1
|
Shrilall C, Arbuthnot P, Ely A. In Vitro Transcribed Artificial Primary MicroRNA for the Inhibition of Hepatitis B Virus Gene Expression in Cultured Cells. Microorganisms 2025; 13:604. [PMID: 40142497 PMCID: PMC11946339 DOI: 10.3390/microorganisms13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Available interventions for the management of chronic hepatitis B (hepB) exhibit limited efficacy and barriers to vaccination against the hepatitis B virus (HBV) have hampered prophylaxis programmes. Development of potent therapeutics capable of functional cure of chronic hepB thus remains a relevant medical objective. RNA interference (RNAi) can be exploited to effect potent and specific silencing of target genes through the introduction of RNA sequences that mimic the natural activators of the pathway. To achieve a therapeutic effect, artificial primary microRNAs (pri-miRNAs) have been used extensively to target various viruses, including HBV. To date artificial pri-miRNAs have exclusively been produced from DNA expression cassettes. Although this achieves impressive silencing, eventual translation of this platform to the clinic is complicated by the requirement for viral vectors to deliver DNA. Consequently, clinical translation has been slow. Recently, the use of in vitro transcribed RNA, specifically to produce mRNA vaccines at industrial scale, has gained significant interest. We therefore sought to evaluate the feasibility of using in vitro transcribed artificial pri-miRNAs for the inhibition of HBV gene expression. Artificial HBV-targeting pri-miR-31 sequences, which are highly effective when expressed in cells from a DNA template, demonstrated modest silencing of viral replication when incorporated into mRNA that was transcribed in vitro. Off-target effects were also observed. Characterisation revealed that intracellular processing of the artificial pri-miRNAs was inefficient and non-specific effects were caused by stimulation of the interferon response. Nevertheless, optimised nuclear delivery of the artificial pri-miRNAs should improve their processing and achieve better anti-hepB efficacy.
Collapse
Affiliation(s)
| | | | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; (C.S.); (P.A.)
| |
Collapse
|
2
|
Mnyandu NZ, Limani SW, Ely A, Wadee R, Arbuthnot P, Maepa MB. Long-term inhibition of Hepatitis B virus gene expression by a primary microrna expressing ancestral adeno-associated viral vector. Virol J 2025; 22:41. [PMID: 39962472 PMCID: PMC11834259 DOI: 10.1186/s12985-025-02662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Current treatments for chronic infection with the hepatitis B virus (HBV) rarely cure carriers from the disease. Previously reported use of serotype 8 adeno-associated viral (AAV8) vectors to deliver expression cassettes encoding anti-HBV artificial primary microRNAs (apri-miRs) has shown promise in preclinical studies. A recently designed synthetic ancestral AAV (Anc80L65) with high liver transduction efficiency is a promising new addition to the anti-HBV vector toolbox. This study engineered Anc80L65 to express HBx-targeting apri-miRs. Single dose administration of the vectors to cultured cells and HBV transgenic mice effected reductions of secreted HBV surface antigen (HBsAg). Circulating HBV particles and HBV core antigen (HBcAg) were also significantly diminished in mice receiving the anti-HBV apri-miR-expressing ancestral AAVs. Downregulation of HBV biomarkers occurred over a period of 12 months. Absence of inflammatory responses or liver toxicity indicated that the vectors had a good safety profile. These data suggest that a single dose of apri-miR-expressing Anc80L65 is safe and capable of mediating durable suppression of HBV gene expression. Targeting HBx, which is required for transcriptional activity of covalently closed circular DNA of HBV, makes this Anc80L65-derived vector a promising candidate for functional cure from chronic HBV infection.
Collapse
Affiliation(s)
- Njabulo Ziphezinhle Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Shonisani Wendy Limani
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Johannesburg, Wits 2050, South Africa.
| |
Collapse
|
3
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
4
|
Akram F, Waheed HM, Shah FI, Haq IU, Nasir N, Akhtar MT, Farooq Gohar U. Burgeoning therapeutic strategies to curb the contemporary surging viral infections. Microb Pathog 2023; 179:106088. [PMID: 37004965 DOI: 10.1016/j.micpath.2023.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.
Collapse
|
5
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
6
|
In Vivo Modelling of Hepatitis B Virus Subgenotype A1 Replication Using Adeno-Associated Viral Vectors. Viruses 2021; 13:v13112247. [PMID: 34835053 PMCID: PMC8618177 DOI: 10.3390/v13112247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
The paucity of animal models that simulate the replication of the hepatitis B virus (HBV) is an impediment to advancing new anti-viral treatments. The work reported here employed recombinant adeno-associated viruses (AAVs) to model HBV subgenotype A1 and subgenotype D3 replication in vitro and in vivo. Infection with subgenotype A1 is endemic to parts of sub-Saharan Africa, and it is associated with a high risk of hepatocellular carcinoma. Recombinant AAV serotype 2 (AAV2) and 8 (AAV8) vectors bearing greater-than-genome-length sequences of HBV DNA from subgenotype A1 and D3, were produced. Transduced liver-derived cultured cells produced HBV surface antigen and core antigen. Administration of AAV8 carrying HBV subgenotype A1 genome (AAV8-A1) to mice resulted in the sustained production of HBV replication markers over a six-month period, without elevated inflammatory cytokines, expression of interferon response genes or alanine transaminase activity. Markers of replication were generally higher in animals treated with subgenotype D3 genome-bearing AAVs than in those receiving the subgenotype A1-genome-bearing vectors. To validate the use of the AAV8-A1 murine model for anti-HBV drug development, the efficacy of anti-HBV artificial primary-microRNAs was assessed. Significant silencing of HBV markers was observed over a 6-month period after administering AAVs. These data indicate that AAVs conveniently and safely recapitulate the replication of different HBV subgenotypes, and the vectors may be used to assess antivirals’ potency.
Collapse
|
7
|
Smith T, Singh P, Chmielewski KO, Bloom K, Cathomen T, Arbuthnot P, Ely A. Improved Specificity and Safety of Anti-Hepatitis B Virus TALENs Using Obligate Heterodimeric FokI Nuclease Domains. Viruses 2021; 13:v13071344. [PMID: 34372550 PMCID: PMC8310341 DOI: 10.3390/v13071344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection remains a serious medical problem worldwide, with an estimated global burden of 257 million carriers. Prophylactic and therapeutic interventions, in the form of a vaccine, immunomodulators, and nucleotide and nucleoside analogs, are available. Vaccination, however, offers no therapeutic benefit to chronic sufferers and has had a limited impact on infection rates. Although immunomodulators and nucleotide and nucleoside analogs have been licensed for treatment of chronic HBV, cure rates remain low. Transcription activator-like effector nucleases (TALENs) designed to bind and cleave viral DNA offer a novel therapeutic approach. Importantly, TALENs can target covalently closed circular DNA (cccDNA) directly with the potential of permanently disabling this important viral replicative intermediate. Potential off-target cleavage by engineered nucleases leading to toxicity presents a limitation of this technology. To address this, in the context of HBV gene therapy, existing TALENs targeting the viral core and surface open reading frames were modified with second- and third-generation FokI nuclease domains. As obligate heterodimers these TALENs prevent target cleavage as a result of FokI homodimerization. Second-generation obligate heterodimeric TALENs were as effective at silencing viral gene expression as first-generation counterparts and demonstrated an improved specificity in a mouse model of HBV replication.
Collapse
Affiliation(s)
- Tiffany Smith
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg & Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; (K.O.C.); (T.C.)
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg & Medical Faculty, University of Freiburg, 79106 Freiburg, Germany; (K.O.C.); (T.C.)
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa; (T.S.); (P.S.); (K.B.); (P.A.)
- Correspondence: ; Tel.: +27-(0)11-717-2561
| |
Collapse
|
8
|
Maepa MB, Bloom K, Ely A, Arbuthnot P. Hepatitis B virus: promising drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:451-466. [PMID: 33843412 DOI: 10.1080/14728222.2021.1915990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) technology has been used for almost two decades to study gene functions and in therapeutic approaches. It uses cellular machinery and small, designed RNAs in the form of synthetic small interfering RNAs (siRNAs) or vector-based short hairpin RNAs (shRNAs), and artificial miRNAs (amiRNAs) to inhibit a gene of interest. Artificial miRNAs, known also as miRNA mimics, shRNA-miRs, or pri-miRNA-like shRNAs have the most complex structures and undergo two-step processing in cells to form mature siRNAs, which are RNAi effectors. AmiRNAs are composed of a target-specific siRNA insert and scaffold based on a natural primary miRNA (pri-miRNA). siRNAs serve as a guide to search for complementary sequences in transcripts, whereas pri-miRNA scaffolds ensure proper processing and transport. The dynamics of siRNA maturation and siRNA levels in the cell resemble those of endogenous miRNAs; therefore amiRNAs are safer than other RNAi triggers. Delivered as viral vectors and expressed under tissue-specific polymerase II (Pol II) promoters, amiRNAs provide long-lasting silencing and expression in selected tissues. Therefore, amiRNAs are useful therapeutic tools for a broad spectrum of human diseases, including neurodegenerative diseases, cancers and viral infections. Recent reports on the role of sequence and structure in pri-miRNA processing may contribute to the improvement of the amiRNA tools. In addition, the success of a recently initiated clinical trial for Huntington's disease could pave the way for other amiRNA-based therapies, if proven effective and safe. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anna Kotowska-Zimmer
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marianna Pewinska
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry PAS, Poznan, Poland
| |
Collapse
|
10
|
van den Berg F, Limani SW, Mnyandu N, Maepa MB, Ely A, Arbuthnot P. Advances with RNAi-Based Therapy for Hepatitis B Virus Infection. Viruses 2020; 12:E851. [PMID: 32759756 PMCID: PMC7472220 DOI: 10.3390/v12080851] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Infection with hepatitis B virus (HBV) remains a global health challenge. Approximately 292 million people worldwide are chronically infected with HBV and the annual mortality from the infection is approaching 900,000. Despite the availability of an effective prophylactic vaccine, millions of individuals are at risk of potentially fatal complicating cirrhosis and hepatocellular carcinoma. Current drug treatments can suppress viral replication, slow the progression of liver fibrosis, and reduce infectivity, but can rarely clear the viral covalently closed circular DNA (cccDNA) that is responsible for HBV persistence. Alternative therapeutic strategies, including those based on viral gene silencing by harnessing the RNA interference (RNAi) pathway, effectively suppress HBV replication and thus hold promise. RNAi-based silencing of certain viral genes may even lead to disabling of cccDNA during chronic infection. This review summarizes different RNAi activators that have been tested against HBV, the advances with vectors used to deliver artificial potentially therapeutic RNAi sequences to the liver, and the current status of preclinical and clinical investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.v.d.B.); (S.W.L.); (N.M.); (M.B.M.); (A.E.)
| |
Collapse
|
11
|
Fan J, Feng Y, Zhang R, Zhang W, Shu Y, Zeng Z, Huang S, Zhang L, Huang B, Wu D, Zhang B, Wang X, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Liu B, Wagstaff W, He F, Wu X, Zhang J, Moriatis Wolf J, Lee MJ, Haydon RC, Luu HH, Huang A, He TC, Yan S. A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Ther 2020; 27:424-437. [PMID: 31222181 PMCID: PMC6923634 DOI: 10.1038/s41417-019-0113-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 06/01/2019] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are ~22 nucleotide noncoding RNAs that are involved in virtually all aspects of cellular process as their deregulations are associated with many pathological conditions. Mature miRNAs (mMIRs) are generated through a series of tightly-regulated nuclear and cytoplasmic processing events of the transcribed primary, precursor and mMIRs. Effective manipulations of miRNA expression enable us to gain insights into miRNA functions and to explore potential therapeutic applications. Currently, overexpression of miRNAs is achieved by using chemically-synthesized miRNA mimics, or shRNA-like stem-loop vectors to express primary or precursor miRNAs, which are limited by low transfection efficacy or rate-limiting miRNA processing. To overcome rate-limiting miRNA processing, we developed a novel strategy to express mMIRs which are driven by converging U6/H1 dual promoters. As a proof-of-concept study, we constructed mMIR expression vectors for hsa-miR-223 and hsa-Let-7a-1, and demonstrated that the expressed mMIRs effectively silenced target gene expression, specifically suppressed miRNA reporter activity, and significantly affected cell proliferation, similar to respective primary and precursor miRNAs. Furthermore, these mMIR expression vectors can be easily converted into retroviral and adenoviral vectors. Collectively, our simplified mMIR expression system should be a valuable tool to study miRNA functions and/or to deliver miRNA-based therapeutics.
Collapse
Affiliation(s)
- Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, 550001, Guiyang, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, 730030, Lanzhou, China
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
- Department of Orthopaedic Surgery, Chongqing General Hospital, 400021, Chongqing, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, 730030, Lanzhou, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, 266061, Qingdao, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Affiliated Hospitals of Chongqing Medical University, 400016, Chongqing, China
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ailong Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
- Department of Clinical Laboratory Medicine, Guizhou Provincial People's Hospital and Guizhou University, 550004, Guiyang, China.
| |
Collapse
|
12
|
van den Berg FT, Ely A, Arbuthnot P. Generating DNA Expression Cassettes Encoding Multimeric Artificial MicroRNA Precursors. Methods Mol Biol 2020; 2115:185-197. [PMID: 32006402 DOI: 10.1007/978-1-0716-0290-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi) is a promising tool for the treatment of chronic viral infection, such as that caused by the hepatitis B virus (HBV). RNAi activators, including expressed primary microRNA (pri-miRNA) mimics, can effectively silence viral gene expression and thereby inhibit viral replication. Here we describe a protocol for the design, generation and functional assessment of cassettes encoding effective single and multimeric pri-miRNA mimics. Artificial miRNAs targeting viral genes can be identified in silico and used to design corresponding pri-miRNA mimics. A two-step generation and TA cloning protocol can be used to produce single mimics, while the strategic use of restriction sites enables concatenation of mimics in a sub-cloning protocol. Basic gene silencing function of pri-miRNA mimics in cell culture can then be assessed using a dual luciferase assay and appropriate minimal targets. The methods described here for the generation of effective pri-miRNA mimics targeting HBV can be applied in the silencing of other viral or endogenous genes.
Collapse
Affiliation(s)
- Fiona T van den Berg
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits-SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine & Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
13
|
In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. Methods Mol Biol 2020; 2115:171-183. [PMID: 32006401 DOI: 10.1007/978-1-0716-0290-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B, a liver disease resulting from persisting hepatitis B virus (HBV) infection, remains a global health challenge despite the availability of an effective vaccine. Various preclinical studies using adeno-associated viruses (AAVs) to deliver anti-HBV RNA interference (RNAi) activators to mediate long-lasting HBV silencing show promise. Recent positive outcomes observed in clinical trials and the FDA approval of AAV-based drugs further demonstrate the potential of AAVs in antiviral therapeutic development. However, the prevalence of neutralizing antibodies against vectors based on extant AVV capsids limits the application of these vectors in human. The exciting reports on in silico designed and in vitro synthesized ancestral AAV (Anc80L65) with a potential to evade prevailing AAV neutralizing antibodies will significantly contribute to the success of these vectors in humans. Here, we describe methods for production and in vivo characterization of Anc80L65 expressing anti-HBV RNAi activators.
Collapse
|
14
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
15
|
Bloom K, Maepa MB, Ely A, Arbuthnot P. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA? Genes (Basel) 2018; 9:E207. [PMID: 29649127 PMCID: PMC5924549 DOI: 10.3390/genes9040207] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
16
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
17
|
Wang J, Chen R, Zhang R, Ding S, Zhang T, Yuan Q, Guan G, Chen X, Zhang T, Zhuang H, Nunes F, Block T, Liu S, Duan Z, Xia N, Xu Z, Lu F. The gRNA-miRNA-gRNA Ternary Cassette Combining CRISPR/Cas9 with RNAi Approach Strongly Inhibits Hepatitis B Virus Replication. Theranostics 2017; 7:3090-3105. [PMID: 28839466 PMCID: PMC5566108 DOI: 10.7150/thno.18114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
The CRISPR/Cas9 system is a novel genome editing technology which has been successfully used to inhibit HBV replication. Here, we described a novel gRNA-microRNA (miRNA)-gRNA ternary cassette driven by a single U6 promoter. With an anti-HBV pri-miR31 mimic integrated between two HBV-specific gRNAs, both gRNAs could be separated from the long transcript of gRNA-miR-HBV-gRNA ternary cassette through Drosha/DGCR8 processing. The results showed that the gRNA-miR-HBV-gRNA ternary cassette could efficiently express two gRNAs and miR-HBV. The optimal length of pri-miRNA flanking sequence in our ternary cassette was determined to be 38 base pairs (bp). Besides, HBV-specific gRNAs and miR-HBV in gRNA-miR-HBV-gRNA ternary cassette could exert a synergistic effect in inhibiting HBV replication and destroying HBV genome in vitro and in vivo. Most importantly, together with RNA interference (RNAi) approach, the HBV-specific gRNAs showed the potent activity on the destruction of HBV covalently closed circular DNA (cccDNA). Since HBV cccDNA is an obstacle for the elimination of chronic HBV infection, the gRNA-miR-HBV-gRNA ternary cassette may be a potential tool for the clearance of HBV cccDNA.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruiyang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shanlong Ding
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Guiwen Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Frederick Nunes
- Department of Gastroenterology, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Shuang Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhongwei Xu
- Department of Gastroenterology, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
The state of gene therapy research in Africa, its significance and implications for the future. Gene Ther 2017; 24:581-589. [PMID: 28692018 PMCID: PMC7094717 DOI: 10.1038/gt.2017.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Gene therapy has made impressive recent progress and has potential for treating a wide range of diseases, many of which are important to Africa. However, as a result of lack of direct public funding and skilled personnel, direct research on gene therapy in Africa is currently limited and resources to support the endeavor are modest. A strength of the technology is that it is based on principles of rational design, and the tools of gene therapy are now highly versatile. For example gene silencing and gene editing may be used to disable viral genes for therapeutic purposes. Gene therapy may thus lead to cure from infections with HIV-1, hepatitis B virus and Ebola virus, which are of significant public health importance in Africa. Although enthusiasm for gene therapy is justified, significant challenges to implementing the technology remain. These include ensuring efficient delivery of therapeutic nucleic acids to target cells, limiting unintended effects, cost and complexity of treatment regimens. In addition, implementation of effective legislation that will govern gene therapy research will be a challenge. Nevertheless, it is an exciting prospect that gene therapy should soon reach the mainstream of medical management. Participation of African researchers in the exciting developments is currently limited, but their involvement is important to address health problems, develop capacity and enhance economic progress of the continent.
Collapse
|
19
|
Sustained Inhibition of HBV Replication In Vivo after Systemic Injection of AAVs Encoding Artificial Antiviral Primary MicroRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624194 PMCID: PMC5415967 DOI: 10.1016/j.omtn.2017.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) remains a problem of global significance and improving available treatment is important to prevent life-threatening complications arising in persistently infected individuals. HBV is susceptible to silencing by exogenous artificial intermediates of the RNA interference (RNAi) pathway. However, toxicity of Pol III cassettes and short duration of silencing by effectors of the RNAi pathway may limit anti-HBV therapeutic utility. To advance RNAi-based HBV gene silencing, mono- and trimeric artificial primary microRNAs (pri-miRs) derived from pri-miR-31 were placed under control of the liver-specific modified murine transthyretin promoter. The sequences, which target the X sequence of HBV, were incorporated into recombinant hepatotropic self-complementary adeno-associated viruses (scAAVs). Systemic intravenous injection of the vectors into HBV transgenic mice at a dose of 1 × 1011 per animal effected significant suppression of markers of HBV replication for at least 32 weeks. The pri-miRs were processed according to the intended design, and intrahepatic antiviral guide sequences were detectable for 40 weeks after the injection. There was no evidence of toxicity, and innate immunostimulation was not detectable following the injections. This efficacy is an improvement on previously reported RNAi-based inhibition of HBV replication and is important to clinical translation of the technology.
Collapse
|
20
|
Zeng HC, Bae Y, Dawson BC, Chen Y, Bertin T, Munivez E, Campeau PM, Tao J, Chen R, Lee BH. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nat Commun 2017; 8:15000. [PMID: 28397831 PMCID: PMC5394267 DOI: 10.1038/ncomms15000] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. Control of osteocyte differentiation is not well understood. Here the authors show that the miR-23 cluster represses the TGF-β signalling repressor Prdm16 in osteoblasts, thus enhancing osteocyte differentiation and a low bone mass phenotype.
Collapse
Affiliation(s)
- Huan-Chang Zeng
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Brian C Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Philippe M Campeau
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Canada H3T 1C5
| | - Jianning Tao
- Department of Pediatrics, University of South Dakota School of Medicine, Vermillion, South Dakota 57104, USA
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Brendan H Lee
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Bourhill T, Arbuthnot P, Ely A. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics. J Virol Methods 2016; 235:26-33. [PMID: 27181212 DOI: 10.1016/j.jviromet.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/16/2016] [Accepted: 05/11/2016] [Indexed: 02/05/2023]
Abstract
Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.
Collapse
Affiliation(s)
- Tarryn Bourhill
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
22
|
Michler T, Große S, Mockenhaupt S, Röder N, Stückler F, Knapp B, Ko C, Heikenwalder M, Protzer U, Grimm D. Blocking sense-strand activity improves potency, safety and specificity of anti-hepatitis B virus short hairpin RNA. EMBO Mol Med 2016; 8:1082-98. [PMID: 27473329 PMCID: PMC5009812 DOI: 10.15252/emmm.201506172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is a promising target for therapies based on RNA interference (RNAi) since it replicates via RNA transcripts that are vulnerable to RNAi silencing. Clinical translation of RNAi technology, however, requires improvements in potency, specificity and safety. To this end, we systematically compared different strategies to express anti-HBV short hairpin RNA (shRNA) in a pre-clinical immunocompetent hepatitis B mouse model. Using recombinant Adeno-associated virus (AAV) 8 vectors for delivery, we either (i) embedded the shRNA in an artificial mi(cro)RNA under a liver-specific promoter; (ii) co-expressed Argonaute-2, a rate-limiting cellular factor whose saturation with excess RNAi triggers can be toxic; or (iii) co-delivered a decoy ("TuD") directed against the shRNA sense strand to curb off-target gene regulation. Remarkably, all three strategies minimised adverse side effects as compared to a conventional shRNA vector that caused weight loss, liver damage and dysregulation of > 100 hepatic genes. Importantly, the novel AAV8 vector co-expressing anti-HBV shRNA and TuD outperformed all other strategies regarding efficiency and persistence of HBV knock-down, thus showing substantial promise for clinical translation.
Collapse
Affiliation(s)
- Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany German Center for Infection Research (DZIF), partner site München, München, Germany
| | - Stefanie Große
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Stefan Mockenhaupt
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Natalie Röder
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany
| | - Ferdinand Stückler
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany German Center for Infection Research (DZIF), partner site München, München, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany BioQuant, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Dreyer T, Nicholson S, Ely A, Arbuthnot P, Bloom K. Improved antiviral efficacy using TALEN-mediated homology directed recombination to introduce artificial primary miRNAs into DNA of hepatitis B virus. Biochem Biophys Res Commun 2016; 478:1563-8. [PMID: 27590580 DOI: 10.1016/j.bbrc.2016.08.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) remains an important global health problem. Currently licensed therapies have modest curative efficacy, which is as a result of their transient effects and limited action on the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Gene editing with artificial HBV-specific endonucleases and use of artificial activators of the RNA interference pathway have shown anti-HBV therapeutic promise. Although results from these gene therapies are encouraging, maximizing durable antiviral effects is important. To address this goal, a strategy that entails combining gene editing with homology-directed DNA recombination (HDR), to introduce HBV-silencing artificial primary microRNAs (pri-miRs) into HBV DNA targets, is reported here. Previously described transcription activator-like effector nucleases (TALENs) that target the core and surface sequences of HBV were used to introduce double stranded breaks in the viral DNA. Simultaneous administration of donor sequences encoding artificial promoterless anti-HBV pri-miRs, with flanking arms that were homologous to sequences adjoining the TALENs' targets, augmented antiviral efficacy. Analysis showed targeted integration and the length of the flanking homologous arms of donor DNA had a minimal effect on antiviral efficiency. These results support the notion that gene editing and silencing may be combined to effect improved inhibition of HBV gene expression.
Collapse
Affiliation(s)
- Timothy Dreyer
- SA-MRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Samantha Nicholson
- SA-MRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Abdullah Ely
- SA-MRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Patrick Arbuthnot
- SA-MRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Kristie Bloom
- SA-MRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| |
Collapse
|
24
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
25
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
26
|
van den Berg FT, Rossi JJ, Arbuthnot P, Weinberg MS. Design of Effective Primary MicroRNA Mimics With Different Basal Stem Conformations. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e278. [PMID: 26756196 PMCID: PMC5012551 DOI: 10.1038/mtna.2015.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/30/2015] [Indexed: 12/03/2022]
Abstract
Primary microRNA (pri-miRNA) mimics are important mediators of effective gene silencing and are well suited for sustained therapeutic applications. Pri-miRNA mimics are processed in the endogenous miRNA biogenesis pathway, where elements of the secondary RNA structure are crucial for efficient miRNA production. Cleavage of the pri-miRNA to a precursor miRNA (pre-miRNA) by Drosha-DGCR8 typically occurs adjacent to a basal stem of ~11 bp. However, a number of pri-miRNA structures are expected to contain slightly shorter or longer basal stems, which may be further disrupted in predicted folding of the expressed pri-miRNA sequence. We investigated the function and processing of natural and exogenous RNA guides from pri-miRNAs with various basal stems (9–13 bp), where a canonical hairpin was predicted to be well or poorly maintained in predicted structures of the expressed sequence. We have shown that RNA guides can be effectively derived from pri-miRNAs with various basal stem conformations, while predicted guide region stability can explain the function of pri-miRNA mimics, in agreement with previously proposed design principles. This study provides insight for the design of effective mimics based on naturally occurring pri-miRNAs and has identified several novel scaffolds suitable for use in gene silencing applications.
Collapse
Affiliation(s)
- Fiona T van den Berg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marc S Weinberg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
27
|
Abstract
The potential of RNA interference (RNAi)-based gene therapy has been demonstrated in many studies. However, clinical application of this technology has been hampered by a paucity of efficient and safe methods of delivering the RNAi activators. Prolonged transgene expression and improved safety of helper-dependent adenoviral vectors (HD AdVs) makes them well suited to delivery of engineered artificial intermediates of the RNAi pathway. Also, AdVs' natural hepatotropism makes them potentially useful for liver-targeted gene delivery. HD AdVs may be used for efficient delivery of cassettes encoding short hairpin RNAs and artificial primary microRNAs to the mouse liver. Methods for the characterization of HD AdV-mediated delivery of hepatitis B virus-targeting RNAi activators are described here.
Collapse
|
28
|
Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice. Sci Rep 2015; 5:15259. [PMID: 26482836 PMCID: PMC4612501 DOI: 10.1038/srep15259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the “PICKY” software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients.
Collapse
|
29
|
Miura H, Inoko H, Tanaka M, Nakaoka H, Kimura M, Gurumurthy CB, Sato M, Ohtsuka M. Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS One 2015; 10:e0135919. [PMID: 26285215 PMCID: PMC4540464 DOI: 10.1371/journal.pone.0135919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
RNAi-based strategies have been used for hypomorphic analyses. However, there are technical challenges to achieve robust, reproducible knockdown effect. Here we examined the artificial microRNA (amiRNA) architectures that could provide higher knockdown efficiencies. Using transient and stable transfection assays in cells, we found that simple amiRNA-expression cassettes, that did not contain a marker gene (−MG), displayed higher amiRNA expression and more efficient knockdown than those that contained a marker gene (+MG). Further, we tested this phenomenon in vivo, by analyzing amiRNA-expressing mice that were produced by the pronuclear injection-based targeted transgenesis (PITT) method. While we observed significant silencing of the target gene (eGFP) in +MG hemizygous mice, obtaining −MG amiRNA expression mice, even hemizygotes, was difficult and the animals died perinatally. We obtained only mosaic mice having both “−MG amiRNA” cells and “amiRNA low-expression” cells but they exhibited growth retardation and cataracts, and they could not transmit the –MG amiRNA allele to the next generation. Furthermore, +MG amiRNA homozygotes could not be obtained. These results suggested that excessive amiRNAs transcribed by −MG expression cassettes cause deleterious effects in mice, and the amiRNA expression level in hemizygous +MG amiRNA mice is near the upper limit, where mice can develop normally. In conclusion, the PITT-(+MG amiRNA) system demonstrated here can generate knockdown mouse models that reliably express highest and tolerable levels of amiRNAs.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411–8540, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima, Kagoshima 890–0065, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- * E-mail:
| |
Collapse
|
30
|
Progress and Prospects of Anti-HBV Gene Therapy Development. Int J Mol Sci 2015; 16:17589-610. [PMID: 26263978 PMCID: PMC4581210 DOI: 10.3390/ijms160817589] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.
Collapse
|
31
|
Recent advances in use of gene therapy to treat hepatitis B virus infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:31-49. [PMID: 25757614 DOI: 10.1007/978-1-4939-2432-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) occurs in approximately 5 % of the world's human population and persistence of the virus is associated with serious complications of cirrhosis and liver cancer. Currently available treatments are modestly effective and advancing novel therapeutic strategies is a medical priority. Stability of the viral cccDNA replication intermediate is a major factor that has impeded the development of therapies that are capable of eliminating chronic infection. Recent advances that employ gene therapy strategies offer useful advantages over current therapeutics. Silencing of HBV gene expression by harnessing the RNA interference pathway has been shown to be highly effective in cell culture and in vivo. However, a potential limitation of this approach is that the post-transcriptional mechanism of gene silencing does not disable cccDNA. Early results using designer transcription activator-like effector nucleases (TALENs) and repressor TALEs (rTALEs) have shown potential as a mode of inactivating cccDNA. In this article, we review the recent advances that have been made in HBV gene therapy, with a particular emphasis on the potential anti-HBV therapeutic utility of designed sequence-specific DNA binding proteins and their derivatives.
Collapse
|
32
|
Huang JY, Chou SF, Lee JW, Chen HL, Chen CM, Tao MH, Shih C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA (NEW YORK, N.Y.) 2015; 21:385-400. [PMID: 25595716 PMCID: PMC4338335 DOI: 10.1261/rna.048744.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive feed-forward loop between HBV, miR-130a, PPARγ, and PGC1α. Accordingly, HBV can significantly enhance viral replication by reducing miR-130a and increasing PGC1α and PPARγ. NF-κB/p65 can strongly stimulate miR-130a promoter, while miR-130a can promote NF-κB/p65 protein level by reducing PPARγ and thus NF-κB/p65 protein degradation. We postulated another positive feed-forward loop between miR-130a and NF-κB/p65 via PPARγ. During liver inflammation, NF-κB signaling could contribute to viral clearance via its positive effect on miR-130a transcription. Conversely, in asymptomatic HBV carriers, persistent viral infection could reduce miR-130a and NF-κB expression, leading to dampened inflammation and immune tolerance. Finally, miR-130a could contribute to metabolic homeostasis by dual targeting PGC1α and PPARγ simultaneously.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Shu-Fan Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 110 Taiwan
| | - Jun-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chun-Ming Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chiaho Shih
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
33
|
Gebbing M, Bergmann T, Schulz E, Ehrhardt A. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol 2015; 7:150-164. [PMID: 25729471 PMCID: PMC4342598 DOI: 10.4254/wjh.v7.i2.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.
Collapse
|
34
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
35
|
Arbuthnot P. Antiviral Gene Therapy. GENE THERAPY FOR VIRAL INFECTIONS 2015. [PMCID: PMC7149688 DOI: 10.1016/b978-0-12-410518-8.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antiviral gene therapy conveniently relies on use of rationally designed nucleic acids to disable replication of the pathogens. Popular targets for this therapy have been sequences encoding viral proteins and cellular host factors on which viruses depend for their replication. Therefore, availability of technologies that inactivate genes specifically, safely and effectively is crucial. Hence, discovery of RNA interference and advances in gene editing methods have been particularly important to the field. Gene transfer to induce prophylactic and therapeutic immunostimulation is also being developed to manage viral infections. Although promising, progress and ultimate success of antiviral gene therapy is dependent on several factors. These include overcoming problems that are generic to the field and influences of elements that are particular to specific viral infections. Viral and nonviral vectors (NVVs) have been used to deliver antiviral sequences, and both have advantages and drawbacks. Viral vectors are suited to delivering DNA-based expression cassettes, including immunostimulatory and virus-targeting sequences, whereas NVVs may be better applied to carrying therapeutic RNAs such as synthetic short interfering RNAs or mRNAs. Nonviral formulations are appealing because they cause limited immunostimulation, obviate mutagenic effects of DNA, and are amenable to easier dose control and large-scale synthesis. To date, encouraging results have been obtained in preclinical and clinical assessments of gene therapy against HIV-1, hepatitis B, hepatitis C, and Ebola viruses, among others. In the long term, widespread application of antiviral gene therapy will be dependent on the technology demonstrating good efficacy and advantages over other antiviral strategies. Access to appropriate material and human resources that are required for implementation of the technologies in various settings will also be important.
Collapse
|
36
|
Hean J, Crowther C, Ely A, Ul Islam R, Barichievy S, Bloom K, Weinberg MS, van Otterlo WA, de Koning CB, Salazar F, Marion P, Roesch EB, Lemaitre M, Herdewijn P, Arbuthnot P. Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. ARTIFICIAL DNA, PNA & XNA 2014; 1:17-26. [PMID: 21687523 DOI: 10.4161/adna.1.1.11981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 01/15/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) occurs in approximately 6% of the world's population and carriers of the virus are at risk for complicating hepatocellular carcinoma. Current treatment options have limited efficacy and chronic HBV infection is likely to remain a significant global medical problem for many years to come. Silencing HBV gene expression by harnessing RNA interference (RNAi) presents an attractive option for development of novel and effective anti HBV agents. However, despite significant and rapid progress, further refinement of existing technologies is necessary before clinical application of RNAi-based HBV therapies is realized. Limiting off target effects, improvement of delivery efficiency, dose regulation and preventing reactivation of viral replication are some of the hurdles that need to be overcome. To address this, we assessed the usefulness of the recently described class of altritol-containing synthetic siRNAs (ANA siRNAs), which were administered as lipoplexes and tested in vivo in a stringent HBV transgenic mouse model. Our observations show that ANA siRNAs are capable of silencing of HBV replication in vivo. Importantly, non specific immunostimulation was observed with unmodified siRNAs and this undesirable effect was significantly attenuated by ANA modification. Inhibition of HBV replication of approximately 50% was achieved without evidence for induction of toxicity. These results augur well for future application of ANA siRNA therapeutic lipoplexes.
Collapse
Affiliation(s)
- Justin Hean
- Antiviral Gene Therapy Research Unit; School of Pathology; University of the Witwatersrand Medical School; South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther 2014; 22:163-71. [PMID: 25338920 DOI: 10.1038/gt.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) puts individuals at high risk for complicating cirrhosis and liver cancer, but available treatment to counter the virus rarely eliminates infection. Although harnessing RNA interference (RNAi) to silence HBV genes has shown the potential, achieving efficient and durable silencing of viral genes remains an important goal. Here we report on the propagation of lentiviral vectors (LVs) that successfully deliver HBV-targeting RNAi activators to liver cells. Mono- and tricistronic artificial primary microRNAs (pri-miRs) derived from pri-miR-31, placed under transcriptional control of the liver-specific modified murine transthyretin (mTTR) promoter, caused efficient inhibition of HBV replication markers. The tricistronic cassette was capable of silencing a mutant viral target and the effects were observed without disrupting the function of an endogenous miR (miR-16). The mTTR promoter stably expressed a reporter transgene in mouse livers over a study period of 1 year. Good silencing of HBV genes, without evidence of toxicity, was demonstrated following intravenous injection of LVs into neonatal HBV transgenic mice. Collectively, these data indicate that LVs may achieve sustained inhibition of HBV replication that is appealing for their therapeutic use.
Collapse
|
38
|
Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718743. [PMID: 25003129 PMCID: PMC4066856 DOI: 10.1155/2014/718743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility.
Collapse
|
39
|
Marimani M, Hean J, Bloom K, Ely A, Arbuthnot P. Recent advances in developing nucleic acid-based HBV therapy. Future Microbiol 2014; 8:1489-504. [PMID: 24199806 DOI: 10.2217/fmb.13.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic HBV infection remains an important public health problem and currently licensed therapies rarely prevent complications of viral persistence. Silencing HBV gene expression using gene therapy, particularly with exogenous activators of RNAi, holds promise for developing an HBV gene therapy. However, immune stimulation, off-targeting effects and inefficient delivery of RNAi activators remain problematic. Several new approaches have recently been employed to address these issues. Chemical modifications to anti-HBV synthetic siRNAs have been investigated and a variety of vectors are being developed for delivery of RNAi effectors. In this article, we review the potential utility of gene therapy for treating HBV infection.
Collapse
Affiliation(s)
- Musa Marimani
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
40
|
Potenza N, Russo A. Biogenesis, evolution and functional targets of microRNA-125a. Mol Genet Genomics 2013; 288:381-9. [PMID: 23783428 DOI: 10.1007/s00438-013-0757-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/31/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression at post-transcriptional level by inhibiting translation of complementary mRNAs and/or targeting them for degradation. MicroRNAs play crucial roles in development, cell differentiation, and apoptosis. In addition, recent studies indicate that they are important regulators of virus-host interactions. MicroRNA-125a is a homolog of C. elegans lin-4, the first discovered microRNA, shown to dictate the onset of larval stages in the nematode. In this review, we focus on the gene structure of microRNA-125a, its evolution, its expression pattern in mammalian organs and tissues, and its functional targets. Overall, the available data indicate that microRNA-125a plays crucial roles both in development and in the adult tissues. In fact, it (1) contributes to the control of phase transitions in development and/or cell differentiation; (2) regulates the expression of several target proteins that are involved in cell proliferation, apoptosis, and migration; (3) interferes with the expression of the hepatitis B virus surface antigen in liver cells, thus counteracting viral replication. These findings suggest that delivery of microRNA-125a mimics or treatments that modulate its cellular expression may be valuable tools for the development of new therapeutic strategies for human diseases, including cancer and viral hepatitis B.
Collapse
Affiliation(s)
- Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy,
| | | |
Collapse
|
41
|
Inhibition of hepatitis B virus replication in cultured cells and in vivo using 2'-O-guanidinopropyl modified siRNAs. Bioorg Med Chem 2013; 21:6145-55. [PMID: 23743442 DOI: 10.1016/j.bmc.2013.04.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 12/11/2022]
Abstract
Silencing hepatitis B virus (HBV) gene expression with exogenous activators of the RNA interference (RNAi) pathway has shown promise as a new mode of treating infection with the virus. However, optimizing efficacy, specificity, pharmacokinetics and stability of RNAi activators remains a priority before clinical application of this promising therapeutic approach is realised. Chemical modification of synthetic short interfering RNAs (siRNAs) provides the means to address these goals. This study aimed to assess the benefits of incorporating nucleotides with 2'-O-guanidinopropyl (GP) modifications into siRNAs that target HBV. Single GP residues were incorporated at nucleotide positions from 2 to 21 of the antisense strand of a previously characterised effective antiHBV siRNA. When tested in cultured cells, siRNAs with GP moieties at selected positions improved silencing efficacy. Stability of chemically modified siRNAs in 80% serum was moderately improved and better silencing effects were observed without evidence for toxicity or induction of an interferon response. Moreover, partially complementary target sequences were less susceptible to silencing by siRNAs with GP residues located in the seed region. Hydrodynamic co-injection of siRNAs with a replication-competent HBV plasmid resulted in highly effective knock down of markers of viral replication in mice. Evidence for improved efficacy, reduced off target effects and good silencing in vivo indicate that GP-modifications of siRNAs may be used to enhance their therapeutic utility.
Collapse
|
42
|
Bian Z, Xiao A, Cao M, Liu M, Liu S, Jiao Y, Yan W, Qi Z, Zheng Z. Anti-HBV efficacy of combined siRNAs targeting viral gene and heat shock cognate 70. Virol J 2012; 9:275. [PMID: 23158906 PMCID: PMC3534549 DOI: 10.1186/1743-422x-9-275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 11/12/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Because of the limited effectiveness of existing vaccines and drugs, development of novel antiviral strategies is urgently needed. Heat stress cognate 70 (Hsc70) is an ATP-binding protein of the heat stress protein 70 family. Hsc70 has been found to be required for HBV DNA replication. Here we report, for the first time, that combined siRNAs targeting viral gene and siHsc70 are highly effective in suppressing ongoing HBV expression and replication. METHODS We constructed two plasmids (S1 and S2) expressing short hairpin RNAs (shRNAs) targeting surface open reading frame of HBV(HBVS) and one plasmid expressing shRNA targeting Hsc70 (siHsc70), and we used the EGFP-specific siRNA plasmid (siEGFP) as we had previously described. First, we evaluated the gene-silencing efficacy of both shRNAs using an enhanced green fluorescent protein (EGFP) reporter system and flow cytometry in HEK293 and T98G cells. Then, the antiviral potencies of HBV-specific siRNA (siHBV) in combination with siHsc70 in HepG2.2.15 cells were investigated. Moreover, type I IFN and TNF-α induction were measured by quantitative real-time PCR and ELISA. RESULTS Cotransfection of either S1 or S2 with an EGFP plasmid produced an 80%-90% reduction in EGFP signal relative to the control. This combinational RNAi effectively and specifically inhibited HBV protein, mRNA and HBV DNA, resulting in up to a 3.36 log10 reduction in HBV load in the HepG2.2.15 cell culture supernatants. The combined siRNAs were more potent than siHBV or siHsc70 used separately, and this approach can enhance potency in suppressing ongoing viral gene expression and replication in HepG2.2.15 cells while forestalling escape by mutant HBV. The antiviral synergy of siHBV used in combination with siHsc70 produced no cytotoxicity and induced no production of IFN-α, IFN-β and TNF-α in transfected cells. CONCLUSIONS Our combinational RNAi was sequence-specific, effective against wild-type and mutant drug-resistant HBV strains, without triggering interferon response or producing any side effects. These findings indicate that combinational RNAi has tremendous promise for developing innovative therapy against viral infection.
Collapse
Affiliation(s)
- Zhongqi Bian
- Center for Infectious Diseases, Kunming General Hospital, PLA, 212 Daguan Rd, Kunming 650032, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Embedding siRNA sequences targeting apolipoprotein B100 in shRNA and miRNA scaffolds results in differential processing and in vivo efficacy. Mol Ther 2012; 21:217-27. [PMID: 23089734 PMCID: PMC3538299 DOI: 10.1038/mt.2012.160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overexpression of short hairpin RNA (shRNA) often causes cytotoxicity and using microRNA (miRNA) scaffolds can circumvent this problem. In this study, identically predicted small interfering RNA (siRNA) sequences targeting apolipoprotein B100 (siApoB) were embedded in shRNA (shApoB) or miRNA (miApoB) scaffolds and a direct comparison of the processing and long-term in vivo efficacy was performed. Next generation sequencing of small RNAs originating from shApoB- or miApoB-transfected cells revealed substantial differences in processing, resulting in different siApoB length, 5' and 3' cleavage sites and abundance of the guide or passenger strands. Murine liver transduction with adeno-associated virus (AAV) vectors expressing shApoB or miApoB resulted in high levels of siApoB expression associated with strong decrease of plasma ApoB protein and cholesterol. Expression of miApoB from the liver-specific LP1 promoter was restricted to the liver, while the H1 promoter-expressed shApoB was ectopically present. Delivery of 1 × 10(11) genome copies AAV-shApoB or AAV-miApoB led to a gradual loss of ApoB and plasma cholesterol inhibition, which was circumvented by delivering a 20-fold lower vector dose. In conclusion, incorporating identical siRNA sequences in shRNA or miRNA scaffolds results in differential processing patterns and in vivo efficacy that may have serious consequences for future RNAi-based therapeutics.
Collapse
|
44
|
Prospect of induced pluripotent stem cell genetic repair to cure genetic diseases. Stem Cells Int 2012; 2012:498197. [PMID: 22448173 PMCID: PMC3289873 DOI: 10.1155/2012/498197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022] Open
Abstract
In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient's own cell can be developed. However, iPSC from the patients's cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.
Collapse
|
45
|
Brzezinska J, D'Onofrio J, Buff MCR, Hean J, Ely A, Marimani M, Arbuthnot P, Engels JW. Synthesis of 2'-O-guanidinopropyl-modified nucleoside phosphoramidites and their incorporation into siRNAs targeting hepatitis B virus. Bioorg Med Chem 2011; 20:1594-606. [PMID: 22264759 DOI: 10.1016/j.bmc.2011.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/25/2022]
Abstract
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Blazquez L, Gonzalez-Rojas SJ, Abad A, Razquin N, Abad X, Fortes P. Increased in vivo inhibition of gene expression by combining RNA interference and U1 inhibition. Nucleic Acids Res 2011; 40:e8. [PMID: 22086952 PMCID: PMC3245954 DOI: 10.1093/nar/gkr956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of gene expression can be achieved with RNA interference (RNAi) or U1 small nuclear RNA—snRNA—interference (U1i). U1i is based on U1 inhibitors (U1in), U1 snRNA molecules modified to inhibit polyadenylation of a target pre-mRNA. In culture, we have shown that the combination of RNAi and U1i results in stronger inhibition of reporter or endogenous genes than that obtained using either of the techniques alone. We have now used these techniques to inhibit gene expression in mice. We show that U1ins can induce strong inhibition of the expression of target genes in vivo. Furthermore, combining U1i and RNAi results in synergistic inhibitions also in mice. This is shown for the inhibition of hepatitis B virus (HBV) sequences or endogenous Notch1. Surprisingly, inhibition obtained by combining a U1in and a RNAi mediator is higher than that obtained by combining two U1ins or two RNAi mediators. Our results suggest that RNAi and U1i cooperate by unknown mechanisms to result in synergistic inhibitions. Analysis of toxicity and specificity indicates that expression of U1i inhibitors is safe. Therefore, we believe that the combination of RNAi and U1i will be a good option to block damaging endogenous genes, HBV and other infectious agents in vivo.
Collapse
Affiliation(s)
- Lorea Blazquez
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII 55. 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Ivacik D, Ely A, Arbuthnot P. Countering hepatitis B virus infection using RNAi: how far are we from the clinic? Rev Med Virol 2011; 21:383-96. [PMID: 21913277 DOI: 10.1002/rmv.705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 12/14/2022]
Abstract
Globally, persistent HBV infection is a significant cause of public health problems. Currently available HBV therapies have variable efficacy and there is a need to develop improved treatment to prevent cirrhosis and hepatocellular carcinoma. Although RNA interference (RNAi)-based approaches have shown promise, accomplishing safe and sustained silencing by RNAi activators, as well as their efficient delivery to hepatocytes have hampered clinical translation of this very promising technology. Expressed silencers may be produced in a sustained manner from stable DNA templates, which makes them suited to treatment of chronic HBV infection. DNA expression cassettes can be incorporated into both viral and non-viral vectors, but in vivo delivery of these cassettes with non-viral vectors is currently inefficient. Synthetic short interfering RNAs (siRNAs), which may be chemically modified to improve stability, specificity and efficacy, are more conveniently delivered to their cytoplasmic sites of action with synthetic non-viral vectors. However, the short duration of action of this class of RNAi activator is a drawback for treatment of chronic HBV infection. Despite the impressive progress that has been made in developing highly effective HBV gene silencers, challenges continue to face implementation of RNAi-based HBV therapy. This review will discuss the current status of the topic and consider the developments that are required to advance RNAi-based HBV therapy to clinical application.
Collapse
Affiliation(s)
- Dejana Ivacik
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
48
|
Russo A, Potenza N. Antiviral effects of human microRNAs and conservation of their target sites. FEBS Lett 2011; 585:2551-5. [PMID: 21784072 DOI: 10.1016/j.febslet.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate gene expression at post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have shown that a limited number of mammalian microRNAs also display antiviral effects. This article summarizes the data in the field paying a special attention to the conservation of the microRNA target sequences in the viral populations. This issue is relevant both for the evaluation of the biological significance of the antiviral effects and for the development of microRNA-based strategies for antiviral intervention.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Life Sciences, Second University of Naples, Caserta, Italy.
| | | |
Collapse
|
49
|
Abstract
RNA interference (RNAi) is a powerful approach for reducing expression of endogenously expressed proteins. It is widely used for biological applications and is being harnessed to silence mRNAs encoding pathogenic proteins for therapy. Various methods - including delivering RNA oligonucleotides and expressing RNAi triggers from viral vectors - have been developed for successful RNAi in cell culture and in vivo. Recently, RNAi-based gene silencing approaches have been demonstrated in humans, and ongoing clinical trials hold promise for treating fatal disorders or providing alternatives to traditional small molecule therapies. Here we describe the broad range of approaches to achieve targeted gene silencing for therapy, discuss important considerations when developing RNAi triggers for use in humans, and review the current status of clinical trials.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
50
|
Creating a flexible multiple microRNA expression vector by linking precursor microRNAs. Biochem Biophys Res Commun 2011; 411:276-80. [PMID: 21726537 DOI: 10.1016/j.bbrc.2011.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/18/2011] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are ∼22nt non-coding RNA molecules that usually function as endogenous repressors of target genes. Many biological processes depend on faithful miRNA expression and miRNA profiling has revealed dysregulation of many miRNAs in neurological, and cardiovascular diseases, and in cancer. Despite this finding, most studies have focused on the function of single miRNAs or miRNA clusters. To better address physiologically relevant collaborative miRNA interactions, we developed a simple and flexible platform which expresses several miRNAs that have different genomic locations from a single transcript using endogenous pre-miRNA sequences. As a proof of principle we cloned the miR-34 tumor suppressor family and showed that the miR-34a/34b/34c vector expresses each miRNA at similar levels to individual miRNA containing vectors. Moreover, the miR-34a/34b/34c vector suppressed cell growth more than the individual miRNA vectors. We expect that this platform will be invaluable as a tool to study the complex and synergistic interactions of aberrantly expressed miRNAs in human diseases and may have applications for use in gene therapy.
Collapse
|