1
|
Abstract
Although fragment-based drug discovery (FBDD) has been successfully implemented and well-explored for protein targets, its feasibility for RNA targets is emerging. Despite the challenges associated with the selective targeting of RNA, efforts to integrate known methods of RNA binder discovery with fragment-based approaches have been fruitful, as a few bioactive ligands have been identified. Here, we review various fragment-based approaches implemented for RNA targets and provide insights into experimental design and outcomes to guide future work in the area. Indeed, investigations surrounding the molecular recognition of RNA by fragments address rather important questions such as the limits of molecular weight that confer selective binding and the physicochemical properties favorable for RNA binding and bioactivity.
Collapse
Affiliation(s)
- Blessy M. Suresh
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
2
|
All Domains of SARS-CoV-2 nsp1 Determine Translational Shutoff and Cytotoxicity of the Protein. J Virol 2023; 97:e0186522. [PMID: 36847528 PMCID: PMC10062135 DOI: 10.1128/jvi.01865-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable β5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.
Collapse
|
3
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
4
|
Mureddu LG, Vuister GW. Fragment-Based Drug Discovery by NMR. Where Are the Successes and Where can It Be Improved? Front Mol Biosci 2022; 9:834453. [PMID: 35252355 PMCID: PMC8895297 DOI: 10.3389/fmolb.2022.834453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last century, the definitions of pharmaceutical drug and drug discovery have changed considerably. Evolving from an almost exclusively serendipitous approach, drug discovery nowadays involves several distinct, yet sometimes interconnected stages aimed at obtaining molecules able to interact with a defined biomolecular target, and triggering a suitable biological response. At each of the stages, a wide range of techniques are typically employed to obtain the results required to move the project into the next stage. High Throughput Screening (HTS) and Fragment Based Drug Design (FBDD) are the two main approaches used to identify drug-like candidates in the early stages of drug discovery. Nuclear Magnetic Resonance (NMR) spectroscopy has many applications in FBDD and is used extensively in industry as well as in academia. In this manuscript, we discuss the paths of both successful and unsuccessful molecules where NMR had a crucial part in their development. We specifically focus on the techniques used and describe strengths and weaknesses of each stage by examining several case studies. More precisely, we examine the development history from the primary screening to the final lead optimisation of AZD3839 interacting with BACE-1, ABT-199 interacting with BCL2/XL and S64315 interacting with MCL-1. Based on these studies, we derive observations and conclusions regarding the FBDD process by NMR and discuss its potential improvements.
Collapse
Affiliation(s)
| | - Geerten W. Vuister
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Structural and Functional Characterization of Host FHL1 Protein Interaction with Hypervariable Domain of Chikungunya Virus nsP3 Protein. J Virol 2020; 95:JVI.01672-20. [PMID: 33055253 DOI: 10.1128/jvi.01672-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022] Open
Abstract
Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.
Collapse
|
6
|
Shine A, Shenoy J, Jayan P, Jiji AC, Vijayan V. Residual Dipolar‐Coupling‐Based Conformational Comparison of Noncovalent Ubiquitin Homodimer with Covalently Linked Diubiquitin. Chemphyschem 2020; 21:888-894. [DOI: 10.1002/cphc.201901100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- A. Shine
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - J. Shenoy
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - Parvathy Jayan
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - A. C. Jiji
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - Vinesh Vijayan
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| |
Collapse
|
7
|
Agback P, Dominguez F, Pustovalova Y, Lukash T, Shiliaev N, Orekhov VY, Frolov I, Agback T, Frolova EI. Structural characterization and biological function of bivalent binding of CD2AP to intrinsically disordered domain of chikungunya virus nsP3 protein. Virology 2019; 537:130-142. [PMID: 31493651 DOI: 10.1016/j.virol.2019.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Alphavirus nsP3 proteins contain long, intrinsically disordered, hypervariable domains, HVD, which serve as hubs for interaction with many cellular proteins. Here, we have deciphered the mechanism and function of HVD interaction with host factors in alphavirus replication. Using NMR spectroscopy, we show that CHIKV HVD contains two SH3 domain-binding sites. Using an innovative chemical shift perturbation signature approach, we demonstrate that CD2AP interaction with HVD is mediated by its SH3-A and SH3-C domains, and this leaves the SH3-B domain available for interaction with other cellular factor(s). This cooperative interaction with two SH3 domains increases binding affinity to CD2AP and possibly induces long-range allosteric effects in HVD. Our data demonstrate that BIN1, CD2AP and SH3KBP1 play redundant roles in initiation of CHIKV replication. Point mutations in both CHIKV HVD binding sites abolish its interaction with all three proteins, CD2AP, BIN1 and SH3KBP1. This results in strong inhibition of viral replication initiation.
Collapse
Affiliation(s)
- Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Yulia Pustovalova
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Lukash
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Nikita Shiliaev
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Vladislav Yu Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
8
|
Dagil L, Troelsen KS, Bolt G, Thim L, Wu B, Zhao X, Tuddenham EGD, Nielsen TE, Tanner DA, Faber JH, Breinholt J, Rasmussen JE, Hansen DF. Interaction Between the a3 Region of Factor VIII and the TIL'E' Domains of the von Willebrand Factor. Biophys J 2019; 117:479-489. [PMID: 31349985 PMCID: PMC6697466 DOI: 10.1016/j.bpj.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
The von Willebrand factor (VWF) and coagulation factor VIII (FVIII) are intricately involved in hemostasis. A tight, noncovalent complex between VWF and FVIII prolongs the half-life of FVIII in plasma, and failure to form this complex leads to rapid clearance of FVIII and bleeding diatheses such as hemophilia A and von Willebrand disease (VWD) type 2N. High-resolution insight into the complex between VWF and FVIII has so far been strikingly lacking. This is particularly the case for the flexible a3 region of FVIII, which is imperative for high-affinity binding. Here, a structural and biophysical characterization of the interaction between VWF and FVIII is presented with focus on two of the domains that have been proven pivotal for mediating the interaction, namely the a3 region of FVIII and the TIL'E' domains of VWF. Binding between the FVIII a3 region and VWF TIL'E' was here observed using NMR spectroscopy, where chemical shift changes were localized to two β-sheet regions on the edge of TIL'E' upon FVIII a3 region binding. Isothermal titration calorimetry and NMR spectroscopy were used to characterize the interaction between FVIII and TIL'E' as well as mutants of TIL'E', which further highlights the importance of the β-sheet region of TIL'E' for high-affinity binding. Overall, the results presented provide new insight into the role the FVIII a3 region plays for complex formation between VWF and FVIII and the β-sheet region of TIL'E' is shown to be important for FVIII binding. Thus, the results pave the way for further high-resolution insights into this imperative complex.
Collapse
Affiliation(s)
- Lisbeth Dagil
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Kathrin S Troelsen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gert Bolt
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Lars Thim
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Bo Wu
- Novo Nordisk Research Center China, Beijing, China
| | - Xin Zhao
- Novo Nordisk Research Center China, Beijing, China
| | - Edward G D Tuddenham
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; Katharine Dormandy, Haemophilia Centre and Thrombosis Unit, Royal Free Hospital NHS Trust, London, United Kingdom
| | | | - David A Tanner
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Ortega-Roldan JL, Blackledge M, Jensen MR. Characterizing Protein-Protein Interactions Using Solution NMR Spectroscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1764:73-85. [PMID: 29605909 DOI: 10.1007/978-1-4939-7759-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this chapter, we describe how NMR chemical shift titrations can be used to study the interaction between two proteins with emphasis on mapping the interface of the complex and determining the binding affinity from a quantitative analysis of the experimental data. In particular, we discuss the appearance of NMR spectra in different chemical exchange regimes (fast, intermediate, and slow) and how these regimes affect NMR data analysis.
Collapse
|
10
|
Mackenzie HW, Hansen DF. Arginine Side-Chain Hydrogen Exchange: Quantifying Arginine Side-Chain Interactions in Solution. Chemphyschem 2019; 20:252-259. [PMID: 30085401 PMCID: PMC6391956 DOI: 10.1002/cphc.201800598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/03/2023]
Abstract
The rate with which labile backbone hydrogen atoms in proteins exchange with the solvent has long been used to probe protein interactions in aqueous solutions. Arginine, an essential amino acid found in many interaction interfaces, is capable of an impressive range of interactions via its guanidinium group. The hydrogen exchange rate of the guanidinium hydrogens therefore becomes an important measure to quantify side-chain interactions. Herein we present an NMR method to quantify the hydrogen exchange rates of arginine side-chain 1 Hϵ protons and thus present a method to gauge the strength of arginine side-chain interactions. The method employs 13 C-detection and the one-bond deuterium isotope shift observed for 15 Nϵ to generate two exchanging species in 1 H2 O/2 H2 O mixtures. An application to the protein T4 Lysozyme is shown, where protection factors calculated from the obtained exchange rates correlate well with the interactions observed in the crystal structure. The methodology presented provides an important step towards characterising interactions of arginine side-chains in enzymes, in phase separation, and in protein interaction interfaces in general.
Collapse
Affiliation(s)
- Harold W. Mackenzie
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| | - D. Flemming Hansen
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| |
Collapse
|
11
|
Salmon L, Blackledge M. Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:126601. [PMID: 26517337 DOI: 10.1088/0034-4885/78/12/126601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nuclear magnetic resonance spectroscopy is exquisitely sensitive to protein dynamics. In particular inter-nuclear dipolar couplings, that become measurable in solution when the protein is dissolved in a dilute liquid crystalline solution, report on all conformations sampled up to millisecond timescales. As such they provide the opportunity to describe the Boltzmann distribution present in solution at atomic resolution, and thereby to map the conformational energy landscape in unprecedented detail. The development of analytical methods and approaches based on numerical simulation and their application to numerous biologically important systems is presented.
Collapse
Affiliation(s)
- Loïc Salmon
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France. CEA, DSV, IBS, F-38027 Grenoble, France. CNRS, IBS, F-38027 Grenoble, France
| | | |
Collapse
|
12
|
Rouka E, Simister PC, Janning M, Kumbrink J, Konstantinou T, Muniz JRC, Joshi D, O'Reilly N, Volkmer R, Ritter B, Knapp S, von Delft F, Kirsch KH, Feller SM. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3). J Biol Chem 2015; 290:25275-92. [PMID: 26296892 DOI: 10.1074/jbc.m115.637207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 11/06/2022] Open
Abstract
CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.
Collapse
Affiliation(s)
- Evgenia Rouka
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Philip C Simister
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom,
| | - Melanie Janning
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Joerg Kumbrink
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Tassos Konstantinou
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - João R C Muniz
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Dhira Joshi
- the Peptide Chemistry Laboratory, London Research Institute Cancer Research UK, London WC2A 3LY, United Kingdom
| | - Nicola O'Reilly
- the Peptide Chemistry Laboratory, London Research Institute Cancer Research UK, London WC2A 3LY, United Kingdom
| | - Rudolf Volkmer
- the Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Brigitte Ritter
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stefan Knapp
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Frank von Delft
- the Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom, the Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and the Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Kathrin H Kirsch
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stephan M Feller
- From the Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom, the Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany,
| |
Collapse
|
13
|
Liu Z, Gong Z, Dong X, Tang C. Transient protein-protein interactions visualized by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:115-22. [PMID: 25896389 DOI: 10.1016/j.bbapap.2015.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
Abstract
Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Zhu Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China; Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
14
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
15
|
Luna RE, Akabayov SR, Ziarek JJ, Wagner G. Examining weak protein-protein interactions in start codon recognition via NMR spectroscopy. FEBS J 2014; 281:1965-73. [PMID: 24393460 DOI: 10.1111/febs.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/28/2013] [Indexed: 12/01/2022]
Abstract
Weak protein-protein interactions are critical in numerous biological processes. Unfortunately, they are difficult to characterize due to the high concentrations required for the production and detection of the complex population. The inherent sensitivity of NMR spectroscopy to the chemical environment makes it an excellent tool to tackle this problem. NMR permits the exploration of interactions over a range of affinities, yielding essential insights into dynamic biological processes. The conversion of messanger RNA to protein is one such process that requires the coordinated association of many low-affinity proteins. During start codon recognition, eukaryotic initiation factors assemble into high-order complexes that bind messanger RNA and bring it to the ribosome for decoding. Many of the structures of the eukaryotic initiation factors have been determined; however, little is known regarding the weak binary complexes formed and their structure-function mechanisms. Herein, we use start codon recognition as a model system to review the relevant NMR methods for the characterization of weak interactions and the development of small molecule inhibitors.
Collapse
Affiliation(s)
- Rafael E Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
16
|
Ortega Roldan JL, Casares S, Ringkjøbing Jensen M, Cárdenes N, Bravo J, Blackledge M, Azuaga AI, van Nuland NAJ. Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications. PLoS One 2013; 8:e73018. [PMID: 24039852 PMCID: PMC3770644 DOI: 10.1371/journal.pone.0073018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 12/03/2022] Open
Abstract
SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination.
Collapse
Affiliation(s)
- Jose L. Ortega Roldan
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salvador Casares
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Grenoble, France
| | - Nayra Cárdenes
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Martin Blackledge
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075, Grenoble, France
| | - Ana I. Azuaga
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail: (AIA); (NAJvN)
| | - Nico A. J. van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Structural Biology, VIB, Brussels, Belgium
- * E-mail: (AIA); (NAJvN)
| |
Collapse
|
17
|
Brüschweiler S, Konrat R, Tollinger M. Allosteric communication in the KIX domain proceeds through dynamic repacking of the hydrophobic core. ACS Chem Biol 2013; 8:1600-10. [PMID: 23651431 PMCID: PMC3719477 DOI: 10.1021/cb4002188] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The KIX domain of the transcriptional
coactivator CREB binding
protein (CBP) co-operatively mediates interactions between transcription
factors. Binding of the transcription factor mixed-lineage leukemia
(MLL) induces the formation of a low-populated conformer of KIX that
resembles the conformation of the KIX domain in the presence of a
second transcription factor molecule. NMR spin relaxation studies
have previously shown that allosteric coupling proceeds through a
network of hydrophobic core residues that bridge the two binding sites.
Here we describe high-resolution NMR solution structures of the binary
complex of KIX with MLL and the ternary complex of KIX formed with
MLL and phosphorylated kinase inducible domain of CREB (pKID) as a
second ligand. We show that binding of pKID to the binary complex
of KIX with MLL is accompanied by a defined repacking of the allosteric
network in the hydrophobic core of the protein. Rotamer populations
derived from methyl group 13C chemical shifts reveal a
dynamic contribution to the repacking process that is not captured
by the structural coordinates and exemplify the dynamic nature of
allosteric communication in the KIX domain.
Collapse
Affiliation(s)
- Sven Brüschweiler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Structural and Computational Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Robert Konrat
- Structural and Computational Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
Lian LY. NMR studies of weak protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:59-72. [PMID: 23611315 DOI: 10.1016/j.pnmrs.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/22/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
19
|
Protein Functional Dynamics in Multiple Timescales as Studied by NMR Spectroscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:219-51. [DOI: 10.1016/b978-0-12-411636-8.00006-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
20
|
Salmon L, Pierce L, Grimm A, Ortega Roldan JL, Mollica L, Jensen MR, van Nuland N, Markwick PRL, McCammon JA, Blackledge M. Multi-Timescale Conformational Dynamics of the SH3 Domain of CD2-Associated Protein using NMR Spectroscopy and Accelerated Molecular Dynamics. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Salmon L, Pierce L, Grimm A, Ortega Roldan JL, Mollica L, Jensen MR, van Nuland N, Markwick PRL, McCammon JA, Blackledge M. Multi-timescale conformational dynamics of the SH3 domain of CD2-associated protein using NMR spectroscopy and accelerated molecular dynamics. Angew Chem Int Ed Engl 2012; 51:6103-6. [PMID: 22565613 PMCID: PMC3541011 DOI: 10.1002/anie.201202026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Loïc Salmon
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, CNRS-CEA-UJF, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rasia RM, Lescop E, Palatnik JF, Boisbouvier J, Brutscher B. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins. JOURNAL OF BIOMOLECULAR NMR 2011; 51:369-378. [PMID: 21915680 DOI: 10.1007/s10858-011-9567-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.
Collapse
Affiliation(s)
- Rodolfo M Rasia
- Institut de Biologie Structurale, Jean-Pierre Ebel CNRS/CEA/UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Jensen MR, Ortega-Roldan JL, Salmon L, van Nuland N, Blackledge M. Characterizing weak protein-protein complexes by NMR residual dipolar couplings. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1371-81. [PMID: 21710303 DOI: 10.1007/s00249-011-0720-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions occur with a wide range of affinities from tight complexes characterized by femtomolar dissociation constants to weak, and more transient, complexes of millimolar affinity. Many of the weak and transiently formed protein-protein complexes have escaped characterization due to the difficulties in obtaining experimental parameters that report on the complexes alone without contributions from the unbound, free proteins. Here, we review recent developments for characterizing the structures of weak protein-protein complexes using nuclear magnetic resonance spectroscopy with special emphasis on the utility of residual dipolar couplings.
Collapse
Affiliation(s)
- Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | | | | | | | | |
Collapse
|
24
|
Roldan JLO, Blackledge M, van Nuland NAJ, Azuaga AI. Solution structure, dynamics and thermodynamics of the three SH3 domains of CD2AP. JOURNAL OF BIOMOLECULAR NMR 2011; 50:103-117. [PMID: 21519904 DOI: 10.1007/s10858-011-9505-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/24/2011] [Indexed: 05/30/2023]
Abstract
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. It contains three N-terminal SH3 domains that are able to interact among others with CD2, ALIX, c-Cbl and Ubiquitin. To understand the role of the individual SH3 domains of this adaptor protein we have performed a complete structural, thermodynamic and dynamic characterization of the separate domains using NMR and DSC. The energetic contributions to the stability and the backbone dynamics have been related to the structural features of each domain using the structure-based FoldX algorithm. We have found that the N-terminal SH3 domain of both adaptor proteins CD2AP and CIN85 are the most stable SH3 domains that have been studied until now. This high stability is driven by a more extensive network of intra-molecular interactions. We believe that this increased stabilization of N-terminal SH3 domains in adaptor proteins is crucial to maintain the necessary conformation to establish the proper interactions critical for the recruitment of their natural targets.
Collapse
Affiliation(s)
- Jose L Ortega Roldan
- Departamento de Química Física e Instituto de Biotecnología, Universidad de Granada, Fuentenueva s/n, Spain
| | | | | | | |
Collapse
|
25
|
Berlin K, O'Leary DP, Fushman D. Fast approximations of the rotational diffusion tensor and their application to structural assembly of molecular complexes. Proteins 2011; 79:2268-81. [PMID: 21604302 DOI: 10.1002/prot.23053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 11/11/2022]
Abstract
We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols.
Collapse
Affiliation(s)
- Konstantin Berlin
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
26
|
Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M. Structure, dynamics, and kinetics of weak protein-protein complexes from NMR spin relaxation measurements of titrated solutions. Angew Chem Int Ed Engl 2011; 50:3755-9. [PMID: 21425222 DOI: 10.1002/anie.201100310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Loïc Salmon
- Protein Dynamics and Flexibility, Institute de Biologie, Structurale Jean-Pierre Ebel, CNRS-CEA-UJF UMR 5075, 41 rue Jules Horowitz, 38027-Grenoble Cedex, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee HW, Wylie G, Bansal S, Wang X, Barb AW, Macnaughtan MA, Ertekin A, Montelione GT, Prestegard JH. Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Sci 2011; 19:1673-85. [PMID: 20589905 DOI: 10.1002/pro.447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The traditional NMR-based method for determining oligomeric protein structure usually involves distinguishing and assigning intra- and intersubunit NOEs. This task becomes challenging when determining symmetric homo-dimer structures because NOE cross-peaks from a given pair of protons occur at the same position whether intra- or intersubunit in origin. While there are isotope-filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (K(d) 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape-based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed.
Collapse
Affiliation(s)
- Hsiau-Wei Lee
- Complex Carbohydrate Research Center, Northeast Structural Genomics Consortium, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
30
|
Bernadó P. Low‐resolution structural approaches to study biomolecular assemblies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Barcelona, Spain
| |
Collapse
|
31
|
Berlin K, O’Leary DP, Fushman D. Structural assembly of molecular complexes based on residual dipolar couplings. J Am Chem Soc 2010; 132:8961-72. [PMID: 20550109 PMCID: PMC2931813 DOI: 10.1021/ja100447p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDCs) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDCs' sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex solely on the basis of experimental RDC data and the prediction of the alignment tensor from 3D structures. Thus, despite the purely angular nature of RDCs, they can be converted into intermolecular distance/translational constraints. Additionally, we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of protein complexes.
Collapse
Affiliation(s)
| | | | - David Fushman
- To whom correspondence should be addressed , Phone: +1-301-405-3461. Fax: +1-301-314-0386
| |
Collapse
|
32
|
Jung YS, Cai M, Clore GM. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. J Biol Chem 2010; 285:4173-4184. [PMID: 19959833 PMCID: PMC2823556 DOI: 10.1074/jbc.m109.080937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/30/2009] [Indexed: 11/06/2022] Open
Abstract
The solution structure of the IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporter of the Escherichia coli phosphotransferase system has been solved by NMR. The active site His-89 of IIA(Chb) was mutated to Glu to mimic the phosphorylated state and the active site Cys-10 of IIB(Chb) was substituted by serine to prevent intermolecular disulfide bond formation. Binding is weak with a K(D) of approximately 1.3 mm. The two complementary interaction surfaces are largely hydrophobic, with the protruding active site loop (residues 9-16) of IIB(Chb) buried deep within the active site cleft formed at the interface of two adjacent subunits of the IIA(Chb) trimer. The central hydrophobic portion of the interface is surrounded by a ring of polar and charged residues that provide a relatively small number of electrostatic intermolecular interactions that serve to correctly align the two proteins. The conformation of the active site loop in unphosphorylated IIB(Chb) is inconsistent with the formation of a phosphoryl transition state intermediate because of steric hindrance, especially from the methyl group of Ala-12 of IIB(Chb). Phosphorylation of IIB(Chb) is accompanied by a conformational change within the active site loop such that its path from residues 11-13 follows a mirror-like image relative to that in the unphosphorylated state. This involves a transition of the phi/psi angles of Gly-13 from the right to left alpha-helical region, as well as smaller changes in the backbone torsion angles of Ala-12 and Met-14. The resulting active site conformation is fully compatible with the formation of the His-89-P-Cys-10 phosphoryl transition state without necessitating any change in relative translation or orientation of the two proteins within the complex.
Collapse
Affiliation(s)
- Young-Sang Jung
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mengli Cai
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - G Marius Clore
- From the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
33
|
Tonelli M, Masterson LR, Cornilescu G, Markley JL, Veglia G. One-sample approach to determine the relative orientations of proteins in ternary and binary complexes from residual dipolar coupling measurements. J Am Chem Soc 2009; 131:14138-9. [PMID: 19764746 DOI: 10.1021/ja904766g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a procedure that supports the acquisition of (1)H-(15)N residual dipolar coupling (RDC) values for individual subunits in binary or ternary protein assemblies from a single experimental sample. Our method relies on asymmetric labeling of each subunit with the following scheme: species A uniformly with (15)N, species B uniformly with (15)N and (13)C, and species C uniformly with (15)N but selectively with (13)C' or (13)C(alpha). Because only a single sample is required, the approach obviates the need for preparing multiple samples and eliminates potential errors introduced from differences in sample conditions. Because numerous biological processes rely on protein assemblies or transient interactions, this method should be well suited for a wide range of future applications.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | |
Collapse
|
34
|
Quantitative Determination of the Conformational Properties of Partially Folded and Intrinsically Disordered Proteins Using NMR Dipolar Couplings. Structure 2009; 17:1169-85. [PMID: 19748338 DOI: 10.1016/j.str.2009.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 11/23/2022]
|