al. (2006). Our model also showed that the residues L146 and L149 of the BC-box motif bind to EloC by hydrophobic interactions, and the residue P162 of the PPLP motif is important to EloB binding. CONCLUSIONS/SIGNIFICANCE The model presented here is the first complete three-dimensional structure of the Vif. The interaction of Vif with the A3G protein and the EloBC complex is in agreement with empirical data that is currently available in the literature and could therefore provide valuable structural information for advances in rational drug design.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Elcio Leal
- Faculdade de Biotecnologia, Universidade Federal do Pará, Belém, Brazil
| | - Alberto Monteiro dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Anderson Henrique Lima e Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Biotecnologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
16
|
Kolomiets IN, Zarudnaya MI, Potyahaylo AL, Hovorun DM. Structural insight into HIV-1 reverse transcription initiation in MAL-like templates (CRF01_AE, subtype G and CRF02_AG). J Biomol Struct Dyn 2014; 33:418-33. [DOI: 10.1080/07391102.2014.884938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Giroud C, Chazal N, Gay B, Eldin P, Brun S, Briant L. HIV-1-associated PKA acts as a cofactor for genome reverse transcription. Retrovirology 2013; 10:157. [PMID: 24344931 PMCID: PMC3880072 DOI: 10.1186/1742-4690-10-157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J. Biol. Chem. 278:35211 (2003)). The present study was conceived to investigate the contribution of HIV-1-associated PKA to the retroviral life cycle. Results NL4.3 viruses were produced from cells cultured in the presence of PKA inhibitors H89 (H89-NL4.3) or Myr-PKI (PKI-NL4.3) and analyzed for viral replication. Despite being mature and normally assembled, and containing expected levels of genomic RNA and RT enzymatic activity, such viruses showed poor infectivity. Indeed, infection generated reduced amounts of strong-strop minus strand DNA, while incoming RNA levels in target cells were unaffected. Decreased cDNA synthesis was also evidenced in intact H89-NL4.3 and PKI-NL4.3 cell free particles using endogenous reverse transcription (ERT) experiments. Moreover, similar defects were reproduced when wild type NL4.3 particles preincubated with PKA inhibitors were subjected to ERT reactions. Conclusions Altogether, our results indicate that HIV-1-associated PKA is required for early reverse transcription of the retroviral genome both in cell free intact viruses and in target cells. Accordingly, virus-associated PKA behaves as a cofactor of an intraviral process required for optimal reverse transcription and for early post-entry events.
Collapse
Affiliation(s)
| | | | | | | | | | - Laurence Briant
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS)-CNRS UMR 5236, Université Montpellier 1,2, 1919 route de Mende, Montpellier, cedex 2 34293, France.
| |
Collapse
|
18
|
Abstract
The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell.
Collapse
|
19
|
Godet J, Kenfack C, Przybilla F, Richert L, Duportail G, Mély Y. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer. Nucleic Acids Res 2013; 41:5036-48. [PMID: 23511968 PMCID: PMC3643577 DOI: 10.1093/nar/gkt164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
20
|
Wu H, Mitra M, McCauley MJ, Thomas JA, Rouzina I, Musier-Forsyth K, Williams MC, Gorelick RJ. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Virus Res 2013; 171:263-77. [PMID: 22814429 PMCID: PMC3745225 DOI: 10.1016/j.virusres.2012.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.
Collapse
Affiliation(s)
- Hao Wu
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Mithun Mitra
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Micah J. McCauley
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioulia Rouzina
- University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Karin Musier-Forsyth
- The Ohio State University, Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Columbus, OH 43210, USA
| | - Mark C. Williams
- Northeastern University, Department of Physics, Boston, MA 02115, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Aspects of HIV-1 assembly that promote primer tRNALys3 annealing to viral RNA. Virus Res 2012; 169:340-8. [DOI: 10.1016/j.virusres.2012.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/30/2023]
|
22
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
23
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
24
|
Jalalirad M, Saadatmand J, Laughrea M. Dominant role of the 5' TAR bulge in dimerization of HIV-1 genomic RNA, but no evidence of TAR-TAR kissing during in vivo virus assembly. Biochemistry 2012; 51:3744-58. [PMID: 22482513 DOI: 10.1021/bi300111p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 5' untranslated region of HIV-1 genomic RNA (gRNA) contains two stem-loop structures that appear to be equally important for gRNA dimerization: the 57-nucleotide 5' TAR, at the very 5' end, and the 35-nucleotide SL1 (nucleotides 243-277). SL1 is well-known for containing the dimerization initiation site (DIS) in its apical loop. The DIS is a six-nucleotide palindrome. Here, we investigated the mechanism of TAR-directed gRNA dimerization. We found that the trinucleotide bulge (UCU24) of the 5' TAR has dominant impacts on both formation of HIV-1 RNA dimers and maturation of the formed dimers. The ΔUCU trinucleotide deletion strongly inhibited the first process and blocked the other, thus impairing gRNA dimerization as severely as deletion of the entire 5' TAR, and more severely than deletion of the DIS, inactivation of the viral protease, or most severe mutations in the nucleocapsid protein. The apical loop of TAR contains a 10-nucleotide palindrome that has been postulated to stimulate gRNA dimerization by a TAR-TAR kissing mechanism analogous to the one used by SL1 to stimulate dimerization. Using mutations that strongly destabilize formation of the TAR palindrome duplex, as well as compensatory mutations that restore duplex formation to a wild-type-like level, we found no evidence of TAR-TAR kissing, even though mutations nullifying the kissing potential of the TAR palindrome could impair dimerization by a mechanism other than hindering of SL1. However, nullifying the kissing potential of TAR had much less severe effects than ΔUCU. By not uncovering a dimerization mechanism intrinsic to TAR, our data suggest that TAR mutations exert their effect 3' of TAR, yet not on SL1, because TAR and SL1 mutations have synergistic effects on gRNA dimerization.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
25
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
26
|
Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011; 85:11220-34. [PMID: 21835787 DOI: 10.1128/jvi.05238-11] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.
Collapse
|
27
|
Bernacchi S, Mercenne G, Tournaire C, Marquet R, Paillart JC. Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Res 2010; 39:2404-15. [PMID: 21076154 PMCID: PMC3064812 DOI: 10.1093/nar/gkq979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain 161PPLP164 regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the 161PPLP164 domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
29
|
Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 2010; 7:724-34. [PMID: 21045549 PMCID: PMC3073331 DOI: 10.4161/rna.7.6.13777] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture.
Collapse
|
30
|
Gangaramani DR, Eden EL, Shah M, Destefano JJ. The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity. RNA Biol 2010; 7:820-9. [PMID: 21045553 DOI: 10.4161/rna.7.6.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poliovirus 3AB protein is the first picornavirus protein demonstrated to have nucleic acid chaperone activity. Further characterization of 3AB demonstrates that the C-terminal 22 amino acids (3B region (also referred to as VPg), amino acid 88-109) of the protein is required for chaperone activity, as mutations in this region abrogate nucleic acid binding and chaperone function. Protein 3B alone has no chaperone activity as determined by established assays that include the ability to stimulate nucleic acid hybridization in a primer-template annealing assay, helix-destabilization in a nucleic acid unwinding assay, or aggregation of nucleic acids. In contrast, the putative 3AB C-terminal cytoplasmic domain (C terminal amino acids 81-109, 3B + the last 7 C-terminal amino acids of 3A, termed 3B+7 in this report) possesses strong activity in these assays, albeit at much higher concentrations than 3AB. The characteristics of several mutations in 3B+7 are described here, as well as a model proposing that 3B+7 is the site of the "intrinsic" chaperone activity of 3AB while the 3A N-terminal region (amino acids 1-58) and/or membrane anchor domain (amino acids 59-80) serve to increase the effective concentration of the 3B+7 region leading to the potent chaperone activity of 3AB.
Collapse
Affiliation(s)
- Divya R Gangaramani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
31
|
Wagner N, Tannenbaum E, Ashkenasy G. Second order catalytic quasispecies yields discontinuous mean fitness at error threshold. PHYSICAL REVIEW LETTERS 2010; 104:188101. [PMID: 20482213 DOI: 10.1103/physrevlett.104.188101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Indexed: 05/29/2023]
Abstract
The quasispecies model describes processes related to the origin of life and viral evolutionary dynamics. We discuss how the error catastrophe that reflects the transition from localized to delocalized quasispecies population is affected by catalytic replication of different reaction orders. Specifically, we find that second order mechanisms lead to a discontinuity in the mean fitness of the population at the error threshold. This is in contrast to the behavior of the first order, autocatalytic replication mechanism considered in the standard quasispecies model. This suggests that quasispecies models with higher order replication mechanisms produce discontinuities in the mean fitness, and hence the viable population fraction as well, at the error threshold, while lower order replication mechanisms yield a continuous mean fitness function. We discuss potential implications for understanding replication in the RNA world and in virology.
Collapse
Affiliation(s)
- Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | |
Collapse
|
32
|
Chim3 confers survival advantage to CD4+ T cells upon HIV-1 infection by preventing HIV-1 DNA integration and HIV-1-induced G2 cell-cycle delay. Blood 2010; 115:4021-9. [PMID: 20220118 DOI: 10.1182/blood-2009-09-243030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long-term expression and the ability of a therapeutic gene to confer survival advantage to transduced cells are mandatory requirements for successful anti-HIV gene therapy. In this context, we developed lentiviral vectors (LVs) expressing the F12-viral infectivity factor (Vif) derivative Chim3. We recently showed that Chim3 inhibits HIV-1 replication in primary cells by both blocking the accumulation of retrotranscripts, independently of either human APOBEC3G (hA3G) or Vif, and by preserving the antiviral function of hA3G. These results were predictive of long-lasting survival of Chim3(+) cells after HIV-1 infection. Furthermore, Vif, like Vpr, deregulates cell-cycle progression by inducing a delay in G(2) phase. Thus, the aim of this study was to investigate the role of Chim3 on both cell survival and cell-cycle regulation after HIV-1 infection. Here, we provide evidence that infected Chim3(+) T cells prevail over either mock- or empty-LV engineered cells, show reduced G(2) accumulation, and, as a consequence, ultimately extend their lifespan. Based on these findings, Chim3 rightly belongs to the most efficacious class of antiviral genes. In conclusion, Chim3 usage in anti-HIV gene therapy based on hematopoietic stem cell (HSC) modification has to be considered as a promising therapeutic intervention to eventually cope with HIV-1 infection.
Collapse
|
33
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
34
|
Mercenne G, Bernacchi S, Richer D, Bec G, Henriet S, Paillart JC, Marquet R. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res 2009; 38:633-46. [PMID: 19910370 PMCID: PMC2810999 DOI: 10.1093/nar/gkp1009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3′UTR than for the 5′UTR, even though this region contained at least one high affinity Vif binding site (apparent Kd = 27 ± 6 nM). Several Vif binding sites were identified in 5′ and 3′UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5′UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes.
Collapse
Affiliation(s)
- Gaëlle Mercenne
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Hultquist JF, Harris RS. Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol 2009; 4:605. [PMID: 20174454 DOI: 10.2217/fvl.09.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At least two human APOBEC3 proteins - APOBEC3F and APOBEC3G - are capable of inhibiting HIV-1 replication by mutation of the viral cDNA. HIV-1 averts lethal restriction through its accessory protein Vif, which targets these APOBEC3 proteins for proteasomal degradation. The life-or-death interaction between human APOBEC3 proteins and HIV-1 Vif has stimulated much interest in developing novel therapeutics aimed at altering the deaminase activity of the APOBEC3s, thus changing the virus' mutation rate to either lethal or suboptimal levels. The current state of mechanistic information is reviewed and the possible risks and benefits of increasing (via hypermutation) or decreasing (via hypomutation) the HIV-1 mutation rate through APOBEC3 proteins are discussed.
Collapse
Affiliation(s)
- Judd F Hultquist
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Tel.: +1 414 702 7232,
| | | |
Collapse
|
36
|
Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol Mol Biol Rev 2009; 73:211-32. [PMID: 19487726 DOI: 10.1128/mmbr.00040-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.
Collapse
|
37
|
Roles of Gag and NCp7 in facilitating tRNA(Lys)(3) Annealing to viral RNA in human immunodeficiency virus type 1. J Virol 2009; 83:8099-107. [PMID: 19494012 DOI: 10.1128/jvi.00488-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In protease-negative human immunodeficiency virus type 1 (HIV-1) [Pr(-)], the amount of tRNA(3)(Lys) annealed by Gag is modestly reduced ( approximately 25%) compared to that annealed by mature nucleocapsid (NCp7) in protease-positive HIV-1 [Pr(+)]. However, the tRNA(3)(Lys) annealed by Gag also has a strongly reduced ability to initiate reverse transcription and binds less tightly to viral RNA. Both in vivo and in vitro, APOBEC3G (A3G) inhibits tRNA(3)(Lys) annealing facilitated by NCp7 but not annealing facilitated by Gag. While transient exposure of Pr(-) viral RNA to NCp7 in vitro returns the quality and quantity of tRNA(3)(Lys) annealing to Pr(+) levels, the presence of A3G both prevents this rescue and creates a further reduction in tRNA(3)(Lys) annealing. Since A3G inhibition of NCp7-facilitated tRNA(3)(Lys) annealing in vitro requires the presence of A3G during the annealing process, these results suggest that in Pr(+) viruses NCp7 can displace Gag-annealed tRNA(3)(Lys) and re-anneal it to viral RNA, the re-annealing step being subject to A3G inhibition. This supports the possibility that the initial annealing of tRNA(3)(Lys) in wild-type, Pr(+) virus may be by Gag and not by NCp7, perhaps offering the advantage of Gag's preference for binding to RNA stem-loops in the 5' region of viral RNA near the tRNA(3)(Lys) annealing region.
Collapse
|
38
|
Kataropoulou A, Bovolenta C, Belfiore A, Trabatti S, Garbelli A, Porcellini S, Lupo R, Maga G. Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Res 2009; 37:3660-9. [PMID: 19369217 PMCID: PMC2699511 DOI: 10.1093/nar/gkp226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The HIV-1 accessory protein Vif plays a dual role: it counteracts the natural restriction factors APOBEC3G and 3F and ensures efficient retrotranscription of the HIV-1 RNA genome. We have previously shown that Vif can act as an auxiliary factor for HIV-1 reverse transcriptase (RT), increasing its rate of association to RNA or DNA templates. Here, by using seven different Vif mutants, we provide in vitro evidences that Vif stimulates HIV-1 RT through direct protein–protein interaction, which is mediated by its C-terminal domain. Physical interaction appears to require the proline-rich region comprised between amino acid (aa) 161 and 164 of Vif, whereas the RT stimulatory activity requires, in addition, the extreme C-terminal region (aa 169–192) of the Vif protein. Neither the RNA interaction domain, nor the Zn++-binding domain of Vif are required for its interaction with the viral RT. Pseudotyped HIV-1 lentiviral vectors bearing Vif mutants deleted in the RNA- or RT-binding domains show defects in retrotranscription/integration processes in both permissive and nonpermissive cells. Our results broaden our knowledge on how three important functions of Vif (RNA binding, RT binding and stimulation and Zn++ binding), are coordinated by different domains.
Collapse
|
39
|
Moore MD, Hu WS. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009; 11:91-102. [PMID: 19529749 PMCID: PMC3056336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Each viral particle of HIV-1, the infectious agent of AIDS, contains two copies of the full-length viral genomic RNA. Encapsidating two copies of genomic RNA is one of the characteristics of the retrovirus family. The two RNA molecules are both positive-sense and often identical; furthermore, each RNA encodes the full complement of genetic information required for viral replication. The two strands of RNA are intricately entwined within the core of the mature infectious virus as a ribonuclear complex with the viral proteins, including nucleocapsid. Multiple steps in the biogenesis of the genomic full-length RNA are involved in achieving this location and dimeric state. The viral sequences and proteins involved in the process of RNA dimerization, both for the initial interstrand contact and subsequent steps that result in the condensed, stable conformation of the genomic RNA, are outlined in this review. In addition, the impact of the dimeric state of HIV-1 viral RNA is discussed with respect to its importance in efficient viral replication and, consequently, the potential development of antiviral strategies designed to disrupt the formation of dimeric RNA.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
40
|
The F12-Vif derivative Chim3 inhibits HIV-1 replication in CD4+ T lymphocytes and CD34+-derived macrophages by blocking HIV-1 DNA integration. Blood 2009; 113:3443-52. [PMID: 19211937 DOI: 10.1182/blood-2008-06-158790] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral infectivity factor (Vif) is essential for HIV-1 infectivity and hence is an ideal target for promising anti-HIV-1/AIDS gene therapy. We previously demonstrated that F12-Vif mutant inhibits HIV-1 replication in CD4(+) T lymphocytes. Despite macrophage relevance to HIV-1 pathogenesis, most gene therapy studies do not investigate macrophages because of their natural resistance to genetic manipulation. Here, we confirm the F12-Vif antiviral activity also in macrophages differentiated in vitro from transduced CD34(+) human stem cells (HSCs). Moreover, we identified the 126- to 170-amino-acid region in the C-terminal half of F12-Vif as responsible for its antiviral function. Indeed, Chim3 protein, containing this 45-amino-acid region embedded in a WT-Vif backbone, is as lethal as F12-Vif against HIV-1. Of major relevance, we demonstrated a dual mechanism of action for Chim3. First, Chim3 functions as a transdominant factor that preserves the antiviral function of the natural restriction factor APOBEC3G (hA3G). Second, Chim3 blocks the early HIV-1 retrotranscript accumulation and thereby HIV-1 DNA integration regardless of the presence of WT-Vif and hA3G. In conclusion, by impairing the early steps of HIV-1 life cycle, Chim3 conceivably endows engineered cells with survival advantage, which is required for the efficient immune reconstitution of patients living with HIV/AIDS.
Collapse
|
41
|
Functional replacement of a domain in the rubella virus p150 replicase protein by the virus capsid protein. J Virol 2009; 83:3549-55. [PMID: 19176617 DOI: 10.1128/jvi.02411-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rubella virus (RUBV) capsid (C) protein rescues mutants with a lethal deletion between two in-frame NotI sites in the P150 replicase gene, a deletion encompassing nucleotides 1685 to 2192 of the RUBV genome and amino acids (aa) 548 to 717 of P150 (which has a total length of 1,301 aa). The complete domain rescuable by the C protein was mapped to aa 497 to 803 of P150. Introduction of aa 1 to 277 of the C protein (lacking the C-terminal E2 signal sequence) between the NotI sites in the P150 gene in a replicon construct yielded a viable construct that synthesized viral RNA with wild-type kinetics, indicating that C and this region of P150 share a common function. Further genetic analysis revealed that an arginine-rich motif between aa 60 and 68 of the C protein was necessary for the rescue of DeltaNotI deletion mutants and substituted for an arginine-rich motif between aa 731 and 735 of the P150 protein when the C protein was introduced into P150. Possible common functions shared by these arginine-rich motifs include RNA binding and interaction with cell proteins.
Collapse
|
42
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Chung J, Mujeeb A, Jiang Y, Guilbert C, Pendke M, Wu Y, James TL. A Small Molecule, Lys-Ala-7-amido-4-methylcoumarin, Facilitates RNA Dimer Maturation of a Stem−Loop 1 Transcript in Vitro: Structure−Activity Relationship of the Activator. Biochemistry 2008; 47:8148-56. [DOI: 10.1021/bi800230m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janet Chung
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Anwer Mujeeb
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Yongying Jiang
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Christophe Guilbert
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Mrunal Pendke
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Yanfen Wu
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| | - Thomas L. James
- Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
44
|
Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 PMCID: PMC2789563 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
Affiliation(s)
- James A. Thomas
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| |
Collapse
|
45
|
Berkhout B, Gorelick R, Summers MF, Mély Y, Darlix JL. 6th international symposium on retroviral nucleocapsid. Retrovirology 2008; 5:21. [PMID: 18298807 PMCID: PMC2276516 DOI: 10.1186/1742-4690-5-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/25/2008] [Indexed: 11/10/2022] Open
Abstract
Retroviruses and LTR-retrotransposons are widespread in all living organisms and, in some instances such as for HIV, can be a serious threat to the human health. The retroviral nucleocapsid is the inner structure of the virus where several hundred nucleocapsid protein (NC) molecules coat the dimeric, genomic RNA. During the past twenty years, NC was found to play multiple roles in the viral life cycle (Fig. 1), notably during the copying of the genomic RNA into the proviral DNA by viral reverse transcriptase and integrase, and is therefore considered to be a prime target for anti-HIV therapy. The 6th NC symposium was held in the beautiful city of Amsterdam, the Netherlands, on the 20th and 21st of September 2007. All aspects of NC biology, from structure to function and to anti-HIV vaccination, were covered during this meeting.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) Academic Medical Center of the University of Amsterdam K3-110, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Robert Gorelick
- AIDS Vaccine Program SAIC-Frederick, Inc. NCI-Frederick P.O. Box B Frederick, MD 21702-1201, USA
| | - Michael F Summers
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Yves Mély
- Départment Pharmacologie et Physico-chimie, UMR 7175 CNRS, Institut Gilbert Laustriat, Université Louis Pasteur, 74 route du Rhin, 67401 Illkirch, France
| | - Jean-Luc Darlix
- LaboRetro INSERM #758, Ecole Normale Supérieure de Lyon, IFR 128 Biosciences Lyon-Gerland, 69364 Lyon Cedex 07, France
| |
Collapse
|
46
|
Houzet L, Morichaud Z, Didierlaurent L, Muriaux D, Darlix JL, Mougel M. Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Res 2008; 36:2311-9. [PMID: 18296486 PMCID: PMC2367716 DOI: 10.1093/nar/gkn069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retroviruses replicate by converting their positive sense genomic RNA into double-stranded DNA that is subsequently integrated into the host genome. This conversion is catalyzed by reverse transcriptase (RT) early after virus entry into the target cell and is chaperoned by the nucleocapsid protein (NC). In HIV-1, NC is composed of small basic domains flanking two highly conserved CCHC zinc fingers that specifically interact with the genomic RNA and RT. Through specific interactions with the genomic RNA and RT, and possibly with cellular factors, the NC zinc fingers were found to play critical roles in HIV-1 assembly and budding, and later in proviral DNA synthesis and integration. Therefore, intact NC zinc fingers are needed throughout the virus replication cycle. Here, we report for the first time that deleting either one or the two NC zinc fingers leads to an unexpected premature viral DNA synthesis in virus producer cells and the production of noninfectious particles with a high level of viral DNA. In addition to providing the first example of reverse transcription during the late steps of HIV-1 replication, these findings emphasize the fact that the NC zinc fingers are a major target for new drugs against HIV-1.
Collapse
Affiliation(s)
- Laurent Houzet
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Lyon, France
| | | | | | | | | | | |
Collapse
|
47
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription initiation: a potential target for novel antivirals? Virus Res 2008; 134:4-18. [PMID: 18255184 DOI: 10.1016/j.virusres.2007.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022]
Abstract
Reverse transcription is an essential step in the retroviral life cycle, as it converts the genomic RNA into DNA. In this review, we describe recent developments concerning the initiation step of this complex, multi-step reaction. During initiation of reverse transcription, a cellular tRNA primer is placed onto a complementary sequence in the viral genome, called the primer binding site or PBS. The viral enzyme reverse transcriptase (RT) recognizes this RNA-RNA complex, and catalyzes the extension of the 3' end of the tRNA primer, with the viral RNA (vRNA) acting as template. The initiation step is highly specific and most retroviruses are restricted to the use of the cognate, self-tRNA primer. Human immunodeficiency virus type 1 (HIV-1) uses the cellular tRNA(Lys,3) molecule as primer for reverse transcription. No spontaneous switches in tRNA usage by HIV-1 or other retroviruses have been described and attempts to change the identity of the tRNA primer were unsuccessful in the past. These observations indicate that the virus strongly prefers the self-primer, suggesting that a very specific mechanism for primer selection must exist. Indeed, tRNA primers are selectively packaged into virus particles, are specifically recognized by RT and are placed onto the viral RNA genome via base pairing to the PBS and other sequence motifs, thus rendering a specific initiation complex. Analysis of this critical step in the viral life cycle may result in the discovery of novel antiviral drugs in the battle against HIV/AIDS.
Collapse
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) is part of reverse transcription complexes and acts as an accessory factor for reverse transcription. Virology 2007; 372:147-56. [PMID: 18037155 DOI: 10.1016/j.virol.2007.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/11/2007] [Accepted: 10/31/2007] [Indexed: 11/20/2022]
Abstract
Virion infectivity factor (Vif) facilitates HIV infection by counteracting APOBEC3G late in replication in virus-producer cells. Here, we show that early after infection of new target cells Vif is part of the HIV reverse transcription machinery and acts as an accessory factor for reverse transcription. Vif protein was present in gradient fractions containing reverse transcription complexes (RTCs), and anti-Vif antibody immunoprecipitated HIV reverse transcription products from these gradient fractions. To investigate a role for Vif in RTCs independent of APOBEC3G, we created an intracellular environment that would restrict reverse transcription by pre-treating permissive target cells with 5-Fluoro 2-deoxyuridine, a thymidylate synthetase inhibitor, prior to infection with virus from permissive cells. Infectivity assays and quantitation of reverse transcription products demonstrated that replication of HIV lacking Vif was inhibited to a greater degree than wild type, without concurrent mutation of reverse transcription products, suggesting compromised reverse transcription in the absence of Vif.
Collapse
|