1
|
Tan JH, Fraser AG. The combinatorial control of alternative splicing in C. elegans. PLoS Genet 2017; 13:e1007033. [PMID: 29121637 PMCID: PMC5697891 DOI: 10.1371/journal.pgen.1007033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/21/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites—for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes—they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur. Alternative splicing (AS) is a highly regulated process that is crucial for normal development. It requires the core splicing machinery, but the specific choice of splice site during AS is controlled by splicing factors (SFs) such as ELAV or RBFOX proteins that bind to specific sequences in pre-mRNAs to regulate usage of different splice sites. AS varies across the C. elegans life cycle and here we study how diverse SFs combine to regulate AS during C. elegans development. We selected 4 RRM-containing SFs that are all well studied and that have well-characterised loss-of-function genetic alleles. We find that these SFs regulate many of the same targets, and that combinatorial interactions between these SFs affect both individual splicing events and organism-level phenotypes including specific effects on the neuromuscular system. We further show that SFs combine to regulate splicing of an individual pre-mRNA in two distinct modes—either by binding in close proximity or by binding in a defined order on the pre-mRNA. Finally, we find that the genes whose splicing are most likely to be regulated by multiple SFs are genes that are required for the proper function of the neuromuscular system. These genes are also most likely to have changing AS patterns across development, suggesting that their splicing regulation is highly complex and developmentally regulated. Taken together, our data show that the precise splice variant expressed at any point in development is often the outcome of regulation by multiple SFs.
Collapse
Affiliation(s)
- June H. Tan
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
2
|
Lesurf R, Cotto KC, Wang G, Griffith M, Kasaian K, Jones SJM, Montgomery SB, Griffith OL. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res 2015; 44:D126-32. [PMID: 26578589 PMCID: PMC4702855 DOI: 10.1093/nar/gkv1203] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
The Open Regulatory Annotation database (ORegAnno) is a resource for curated regulatory annotation. It contains information about regulatory regions, transcription factor binding sites, RNA binding sites, regulatory variants, haplotypes, and other regulatory elements. ORegAnno differentiates itself from other regulatory resources by facilitating crowd-sourced interpretation and annotation of regulatory observations from the literature and highly curated resources. It contains a comprehensive annotation scheme that aims to describe both the elements and outcomes of regulatory events. Moreover, ORegAnno assembles these disparate data sources and annotations into a single, high quality catalogue of curated regulatory information. The current release is an update of the database previously featured in the NAR Database Issue, and now contains 1 948 307 records, across 18 species, with a combined coverage of 334 215 080 bp. Complete records, annotation, and other associated data are available for browsing and download at http://www.oreganno.org/.
Collapse
Affiliation(s)
- Robert Lesurf
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kelsy C Cotto
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Grace Wang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
3
|
Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, Walhout AJM, Weirauch MT, Hughes TR. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 2015; 4. [PMID: 25905672 PMCID: PMC4434323 DOI: 10.7554/elife.06967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI:http://dx.doi.org/10.7554/eLife.06967.001 Many scientists use ‘model’ species—such as the fruit fly or a nematode worm called Caenorhabditis elegans—in their research because these organisms have useful features that make it easier to carry out many experiments. For example, C. elegans has a smaller genome compared to many other animals, which is useful for studying the roles of individual genes or stretches of DNA. Transcription factors are a type of protein that can bind to specific stretches of DNA and help to switch certain genes on or off. These ‘motifs’ may be close to the gene or further away in the genome, and therefore, must stand out amongst the rest of the DNA, like lights on a landing strip. However, the motifs for only 10% of the estimated 763 transcription factors in C. elegans have been identified so far. In this study, Narasimhan, Lambert, Yang et al. used a technique called a ‘protein binding microarray’ to identify the motifs for many more of the C. elegans transcription factors. These findings were then used to predict motifs for other transcription factors. Together, these methods increased the proportion of C. elegans transcription factors with known DNA-binding motifs from 10% to around 40%. Now that more DNA motifs have been identified, it is possible to look for similarities and differences between them. For example, Narasimhan, Lambert, Yang et al. found that transcription factors with similar sequences can bind to very varied motifs. On the other hand, some transcription factors that are very different are able to recognize very similar motifs. The experiments also indicate that motifs found very close to genes—in sequences known as ‘promoters’—may be able to interact with many proteins to influence the activity of genes. Narasimhan, Lambert, Yang et al.'s findings increase the number of C. elegans transcription factors with a motif, bringing the knowledge of these proteins more in line with the better-studied transcription factors of humans and fruit flies. The next challenge is to identify DNA motifs for the remaining 60% of transcription factors. DOI:http://dx.doi.org/10.7554/eLife.06967.002
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jeremy Riddell
- Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
| | - Sanie Mnaimneh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Juan I Fuxman Bass
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Bhambhani C, Ravindranath AJ, Mentink RA, Chang MV, Betist MC, Yang YX, Koushika SP, Korswagen HC, Cadigan KM. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila. PLoS Genet 2014; 10:e1004133. [PMID: 24516405 PMCID: PMC3916239 DOI: 10.1371/journal.pgen.1004133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation. The DNA of cells must be correctly “read” so that the proper genes are expressed. Transcription factors are the primary “DNA readers”, and these proteins bind to specific DNA sequences. Using nematodes as a model system, we investigated the rules of DNA binding for a particular transcription factor, called POP-1, which mediates Wnt signaling, an important cell-cell communication pathway. In addition to its known DNA binding site, we found that POP-1 recognizes additional sequences, termed Helper sites, which are essential for activation of Wnt targets. We used this knowledge to discover that Wnt signaling is active in pacemaker cells in the nematode intestine, which control defecation, a rhythmic behavior with parallels to the vertebrate heartbeat. POP-1 has a dual role in regulating Wnt targets, repressing target genes in the absence of signaling and activating them upon signal stimulation. Surprisingly, we found that Helper sites are only required for activation and not repression, and that this is also the case in the fruit fly Drosophila. This work thus reveals an unexpected complexity in POP-1 DNA binding, which is likely to be relevant for its human counterparts, which play important roles in stem cell biology and cancer.
Collapse
Affiliation(s)
- Chandan Bhambhani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditi J. Ravindranath
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Remco A. Mentink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mikyung V. Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marco C. Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yaxuan X. Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kubota T, Koiwai O, Hori K, Watanabe N, Koiwai K. TdIF1 recognizes a specific DNA sequence through its Helix-Turn-Helix and AT-hook motifs to regulate gene transcription. PLoS One 2013; 8:e66710. [PMID: 23874396 PMCID: PMC3707907 DOI: 10.1371/journal.pone.0066710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/09/2013] [Indexed: 12/27/2022] Open
Abstract
TdIF1 was originally identified as a protein that directly binds to DNA polymerase TdT. TdIF1 is also thought to function in transcription regulation, because it binds directly to the transcriptional factor TReP-132, and to histone deacetylases HDAC1 and HDAC2. Here we show that TdIF1 recognizes a specific DNA sequence and regulates gene transcription. By constructing TdIF1 mutants, we identify amino acid residues essential for its interaction with DNA. An in vitro DNA selection assay, SELEX, reveals that TdIF1 preferentially binds to the sequence 5′-GNTGCATG-3′ following an AT-tract, through its Helix-Turn-Helix and AT-hook motifs. We show that four repeats of this recognition sequence allow TdIF1 to regulate gene transcription in a plasmid-based luciferase reporter assay. We demonstrate that TdIF1 associates with the RAB20 promoter, and RAB20 gene transcription is reduced in TdIF1-knocked-down cells, suggesting that TdIF1 stimulates RAB20 gene transcription.
Collapse
Affiliation(s)
- Takashi Kubota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Osamu Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | | | - Kotaro Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
6
|
Sleumer MC, Wei G, Wang Y, Chang H, Xu T, Chen R, Zhang MQ. Regulatory elements of Caenorhabditis elegans ribosomal protein genes. BMC Genomics 2012; 13:433. [PMID: 22928635 PMCID: PMC3575287 DOI: 10.1186/1471-2164-13-433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/17/2012] [Indexed: 01/16/2023] Open
Abstract
Background Ribosomal protein genes (RPGs) are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from those of all other species examined up until now.
Collapse
Affiliation(s)
- Monica C Sleumer
- Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Conserved Motifs and Prediction of Regulatory Modules in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2012; 2:469-81. [PMID: 22540038 PMCID: PMC3337475 DOI: 10.1534/g3.111.001081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/06/2012] [Indexed: 01/30/2023]
Abstract
Transcriptional regulation, a primary mechanism for controlling the development of multicellular organisms, is carried out by transcription factors (TFs) that recognize and bind to their cognate binding sites. In Caenorhabditis elegans, our knowledge of which genes are regulated by which TFs, through binding to specific sites, is still very limited. To expand our knowledge about the C. elegans regulatory network, we performed a comprehensive analysis of the C. elegans, Caenorhabditis briggsae, and Caenorhabditis remanei genomes to identify regulatory elements that are conserved in all genomes. Our analysis identified 4959 elements that are significantly conserved across the genomes and that each occur multiple times within each genome, both hallmarks of functional regulatory sites. Our motifs show significant matches to known core promoter elements, TF binding sites, splice sites, and poly-A signals as well as many putative regulatory sites. Many of the motifs are significantly correlated with various types of experimental data, including gene expression patterns, tissue-specific expression patterns, and binding site location analysis as well as enrichment in specific functional classes of genes. Many can also be significantly associated with specific TFs. Combinations of motif occurrences allow us to predict the location of cis-regulatory modules and we show that many of them significantly overlap experimentally determined enhancers. We provide access to the predicted binding sites, their associated motifs, and the predicted cis-regulatory modules across the whole genome through a web-accessible database and as tracks for genome browsers.
Collapse
|
8
|
Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang G, Reinke V, Waterston RH, Hillier LW, Ewbank JJ. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 2011; 6:e19055. [PMID: 21602919 PMCID: PMC3094335 DOI: 10.1371/journal.pone.0019055] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/), to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.
Collapse
Affiliation(s)
- Ilka Engelmann
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Aurélien Griffon
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | | | - Frédéric Montañana-Sanchis
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - LaDeana W. Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
9
|
Wagner U, Hirzmann J, Hintz M, Beck E, Geyer R, Hobom G, Taubert A, Zahner H. Characterization of the DMAE-modified juvenile excretory–secretory protein Juv-p120 of Litomosoides sigmodontis. Mol Biochem Parasitol 2011; 176:80-9. [DOI: 10.1016/j.molbiopara.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 12/02/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
10
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
11
|
Gao X, Wang Z, Martin J, Abubucker S, Zhang X, Mitreva M, Hawdon JM. Identification of hookworm DAF-16/FOXO response elements and direct gene targets. PLoS One 2010; 5:e12289. [PMID: 20808816 PMCID: PMC2924398 DOI: 10.1371/journal.pone.0012289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/29/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The infective stage of the parasitic nematode hookworm is developmentally arrested in the environment and needs to infect a specific host to complete its life cycle. The canine hookworm (Ancylostoma caninum) is an excellent model for investigating human hookworm infections. The transcription factor of A. caninum, Ac-DAF-16, which has a characteristic fork head or "winged helix" DNA binding domain (DBD), has been implicated in the resumption of hookworm development in the host. However, the precise roles of Ac-DAF-16 in hookworm parasitism and its downstream targets are unknown. In the present study, we combined molecular techniques and bioinformatics to identify a group of Ac-DAF-16 binding sites and target genes. METHODOLOGY/PRINCIPAL FINDINGS The DNA binding domain of Ac-DAF-16 was used to select genomic fragments by in vitro genomic selection. Twenty four bound genomic fragments were analyzed for the presence of the DAF-16 family binding element (DBE) and possible alternative Ac-DAF-16 bind motifs. The 22 genes linked to these genomic fragments were identified using bioinformatics tools and defined as candidate direct gene targets of Ac-DAF-16. Their developmental stage-specific expression patterns were examined. Also, a new putative DAF-16 binding element was identified. CONCLUSIONS/SIGNIFICANCE Our results show that Ac-DAF-16 is involved in diverse biological processes throughout hookworm development. Further investigation of these target genes will provide insights into the molecular basis by which Ac-DAF-16 regulates its downstream gene network in hookworm infection.
Collapse
Affiliation(s)
- Xin Gao
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| | - Zhengyuan Wang
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Martin
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sahar Abubucker
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xu Zhang
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- The Genome Center, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John M. Hawdon
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
12
|
Sleumer MC, Mah AK, Baillie DL, Jones SJM. Conserved elements associated with ribosomal genes and their trans-splice acceptor sites in Caenorhabditis elegans. Nucleic Acids Res 2010; 38:2990-3004. [PMID: 20100800 PMCID: PMC2875031 DOI: 10.1093/nar/gkq003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The recent publication of the Caenorhabditis elegans cisRED database has provided an extensive catalog of upstream elements that are conserved between nematode genomes. We have performed a secondary analysis to determine which subsequences of the cisRED motifs are found in multiple locations throughout the C. elegans genome. We used the word-counting motif discovery algorithm DME to form the motifs into groups based on sequence similarity. We then examined the genes associated with each motif group using DAVID and Ontologizer to determine which groups are associated with genes that also have significant functional associations in the Gene Ontology and other gene annotation sources. Of the 3265 motif groups formed, 612 (19%) had significant functional associations with respect to GO terms. Eight of the first 20 motif groups based on frequent dodecamers among the cisRED motif sequences were specifically associated with ribosomal protein genes; two of these were similar to mouse EBP-45, rat HNF3-family and Drosophila Zeste transcription factor binding sites. Additionally, seven motif groups were extensions of the canonical C. elegans trans-splice acceptor site. One motif group was tested for regulatory function in a series of green fluorescent protein expression experiments and was shown to be involved in pharyngeal expression.
Collapse
Affiliation(s)
- Monica C Sleumer
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave Suite 100, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
13
|
New tools for investigating the comparative biology of Caenorhabditis briggsae and C. elegans. Genetics 2009; 184:853-63. [PMID: 20008572 DOI: 10.1534/genetics.109.110270] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.
Collapse
|