1
|
Dougherty A, Hawaz MG, Hoang KG, Trac J, Keck JM, Ayes C, Deweese JE. Exploration of the Role of the C-Terminal Domain of Human DNA Topoisomerase IIα in Catalytic Activity. ACS OMEGA 2021; 6:25892-25903. [PMID: 34660952 PMCID: PMC8515377 DOI: 10.1021/acsomega.1c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Human topoisomerase IIα (TOP2A) is a vital nuclear enzyme involved in resolving knots and tangles in DNA during replication and cell division. TOP2A is a homodimer with a symmetrical, multidomain structure. While the N-terminal and core regions of the protein are well-studied, the C-terminal domain is poorly understood but is involved in enzyme regulation and is predicted to be intrinsically disordered. In addition, it appears to be a major region of post-translational modification and includes several Ser and Thr residues, many of which have not been studied for biochemical effects. Therefore, we generated a series of human TOP2A mutants where we changed specific Ser and Thr residues in the C-terminal domain to Ala, Gly, or Ile residues. We designed, purified, and examined 11 mutant TOP2A enzymes. The amino acid changes were made between positions 1272 and 1525 with 1-7 residues changed per mutant. Several mutants displayed increased levels of DNA cleavage without displaying any change in plasmid DNA relaxation or DNA binding. For example, mutations in the regions 1272-1279, 1324-1343, 1351-1365, and 1374-1377 produced 2-3 times more DNA cleavage in the presence of etoposide than wild-type TOP2A. Further, several mutants displayed changes in relaxation and/or decatenation activity. Together, these results support previous findings that the C-terminal domain of TOP2A influences catalytic activity and interacts with the substrate DNA. Furthermore, we hypothesize that it may be possible to regulate the enzyme by targeting positions in the C-terminal domain. Because the C-terminal domain differs between the two human TOP2 isoforms, this strategy may provide a means for selectively targeting TOP2A for therapeutic inhibition. Additional studies are warranted to explore these results in more detail.
Collapse
Affiliation(s)
- Ashley
C. Dougherty
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Mariam G. Hawaz
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Kristine G. Hoang
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Judy Trac
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Jacob M. Keck
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Carmen Ayes
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland
Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
2
|
Ma Y, North BJ, Shu J. Regulation of topoisomerase II stability and activity by ubiquitination and SUMOylation: clinical implications for cancer chemotherapy. Mol Biol Rep 2021; 48:6589-6601. [PMID: 34476738 DOI: 10.1007/s11033-021-06665-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/17/2021] [Indexed: 12/09/2022]
Abstract
DNA topoisomerases II (TOP2) are peculiar enzymes (TOP2α and TOP2β) that modulate the conformation of DNA by momentarily breaking double-stranded DNA to allow another strand to pass through, and then rejoins the DNA phosphodiester backbone. TOP2α and TOP2β play vital roles in nearly all events involving DNA metabolism, including DNA transcription, replication, repair, and chromatin remodeling. Beyond these vital functions, TOP2 enzymes are therapeutic targets for various anticancer drugs, termed TOP2 poisons, such as teniposide, etoposide, and doxorubicin. These drugs exert their antitumor activity by inhibiting the activity of TOP2-DNA cleavage complexes (TOP2ccs) containing DNA double-strand breaks (DSBs), subsequently leading to the degradation of TOP2 by the 26S proteasome, thereby exposing the DSBs and eliciting a DNA damage response. Failure of the DSBs to be appropriately repaired leads to genomic instability. Due to this mechanism, patients treated with TOP2-based drugs have a high incidence of secondary malignancies and cardiotoxicity. While the cytotoxicity associated with TOP2 poisons appears to be TOP2α-dependent, the DNA sequence rearrangements and formation of DSBs appear to be mediated primarily through TOP2β inhibition, likely due to the differential degradation patterns of TOP2α and TOP2β. Research over the past few decades has shown that under various conditions, the ubiquitin-proteasome system (UPS) and the SUMOylation pathway are primarily responsible for regulating the stability and activity of TOP2 and are therefore critical regulators of the therapeutic effect of TOP2-targeting drugs. In this review, we summarize the current progress on the regulation of TOP2α and TOP2β by ubiquitination and SUMOylation. By fully elucidating the basic biology of these essential and complex molecular mechanisms, better strategies may be developed to improve the therapeutic efficacy of TOP2 poisons and minimize the risks of therapy-related secondary malignancy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310029, China
- Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| | - Jianfeng Shu
- HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315020, China.
| |
Collapse
|
3
|
UPF1 promotes chemoresistance to oxaliplatin through regulation of TOP2A activity and maintenance of stemness in colorectal cancer. Cell Death Dis 2021; 12:519. [PMID: 34021129 PMCID: PMC8140095 DOI: 10.1038/s41419-021-03798-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
UPF1 is proved to dysregulate in multiple tumors and influence carcinogenesis. However, the role of UPF1 in oxaliplatin resistance in colorectal cancer (CRC) remains unknown. In our study, UPF1 is upregulated in CRC in mRNA and protein levels and overexpression of UPF1 predicts a poor overall survival (OS) and recurrence-free survival (RFS) in CRC patients and is an independent risk factor for recurrence. UPF1 promotes chemoresistance to oxaliplatin in vitro and in vivo. UPF1-induced oxaliplatin resistance can be associated with interaction between zinc finger of UPF1 and Toprim of TOP2A and increasing phosphorylated TOP2A in a SMG1-dependent manner. Moreover, UPF1 maintains stemness in a TOP2A-dependent manner in CRC. Taken together, UPF1 was overexpressed and predicted a poor prognosis in CRC. UPF1 enhanced chemoresistance to oxaliplatin in CRC, which may result from regulation of TOP2A activity and maintenance of stemness. Our findings could provide a new therapy strategy for chemoresistance to oxaliplatin in CRC patients.
Collapse
|
4
|
Datta KK, Periasamy P, Mohan SV, Ziegman R, Gowda H. Temporal Quantitative Proteomics Reveals Proteomic and Phosphoproteomic Alterations Associated with Adaptive Response to Hypoxia in Melanoma Cells. Cancers (Basel) 2021; 13:cancers13092175. [PMID: 33946525 PMCID: PMC8124723 DOI: 10.3390/cancers13092175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Most solid tumours, including melanoma (skin cancer), are riddled with areas lacking adequate oxygen supply due to insufficient vasculature. Cancer cells in these regions are resistant to therapies and contribute to cancer spread and poor treatment response in patients. Understanding the mechanisms by which cancer cells adapt to survive in such a hostile environment will provide novel avenues for treatment. In this study, we investigated mechanisms that melanoma cells use to adapt and survive in an oxygen-poor environment. We used four different melanoma cell lines and studied how protein levels and phosphorylation patterns on thousands of proteins change when the cells are exposed to poor oxygen conditions. This revealed potential mechanisms on which cancer cells are dependent for survival. These survival mechanisms can be potentially targeted to achieve durable response to therapy. We demonstrate this by targeting one such mechanism required for cancer cell survival. Abstract Hypoxia is a common feature in various solid tumours, including melanoma. Cancer cells in hypoxic environments are resistant to both chemotherapy and radiation. Hypoxia is also associated with immune suppression. Identification of proteins and pathways that regulate cancer cell survival in hypoxic environments can reveal potential vulnerabilities that can be exploited to improve the efficacy of anticancer therapies. We carried out temporal proteomic and phosphoproteomic profiling in melanoma cell lines to identify hypoxia-induced protein expression and phosphorylation changes. By employing a TMT-based quantitative proteomics strategy, we report the identification and quantitation of >7000 proteins and >10,000 phosphosites in melanoma cell lines grown in hypoxia. Proteomics data show metabolic reprogramming as one of the prominent adaptive responses in hypoxia. We identify several novel hypoxia-mediated phosphorylation changes that have not been reported before. They reveal kinase signalling pathways that are potentially involved in modulating cellular response to hypoxia. In addition to known protein expression changes, we identify several novel proteomic alterations associated with adaptive response to hypoxia. We show that cancer cells require the ubiquitin–proteasome system to survive in both normoxia and hypoxia. Inhibition of proteasome activity affects cell survival and may provide a novel therapeutic avenue to target cancer cells in hypoxia. Our study can serve as a valuable resource to pursue novel candidates to target hypoxia in cancers and improve the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Keshava K. Datta
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Correspondence: (K.K.D.); (H.G.)
| | - Parthiban Periasamy
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Sonali V. Mohan
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Rebekah Ziegman
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
| | - Harsha Gowda
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Correspondence: (K.K.D.); (H.G.)
| |
Collapse
|
5
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
6
|
Chang YW, Hsu CL, Tang CW, Chen XJ, Huang HC, Juan HF. Multiomics Reveals Ectopic ATP Synthase Blockade Induces Cancer Cell Death via a lncRNA-mediated Phospho-signaling Network. Mol Cell Proteomics 2020; 19:1805-1825. [PMID: 32788343 DOI: 10.1074/mcp.ra120.002219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 12/24/2022] Open
Abstract
The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Wei Tang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Xiang-Jun Chen
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Sagredou S, Dalezis P, Nikoleousakos N, Nikolaou M, Voura M, Almpanakis K, Panayiotidis MI, Sarli V, Trafalis DT. 3,6-Disubstituted 1,2,4-Triazolo[3,4- b]Thiadiazoles with Anticancer Activity Targeting Topoisomerase II Alpha. Onco Targets Ther 2020; 13:7369-7386. [PMID: 32801761 PMCID: PMC7395825 DOI: 10.2147/ott.s254856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Topoisomerase IIα (topIIα) maintains the topology of DNA in order to ensure the proper functioning of numerous DNA processes. Inhibition of topIIα leads to the killing of cancer cells thus constituting such inhibitors as useful tools in cancer therapeutics. Triazolo[3,4-b]thiadiazole derivatives are known for their wide range of pharmacological activities while previous studies have documented their in vitro anticancer activity. The purpose of the current study was to investigate if these chemical compounds can act as topIIα inhibitors in cell-free and cell-based systems. MATERIALS AND METHODS The MTT assay was performed in DLD-1, HT-29, and LoVo cancer cells so as to evaluate the antiproliferative activity of KA25, KA26, and KA39 triazolo[3,4-b]thiadiazole derivatives. The KA39 compound was tested as a potential topIIα inhibitor using the plasmid-based topoisomerase II drug screening kit. The inhibitory effect of the three derivatives on topIIα phosphorylation was studied in HT-29 and LoVo cancer cells according to Human Phospho-TOP2A/Topoisomerase II Alpha Cell-Based Phosphorylation ELISA Kit. Moreover, flow cytometry was utilized in order to explore apoptotic induction and cell cycle growth arrest, upon treatment with KA39, in DLD-1 and HT-29 cells, respectively. In silico studies were also carried out for further investigation. RESULTS All three triazolo[3,4-b]thiadiazole derivatives showed an in vitro antiproliferative effect with the KA39 compound being the most potent one. Our results indicated that KA39 induced both early and late apoptosis as well as cell cycle growth arrest in S phase. In addition, the compound blocked the relaxation of supercoiled DNA while it also inhibited topIIα phosphorylation (upon treatment; P<0.001). CONCLUSION Among the three triazolo[3,4-b]thiadiazole derivatives, KA39 was shown to be the most potent anticancer agent and catalytic inhibitor of topIIα phosphorylation as well.
Collapse
Affiliation(s)
- Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Nikolaos Nikoleousakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Michail Nikolaou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| | - Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | | | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia2371, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia1683, Cyprus
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki , Thessaloniki, 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens11527, Greece
| |
Collapse
|
8
|
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes (Basel) 2019; 10:genes10110859. [PMID: 31671531 PMCID: PMC6896119 DOI: 10.3390/genes10110859] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Collapse
|
9
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
10
|
It is all about the process(ing): P-body granules and the regulation of signal transduction. Curr Genet 2019; 66:73-77. [PMID: 31317215 DOI: 10.1007/s00294-019-01016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
The eukaryotic cell is subdivided into distinct functional domains by the presence of both membrane-bound and membraneless organelles. The latter include cytoplasmic granules, like the Processing-body (P-body), that are induced in response to stress and contain specific sets of mRNAs and proteins. Although P-bodies have been evolutionarily conserved, we do not yet understand the full extent of their biological functions in the cell. Early studies suggested that these structures might be sites of mRNA decay as the first protein constituents identified were enzymes involved in mRNA processing. However, more recent work indicates that this is not likely to be the primary function of these granules and has even suggested that P-bodies are sites of long-term mRNA storage. Interestingly, P-bodies and other ribonucleoprotein granules have been found to also contain a variety of signaling molecules, including protein kinases and phosphatases key to the normal control of cell growth and survival. Therefore, P-bodies could have a role in the modulation of cell signaling during particular types of stress. This review discusses both the general implications of such a proposal and one particular example that illustrates how the granule recruitment of a protein kinase can impact overall cell physiology.
Collapse
|
11
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
12
|
P-Body Localization of the Hrr25/Casein Kinase 1 Protein Kinase Is Required for the Completion of Meiosis. Mol Cell Biol 2018; 38:MCB.00678-17. [PMID: 29915153 DOI: 10.1128/mcb.00678-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
P-bodies are liquid droplet-like compartments that lack a limiting membrane and are present in many eukaryotic cells. These structures contain specific sets of proteins and mRNAs at concentrations higher than that in the surrounding environment. Although highly conserved, the normal physiological roles of these ribonucleoprotein (RNP) granules remain poorly defined. Here, we report that P-bodies are required for the efficient completion of meiosis in the budding yeast Saccharomyces cerevisiae P-bodies were found to be present during all phases of the meiotic program and to provide protection for the Hrr25/CK1 protein kinase, a key regulator of this developmental process. A failure to associate with these RNP granules resulted in diminished levels of Hrr25 and an ensuing inability to complete meiosis. This work therefore identifies a novel function for these RNP granules and indicates how protein recruitment to these structures can have a significant impact on eukaryotic cell biology.
Collapse
|
13
|
Jain N, Zhu H, Khashab T, Ye Q, George B, Mathur R, Singh RK, Berkova Z, Wise JF, Braun FK, Wang X, Patel K, Xu-Monette ZY, Courty J, Young KH, Sehgal L, Samaniego F. Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia 2018; 32:663-674. [PMID: 28690315 PMCID: PMC5829046 DOI: 10.1038/leu.2017.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
Abstract
Anthracyclines have been a cornerstone in the cure of diffuse large B-cell lymphoma (DLBCL) and other hematological cancers. The ability of anthracyclines to eliminate DLBCL depends on the presence of topoisomerase-II-alpha (TopIIA), a DNA repair enzyme complex. We identified nucleolin as a novel binding partner of TopIIA. Abrogation of nucleolin sensitized DLBCL cells to TopIIA targeting agents (doxorubicin/etoposide). Silencing nucleolin and challenging DLBCL cells with doxorubicin enhanced the phosphorylation of H2AX (γH2AX-marker of DNA damage) and allowed DNA fragmentation. Reconstitution of nucleolin expression in nucleolin-knockdown DLBCL cells prevented TopIIA targeting agent-induced apoptosis. Nucleolin binding to TopIIA was mapped to RNA-binding domain 3 of nucleolin, and this interaction was essential for blocking DNA damage and apoptosis. Nucleolin silencing decreased TopIIA decatenation activity, but enhanced formation of TopIIA-DNA cleavable complexes in the presence of etoposide. Moreover, combining nucleolin inhibitors: aptamer AS1411 or nucant N6L with doxorubicin reduced DLBCL cell survival. These findings are of clinical importance because low nucleolin levels versus high nucleolin levels in DLBCL predicted 90-month estimated survival of 70% versus 12% (P<0.0001) of patients treated with R-CHOP-based therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- DNA Damage
- DNA Topoisomerases, Type II/metabolism
- Female
- Gene Expression
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Molecular Targeted Therapy
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors
- Poly-ADP-Ribose Binding Proteins/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Nucleolin
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Haifeng Zhu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Tamer Khashab
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, Pennsylvania, USA
| | - Qing Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Ram Kumar Singh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jillian F. Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Frank K. Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Xin Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Jose Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires, CNRS, Université Paris-Est, 61 avenue du général De Gaulle, 94010 Créteil, France
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| |
Collapse
|
14
|
Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent of p53. Oncogene 2017; 36:6085-6096. [PMID: 28692049 DOI: 10.1038/onc.2017.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Mdm2 is often overexpressed in tumors that retain wild-type TP53 but may affect therapeutic response independently of p53. Herein is shown that tumor cells with MDM2 amplification are selectively resistant to treatment with topoisomerase II poisons but not other DNA damaging agents. Tumor cells that overexpress Mdm2 have reduced DNA double-strand breaks in response to doxorubicin or etoposide. This latter result is not due to altered drug uptake. The selective attenuation of DNA damage in response to these agents is dependent on both Mdm2 levels and an intact ubiquitin ligase function. These findings reveal a novel, p53-independent activity of Mdm2 and have important implications for the choice of chemotherapeutic agents in the treatment of Mdm2-overexpressing tumors.
Collapse
|
15
|
The Activity-Dependent Regulation of Protein Kinase Stability by the Localization to P-Bodies. Genetics 2016; 203:1191-202. [PMID: 27182950 DOI: 10.1534/genetics.116.187419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic cytoplasm contains a variety of ribonucleoprotein (RNP) granules in addition to the better-understood membrane-bound organelles. These granules form in response to specific stress conditions and contain a number of signaling molecules important for the control of cell growth and survival. However, relatively little is known about the mechanisms responsible for, and the ultimate consequences of, this protein localization. Here, we show that the Hrr25/CK1δ protein kinase is recruited to cytoplasmic processing bodies (P-bodies) in an evolutionarily conserved manner. This recruitment requires Hrr25 kinase activity and the Dcp2 decapping enzyme, a core constituent of these RNP granules. Interestingly, the data indicate that this localization sequesters active Hrr25 away from the remainder of the cytoplasm and thereby shields this enzyme from the degradation machinery during these periods of stress. Altogether, this work illustrates how the presence within an RNP granule can alter the ultimate fate of the localized protein.
Collapse
|
16
|
Abstract
Long term survival of childhood cancers is now more than 70%. Anthracyclines, including doxorubicin, are some of the most efficacious anticancer drugs available. However, its use as a chemotherapeutic agent is severely hindered by its dose-limiting toxicities. Most notably observed is cardiotoxicity, but other organ systems are also degraded by doxorubicin use. Despite the years of its use and the amount of information written about this drug, an understanding of its cellular mechanisms is not fully appreciated. The mechanisms by which doxorubicin induces cytotoxicity in target cancer cells have given insight about how the drug damages cardiomyocytes. The major mechanisms of doxorubicin actions are thought to be as an oxidant generator and as an inhibitor of topoisomerase 2. However, other signaling pathways are also invoked with significant consequences for the cardiomyocyte. Further the interaction between oxidant generation and topoisomerase function has only recently been appreciated and the consequences of this interaction are still not fully understood. The unfortunate consequences of doxorubicin within cardiomyocytes have promoted the search for new drugs and methods that can prevent or reverse the damage caused to the heart after treatment in cancer patients. Alternative protocols have lessened the impact on newly diagnosed cancer patients. However the years of doxorubicin use have generated a need for monitoring the onset of cardiotoxicity as well as understanding its potential long-term consequences. Although a fairly clear understanding of the short-term pathologic mechanisms of doxorubicin actions has been achieved, the long-term mechanisms of doxorubicin induced heart failure remain to be carefully delineated.
Collapse
Affiliation(s)
| | - John G. Edwards
- Corresponding author at: Department of Physiology, New York Medical College, 15 Dana Road, Valhalla, NY, United States.Department of PhysiologyNew York Medical College15 Dana RoadValhallaNYUnited States
| |
Collapse
|
17
|
Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR, Cleveland JL, Stroupe ME, Karbstein K. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J Cell Biol 2015; 208:745-59. [PMID: 25778921 PMCID: PMC4362465 DOI: 10.1083/jcb.201409056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/02/2015] [Indexed: 11/25/2022] Open
Abstract
Casein kinase 1δ/ε (CK1δ/ε) and their yeast homologue Hrr25 are essential for cell growth. Further, CK1δ is overexpressed in several malignancies, and CK1δ inhibitors have shown promise in several preclinical animal studies. However, the substrates of Hrr25 and CK1δ/ε that are necessary for cell growth and survival are unknown. We show that Hrr25 is essential for ribosome assembly, where it phosphorylates the assembly factor Ltv1, which causes its release from nascent 40S subunits and allows subunit maturation. Hrr25 inactivation or expression of a nonphosphorylatable Ltv1 variant blocked Ltv1 release in vitro and in vivo, and prevented entry into the translation-like quality control cycle. Conversely, phosphomimetic Ltv1 variants rescued viability after Hrr25 depletion. Finally, Ltv1 knockdown in human breast cancer cells impaired apoptosis induced by CK1δ/ε inhibitors, establishing that the antiproliferative activity of these inhibitors is due, at least in part, to disruption of ribosome assembly. These findings validate the ribosome assembly pathway as a novel target for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Homa Ghalei
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Franz X Schaub
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - Joanne R Doherty
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Yoshihiko Noguchi
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - William R Roush
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - John L Cleveland
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - M Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Katrin Karbstein
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
18
|
Laing EE, Johnston JD, Möller-Levet CS, Bucca G, Smith CP, Dijk DJ, Archer SN. Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health. Bioessays 2015; 37:544-56. [PMID: 25772847 PMCID: PMC5031210 DOI: 10.1002/bies.201400193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The power of the application of bioinformatics across multiple publicly available transcriptomic data sets was explored. Using 19 human and mouse circadian transcriptomic data sets, we found that NR1D1 and NR1D2 which encode heme‐responsive nuclear receptors are the most rhythmic transcripts across sleep conditions and tissues suggesting that they are at the core of circadian rhythm generation. Analyzes of human transcriptomic data show that a core set of transcripts related to processes including immune function, glucocorticoid signalling, and lipid metabolism is rhythmically expressed independently of the sleep‐wake cycle. We also identify key transcripts associated with transcription and translation that are disrupted by sleep manipulations, and through network analysis identify putative mechanisms underlying the adverse health outcomes associated with sleep disruption, such as diabetes and cancer. Comparative bioinformatics applied to existing and future data sets will be a powerful tool for the identification of core circadian‐ and sleep‐dependent molecules.
Collapse
Affiliation(s)
- Emma E Laing
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Babron MC, Kazma R, Gaborieau V, McKay J, Brennan P, Sarasin A, Benhamou S. Genetic variants in DNA repair pathways and risk of upper aerodigestive tract cancers: combined analysis of data from two genome-wide association studies in European populations. Carcinogenesis 2014; 35:1523-7. [PMID: 24658182 DOI: 10.1093/carcin/bgu075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA repair pathways are good candidates for upper aerodigestive tract cancer susceptibility because of their critical role in maintaining genome integrity. We have selected 13 pathways involved in DNA repair representing 212 autosomal genes. To assess the role of these pathways and their associated genes, two European data sets from the International Head and Neck Cancer Epidemiology consortium were pooled, totaling 1954 cases and 3121 controls, with documented demographic, lifetime alcohol and tobacco consumption information. We applied an innovative approach that tests single nucleotide polymorphism (SNP)-sets within DNA repair pathways and then within genes belonging to the significant pathways. We showed an association between the polymerase pathway and oral cavity/pharynx cancers (P-corrected = 4.45 × 10(-) (2)), explained entirely by the association with one SNP, rs1494961 (P = 2.65 × 10(-) (4)), a missense mutation V306I in the second exon of HELQ gene. We also found an association between the cell cycle regulation pathway and esophagus cancer (P-corrected = 1.48 × 10(-) (2)), explained by three SNPs located within or near CSNK1E gene: rs1534891 (P = 1.27 × 10(-) (4)), rs7289981 (P = 3.37 × 10(-) (3)) and rs13054361 (P = 4.09 × 10(-) (3)). As a first attempt to investigate pathway-level associations, our results suggest a role of specific DNA repair genes/pathways in specific upper aerodigestive tract cancer sites.
Collapse
Affiliation(s)
- Marie-Claude Babron
- Inserm, U946, Genetic Variation and Human, Diseases and Université Paris-Diderot, Sorbonne Paris-Cité, UMRS-946, Paris, F-75010, France
| | - Rémi Kazma
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Valérie Gaborieau
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - James McKay
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - Paul Brennan
- Department of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, F-69008, France
| | - Alain Sarasin
- Université Paris-Sud, Faculty of Medicine, Villejuif, F-94805, France, CNRS, UMR8200, Genomes and Cancers and Gustave Roussy, Villejuif, F-94805, France
| | - Simone Benhamou
- Inserm, U946, Genetic Variation and Human, Diseases and Université Paris-Diderot, Sorbonne Paris-Cité, UMRS-946, Paris, F-75010, France, Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
20
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
21
|
Bhosle J, Kiakos K, Porter ACG, Wu J, Makris A, Hartley JA, Hochhauser D. Treatment with gefitinib or lapatinib induces drug resistance through downregulation of topoisomerase IIα expression. Mol Cancer Ther 2013; 12:2897-908. [PMID: 24092808 DOI: 10.1158/1535-7163.mct-12-1049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The EGF receptor (EGFR) is therapeutically targeted by antibodies and small molecules in solid tumors including lung, colorectal, and breast cancer. However, chemotherapy remains important, and efforts to improve efficacy through combination with targeted agents is challenging. This study examined the effects of short and long durations of exposure to the EGFR- and HER2-targeted tyrosine kinase inhibitors (TKI) gefitinib and lapatinib, on induction of cell death and DNA damage by topoisomerase IIα (Topo IIα) poisons, in the SK-Br-3 HER2-amplified breast cancer cell line. Short exposure to either gefitinib or lapatinib for 1 hour did not affect the induction of apoptosis by the Topo IIα poisons doxorubicin, etoposide, and m-AMSA. In contrast, cells treated for 48 hours were resistant to all three drugs. Short exposure (1 hour) to TKI did not alter the number of DNA single- or double-strand breaks (DSB) induced, whereas longer exposure (48 hours) reduced the number of DNA DSBs and the formation of γ-H2AX foci. Both gefitinib and lapatinib reduced the expression and activity of Topo IIα at 48 hours. Studies using a cell line with inducible downregulation of Topo IIα showed that expression of Topo IIα, and not Topo IIβ, determined the number of DNA strand breaks induced by these chemotherapeutic agents. These results indicate that prolonged exposure to TKIs targeting EGFR and HER2 induce resistance to doxorubicin, etoposide, and m-AMSA through downregulation of Topo IIα. This may explain why their addition to chemotherapy regimens have not increased efficacy.
Collapse
Affiliation(s)
- Jaishree Bhosle
- Corresponding Author: Daniel Hochhauser, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wartlick F, Bopp A, Henninger C, Fritz G. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3093-3103. [DOI: 10.1016/j.bbamcr.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023]
|
23
|
Ganapathi RN, Ganapathi MK. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front Pharmacol 2013; 4:89. [PMID: 23914174 PMCID: PMC3729981 DOI: 10.3389/fphar.2013.00089] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/24/2013] [Indexed: 11/13/2022] Open
Abstract
Inhibitors of topoisomerase II (topo II) are clinically effective in the management of hematological malignancies and solid tumors. The efficacy of anti-tumor drugs targeting topo II is often limited by resistance and studies with in vitro cell culture models have provided several insights on potential mechanisms. Multidrug transporters that are involved in the efflux and consequently reduced cytotoxicity of diverse anti-tumor agents suggest that they play an important role in resistance to clinically active drugs. However, in clinical trials, modulating the multidrug-resistant phenotype with agents that inhibit the efflux pump has not had an impact. Since reduced drug accumulation per se is insufficient to explain tumor cell resistance to topo II inhibitors several studies have focused on characterizing mechanisms that impact on DNA damage mediated by drugs that target the enzyme. Mammalian topo IIα and topo IIβ isozymes exhibit similar catalytic, but different biologic, activities. Whereas topo IIα is associated with cell division, topo IIβ is involved in differentiation. In addition to site specific mutations that can affect drug-induced topo II-mediated DNA damage, post-translation modification of topo II primarily by phosphorylation can potentially affect enzyme-mediated DNA damage and the downstream cytotoxic response of drugs targeting topo II. Signaling pathways that can affect phosphorylation and changes in intracellular calcium levels/calcium dependent signaling that can regulate site-specific phosphorylation of topoisomerase have an impact on downstream cytotoxic effects of topo II inhibitors. Overall, tumor cell resistance to inhibitors of topo II is a complex process that is orchestrated not only by cellular pharmacokinetics but more importantly by enzymatic alterations that govern the intrinsic drug sensitivity.
Collapse
Affiliation(s)
- Ram N Ganapathi
- Levine Cancer Institute, Carolinas HealthCare System Charlotte, NC, USA
| | | |
Collapse
|
24
|
Hicks S, Labinskyy N, Piteo B, Laurent D, Mathew JE, Gupte SA, Edwards JG. Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat. Am J Physiol Heart Circ Physiol 2013; 304:H903-15. [PMID: 23376826 DOI: 10.1152/ajpheart.00567.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction has a significant role in the development of diabetic cardiomyopathy. Mitochondrial oxidant stress has been accepted as the singular cause of mitochondrial DNA (mtDNA) damage as an underlying cause of mitochondrial dysfunction. However, separate from a direct effect on mtDNA integrity, diabetic-induced increases in oxidant stress alter mitochondrial topoisomerase function to propagate mtDNA mutations as a contributor to mitochondrial dysfunction. Both glucose-challenged neonatal cardiomyocytes and the diabetic Goto-Kakizaki (GK) rat were studied. In both the GK left ventricle (LV) and in cardiomyocytes, chronically elevated glucose presentation induced a significant increase in mtDNA damage that was accompanied by decreased mitochondrial function. TTGE analysis revealed a number of base pair substitutions in the 3' end of COX3 from GK LV mtDNA that significantly altered the protein sequence. Mitochondrial topoisomerase DNA cleavage activity in isolated mitochondria was significantly increased in the GK LV compared with Wistar controls. Both hydroxycamptothecin, a topoisomerase type 1 inhibitor, and doxorubicin, a topoisomerase type 2 inhibitor, significantly exacerbated the DNA cleavage activity of isolated mitochondrial extracts indicating the presence of multiple functional topoisomerases in the mitochondria. Mitochondrial topoisomerase function was significantly altered in the presence of H2O2 suggesting that separate from a direct effect on mtDNA, oxidant stress mediated type II diabetes-induced alterations of mitochondrial topoisomerase function. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mtDNA integrity and the well being of the diabetic myocardium.
Collapse
Affiliation(s)
- S Hicks
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Laishram RS, Barlow CA, Anderson RA. CKI isoforms α and ε regulate Star-PAP target messages by controlling Star-PAP poly(A) polymerase activity and phosphoinositide stimulation. Nucleic Acids Res 2011; 39:7961-73. [PMID: 21729869 PMCID: PMC3185439 DOI: 10.1093/nar/gkr549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Star-PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P(2)), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P(2) sensitive CKI isoform, CKIα associates with and phosphorylates Star-PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star-PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P(2). CKI activity was required for the expression and efficient 3'-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star-PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star-PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star-PAP targets. We show that in addition to CKIα, Star-PAP associates with another CKI isoform, CKIε in the Star-PAP complex that phosphorylates Star-PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3'-end processing of Star-PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star-PAP activity and regulates Star-PAP target messages.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Department of Pharmacology, University of Wisconsin-Madison, 1300 University Ave. University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
26
|
Gardner L, Malik R, Shimizu Y, Mullins N, ElShamy WM. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation, leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res 2011; 13:R53. [PMID: 21595939 PMCID: PMC3218940 DOI: 10.1186/bcr2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/16/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The nuclear enzyme topoisomerase IIα (TopoIIα) is able to cleave DNA in a reversible manner, making it a valuable target for agents such as etoposide that trap the enzyme in a covalent bond with the 5' DNA end to which it cleaves. This prevents DNA religation and triggers cell death in cancer cells. However, development of resistance to these agents limits their therapeutic use. In this study, we examined the therapeutic targeting of geminin for improving the therapeutic potential of TopoIIα agents. METHODS Human mammary epithelial (HME) cells and several breast cancer cell lines were used in this study. Geminin, TopoIIα and cell division cycle 7 (Cdc7) silencing were done using specific small interfering RNA. Transit or stable inducible overexpression of these proteins and casein kinase Iε (CKIε) were also used, as well as several pharmacological inhibitors that target TopoIIα, Cdc7 or CKIε. We manipulated HME cells that expressed H2B-GFP, or did not, to detect chromosome bridges. Immunoprecipitation and direct Western blot analysis were used to detect interactions between these proteins and their total expression, respectively, whereas interactions on chromosomal arms were detected using a trapped in agarose DNA immunostaining assay. TopoIIα phosphorylation by Cdc7 or CKIε was done using an in vitro kinase assay. The TopoGen decatenation kit was used to measure TopoIIα decatenation activity. Finally, a comet assay and metaphase chromosome spread were used to detect chromosome breakage and changes in chromosome condensation or numbers, respectively. RESULTS We found that geminin and TopoIIα interact primarily in G2/M/early G1 cells on chromosomes, that geminin recruits TopoIIα to chromosomal decatenation sites or vice versa and that geminin silencing in HME cells triggers the formation of chromosome bridges by suppressing TopoIIα access to chromosomal arms. CKIε kinase phosphorylates and positively regulates TopoIIα chromosome localization and function. CKIε kinase overexpression or Cdc7 kinase silencing, which we show phosphorylates TopoIIα in vitro, restored DNA decatenation and chromosome segregation in geminin-silenced cells before triggering cell death. In vivo, at normal concentration, geminin recruits the deSUMOylating sentrin-specific proteases SENP1 and SENP2 enzymes to deSUMOylate chromosome-bound TopoIIα and promote its release from chromosomes following completion of DNA decatenation. In cells overexpressing geminin, premature departure of TopoIIα from chromosomes is thought to be due to the fact that geminin recruits more of these deSUMOylating enzymes, or recruits them earlier, to bound TopoIIα. This triggers premature release of TopoIIα from chromosomes, which we propose induces aneuploidy in HME cells, since chromosome breakage generated through this mechanism were not sensed and/or repaired and the cell cycle was not arrested. Expression of mitosis-inducing proteins such as cyclin A and cell division kinase 1 was also increased in these cells because of the overexpression of geminin. CONCLUSIONS TopoIIα recruitment and its chromosome decatenation function require a normal level of geminin. Geminin silencing induces a cytokinetic checkpoint in which Cdc7 phosphorylates TopoIIα and inhibits its chromosomal recruitment and decatenation and/or segregation function. Geminin overexpression prematurely deSUMOylates TopoIIα, triggering its premature departure from chromosomes and leading to chromosomal abnormalities and the formation of aneuploid, drug-resistant cancer cells. On the basis of our findings, we propose that therapeutic targeting of geminin is essential for improving the therapeutic potential of TopoIIα agents.
Collapse
Affiliation(s)
- Lauren Gardner
- Cancer Institute, Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | | | | | |
Collapse
|
27
|
Grozav AG, Willard BB, Kozuki T, Chikamori K, Micluta MA, Petrescu AJ, Kinter M, Ganapathi R, Ganapathi MK. Tyrosine 656 in topoisomerase IIβ is important for the catalytic activity of the enzyme: Identification based on artifactual +80-Da modification at this site. Proteomics 2011; 11:829-42. [PMID: 21280220 DOI: 10.1002/pmic.201000194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/11/2022]
Abstract
Topoisomerase (topo) II catalyzes topological changes in DNA. Although both human isozymes, topo IIα and β are phosphorylated, site-specific phosphorylation of topo IIβ is poorly characterized. Using LC-MS/MS analysis of topo IIβ, cleaved with trypsin, Arg C or cyanogen bromide (CNBr) plus trypsin, we detected four +80-Da modified sites: tyr656, ser1395, thr1426 and ser1545. Phosphorylation at ser1395, thr1426 and ser1545 was established based on neutral loss of H(3) PO(4) (-98 Da) in the CID spectra and on differences in 2-D-phosphopeptide maps of (32) P-labeled wild-type (WT) and S1395A or T1426A/S1545A mutant topo IIβ. However, phosphorylation at tyr656 could not be verified by 2-D-phosphopeptide mapping of (32) P-labeled WT and Y656F mutant protein or by Western blotting with phosphotyrosine-specific antibodies. Since the +80-Da modification on tyr656 was observed exclusively during cleavage with CNBr and trypsin, this modification likely represented bromination, which occurred during CNBr cleavage. Re-evaluation of the CID spectra identified +78/+80-Da fragment ions in CID spectra of two peptides containing tyr656 and tyr711, confirming bromination. Interestingly, mutation of only tyr656, but not ser1395, thr1326 or ser1545, decreased topo IIβ activity, suggesting a functional role for tyr656. These results, while identifying an important tyrosine in topo IIβ, underscore the importance of careful interpretation of modifications having the same nominal mass.
Collapse
Affiliation(s)
- Adrian G Grozav
- Clinical Pharmacology Program, Taussig Cancer Institute, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia 2010; 24:729-39. [PMID: 20200558 DOI: 10.1038/leu.2010.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid (RA) relieves the maturation block in t(15:17) acute promyelocytic leukemia (APL), leading to granulocytic differentiation. However, RA treatment alone invariably results in RA resistance, both in vivo and in vitro. RA-resistant cell lines have been shown to serve as useful models for elucidation of mechanisms of resistance. Previously, we identified topoisomerase II beta (TOP2B) as a novel mediator of RA-resistance in APL cell lines. In this study, we show that both TOP2B protein stability and activity are regulated by a member of the protein kinase C (PRKC) family, PRKC delta (PRKCD). Co-treatment with a pharmacologic inhibitor of PRKCD and RA resulted in the induction of an RA responsive reporter construct, as well as the endogenous RA target genes, CEBPE, CYP26A1 and RIG-I. Furthermore, the co-treatment overcame the differentiation block in RA-resistant cells, as assessed by morphological analysis, restoration of promyelocytic leukemia nuclear bodies, induction of CD11c cell surface expression and an increase in nitro-blue-tetrazolium reduction. Cumulatively, our data suggest a model whereby inhibition of PRKCD decreases TOP2B protein levels, leading to a loss of TOP2B-mediated repressive effects on RA-induced transcription and granulocytic differentiation.
Collapse
|
29
|
Utz AC, Hirner H, Blatz A, Hillenbrand A, Schmidt B, Deppert W, Henne-Bruns D, Fischer D, Thal DR, Leithäuser F, Knippschild U. Analysis of cell type-specific expression of CK1 epsilon in various tissues of young adult BALB/c Mice and in mammary tumors of SV40 T-Ag-transgenic mice. J Histochem Cytochem 2009; 58:1-15. [PMID: 19755715 DOI: 10.1369/jhc.2009.954628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 1 epsilon (CK1epsilon) is involved in various cellular processes, including cell growth, differentiation, and apoptosis, vesicle transport, and control of the circadian rhythm. Deregulation of CK1epsilon has been linked to neurodegenerative diseases and cancer. To better understand the cell type-specific functions of CK1epsilon, we determined its localization by immunhistochemistry in tissues of healthy, young adult BALB/c mice and in mammary tumors of SV40 T-antigen-transgenic mice. CK1epsilon expression was found to be highly regulated in normal tissues of endodermal, mesodermal, and ectodermal origin and in neoplastic tissue of mammary cancer. The data presented here give an overview of CK1epsilon reactivity in different organs under normal conditions and outline changes in its expression in mammary carcinomas. Our data suggest a cell/organ type-specific function of CK1epsilon and indicate that tumorigenic conversion of mammary glands in SV40 T-antigen-transgenic mice leads to downregulation of CK1epsilon. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Anja C Utz
- Department of General, Visceral, and Transplantation Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|