1
|
Fan W, Huang J, Tian F, Hong X, Zhu K, Zhan Y, Li X, Wang X, Wang X, Cai L, Xing Y. m 6A-Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404609. [PMID: 39555714 DOI: 10.1002/advs.202404609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome-related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin-resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin-sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1-XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1-E8 (+)] reversed SNRPA-enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1-E8 (+) expression in an SNRPA-dependent manner. In a mouse xenograft model, SNRPA-KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum-based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Hong
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Kexin Zhu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xiangyu Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| |
Collapse
|
2
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
3
|
Bai W, Zhu G, Xu J, Chen P, Meng F, Xue H, Chen C, Dong J. The 3'-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching. Cell Rep 2021; 36:109756. [PMID: 34592150 DOI: 10.1016/j.celrep.2021.109756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Robust alternative end joining (A-EJ) in classical non-homologous end joining (c-NHEJ)-deficient murine cells features double-strand break (DSB) end resection and microhomology (MH) usage and promotes chromosomal translocation. The activities responsible for removing 3' single-strand overhangs following resection and MH annealing in A-EJ remain unclear. We show that, during class switch recombination (CSR) in mature mouse B cells, the structure-specific endonuclease complex XPF-ERCC1SLX4, although not required for normal CSR, represents a nucleotide-excision-repair-independent 3' flap removal activity for A-EJ-mediated CSR. B cells deficient in DNA ligase 4 and XPF-ERCC1 exhibit further impaired class switching, reducing joining to the resected S region DSBs without altering the MH pattern in S-S junctions. In ERCC1-deficient A-EJ cells, 3' single-stranded DNA (ssDNA) flaps that are generated predominantly in S/G2 phase of the cell cycle are susceptible to nuclease resolution. Moreover, ERCC1 promotes c-myc-IgH translocation in Lig4-/- cells. Our study reveals an important role of the flap endonuclease XPF-ERCC1 in A-EJ and oncogenic translocation in mouse B cells.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guangchao Zhu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Pingyue Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Feilong Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Tao G, Xu X, Li RS, Liu F, Li N. Nonamplification Multiplexed Assay of Endonucleases and DNA Methyltransferases by Colocalized Particle Counting. ACS Sens 2021; 6:1321-1329. [PMID: 33496573 DOI: 10.1021/acssensors.0c02665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restriction endonucleases (ENases) and DNA methyltransferases (MTases) are important enzymes in biological processes, and detection of ENases/MTases activity is significant for biological and pharmaceutical studies. However, available nonamplification methods with a versatile design, desirable sensitivity, and signal production mode of unbiased quantification toward multiple nucleases are rare. By combining deliberately designed hairpin DNA probes with the colocalized particle counting technique, we present a nonamplification, separation-free method for multiplexed detection of ENases and MTases. In the presence of target ENases, the hairpin DNA is cleaved and the resulting DNA sequence forms a sandwich structure to tie two different-colored fluorescent microbeads together to generate a colocalization signal that can be easily detected using a standard fluorescence microscope. The multiplexed assay is realized via different color combinations. For the assay of methyltransferase, methylation by MTases prevents cleavage of the hairpin by the corresponding ENase, leading to decreased colocalization events. Three ENases can be simultaneously detected with high selectivity, minimal cross-talk, and detection limits of (4.1-6.4) × 10-4 U/mL, and the corresponding MTase activity can be measured without a change of the probe design. The potential for practical application is evaluated with human serum samples and different ENase and MTase inhibitors with satisfactory results. The proposed method is separation-free, unbiased toward multiple targets, and easy to implement, and the strategy has the potential to be extended to other targets.
Collapse
Affiliation(s)
- Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xu
- Environmental Metrology Center, National Institute of Metrology, Beijing 100029, China
| | - Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Applicability of flow cytometry γH2AX assay in population studies: suitability of fresh and frozen whole blood samples. Arch Toxicol 2021; 95:1843-1851. [PMID: 33624155 DOI: 10.1007/s00204-021-03009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Phosphorylation of H2AX histone (γH2AX) represents an early event in the DNA damage response against double-strand breaks (DSB); hence, its measurement provides a surrogate biomarker of DSB. Recently, we reported initial steps in the standardization of γH2AX assay in peripheral blood leukocytes (PBL), addressing the possibility of using cryopreserved samples, and the need of phytohaemagglutinin (PHA) stimulation prior analysis (Toxicol Sci 2015, 144:406-13). Validating the use of whole blood samples as cell specimen for this assay would be particularly useful for human population studies. Hence, in the current study we determined for the first time the feasibility of whole blood samples, both fresh and frozen, to be used in the γH2AX assay, evaluated by flow cytometry, and the convenience of PHA stimulation. Freshly collected and cryopreserved whole blood samples were treated with bleomycin (BLM), actinomycin-D (Act-D) and mitomycin C (MMC); half of the samples were previously incubated with PHA. Results were compared with those from PBL. Negative responses in MMC treatments were probably due to the quiescence of unstimulated cells, or to the short treatment time in PHA stimulated cells. Fresh whole blood samples exhibited a more intense response to BLM and Act-D treatments in stimulated cells, probably due to DSB indirectly produced from other less relevant types of DNA damage. Results obtained in frozen whole blood samples indicate that PHA stimulation is not advisable. In conclusion, this study demonstrates that whole blood samples can be used to assess DSB-related genotoxicity by the flow cytometry γH2AX assay.
Collapse
|
6
|
Vacheron J, Heiman CM, Keel C. Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion. Commun Biol 2021; 4:87. [PMID: 33469108 PMCID: PMC7815802 DOI: 10.1038/s42003-020-01581-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Liao X, Li Y, Li H, Huang W, Wang H, Xie W. Expression and Clinical Significance of ERCC1 and XPF in Human Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:1059-1072. [PMID: 32099408 PMCID: PMC7007798 DOI: 10.2147/ott.s237916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the correlation between the ERCC1 and XPF expression and the clinicopathological parameters of hepatocellular carcinoma (HCC) patients through assessment of the expression of the DNA repair genes ERCC1 and XPF. Methods ERCC1 and XPF mRNA expression in HCC (n= 177) and adjacent para-cancer tissues (n=21) were assessed by RT-PCR. The correlation between ERCC1 and XPF expression, clinicopathological features and HCC prognosis were compared. Results ERCC1 expression in liver cancer tissues was significantly lower than that of adjacent tissues (9.5% (2/21) vs 38.1% (8/21); P<0.05). The positive expression rates of XPF in liver cancer tissues was lower than that of adjacent tissues (14.3% (3/21) vs 71.4% (15/21); P<0.05). ERCC1 and XPF expression were associated with hepatic capsular invasion and microvascular invasion. HCC patients with hepatic capsular invasion and microvascular tumor embolus formation had significantly lower levels of ERCC1 and XPF mRNA than those without hepatic capsular invasion and microvascular tumor embolus formation (P<0.05). In addition, ERCC1 expression was associated with TNM staging of HCC. The expression of ERCC1 mRNA in patients with stage II and III HCC were lower than that of patients with stage I HCC (P<0.05). The low levels of ERCC1 and XPF mRNA significantly correlated with relapse-free survival times (RFS) in HCC patients. The median RFS of the low ERCC1 expression group and low XPF expression group were shorter than those of the high expression group (15.0 months vs 32.0 months, P<0.05) and (19.0 months vs 33.0 months, P<0.05). The decrease in XPF mRNA expression was significantly associated with the overall survival (OS) of HCC patients. The median OS in the low XPF expression group was shorter than that of the high expression group (46.0 months vs 78.0 months, P<0.05). However, no significant difference in OS between the low ERCC1 expression group and the high ERCC1 expression groups were observed (63.0 months vs 64.0 months, P>0.05). Multivariate analysis showed that tumor size and the extent of differentiation were independent factors affecting the RFS in HCC patients (P<0.05). The extent of differentiation and XPF were independent factors affecting the OS in HCC (P<0.05). Conclusion The expression in ERCC1 and XPF were low in HCC and associated with early relapse after HCC surgery. Low XPF expression may be a potential indicator of a high risk of death.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of First Chemotherapy, Affiliated Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China
| | - Yongqiang Li
- Department of First Chemotherapy, Affiliated Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China
| | - Hualan Li
- Department of First Chemotherapy, Affiliated Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China
| | - Wenfeng Huang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Hongxue Wang
- Department of Fifth Chemotherapy, Affiliated Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China
| | - Weimin Xie
- Department of Fifth Chemotherapy, Affiliated Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China
| |
Collapse
|
9
|
Zhang L, Pradhan B, Guo L, Meng F, Zhong D. EGFR exon 19-deletion aberrantly regulate ERCC1 expression that may partly impaired DNA damage repair ability in non-small cell lung cancer. Thorac Cancer 2019; 11:277-285. [PMID: 31875360 PMCID: PMC6996978 DOI: 10.1111/1759-7714.13253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) activating mutations are usually associated with DNA damage repair (DDR) deficiency. However, the precise mechanism has remained elusive. In this study, we aimed to investigate whether EGFR exon 19 deletion mutation downstream signals contributed to DDR deficiency by downregulation of excision repair cross-complementation group-1 (ERCC1), a key factor in DDR, expression and function. METHODS We first measured cell survival, DNA damage (γ-H2AX foci formation) and damage repair (ERCC1 and RAD51 foci formation) ability in response to DNA cross-linking drug in EGFR exon 19 deletion and EGFR wild-type cells separately. We then investigated the involvement of EGFR downstream signals in regulating ERCC1 expression and function in EGFR exon 19 deletion cells as compared with EGFR wild-type ones. RESULTS We observed increased γ-H2AX, but impaired ERCC1 and RAD51 nuclear foci formation in EGFR exon 19 deletion cells as compared with EGFR wild-type ones treated with DNA cross-linker. In addition, we identified that inhibition of EGFR exon 19 deletion signals increased ERCC1 expression, whereas blocked wild-type EGFR signals decreased ERCC1 expression, on both mRNA and protein levels. Furthermore, EGFR exon 19 deletion downstream signals not only inhibited ERCC1 expression but also influenced ERCC1 foci formation in response to DNA cross-linker. CONCLUSION Our findings indicated that the aberrant EGFR exon 19 deletion signals were not only associated with decreased expression of ERCC1 but were also involved in impaired ERCC1 recruitment in response to DNA cross-link damage, thereby providing us with more evidence for exploring the mechanism of DDR deficiency in EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Barun Pradhan
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lili Guo
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Liu X, Jiang Y, Takata KI, Nowak B, Liu C, Wood RD, Hittelman WN, Plunkett W. CNDAC-Induced DNA Double-Strand Breaks Cause Aberrant Mitosis Prior to Cell Death. Mol Cancer Ther 2019; 18:2283-2295. [PMID: 31501277 DOI: 10.1158/1535-7163.mct-18-1380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
Incorporation of the clinically active deoxycytidine analogue 2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosyl-cytosine (CNDAC) into DNA generates single-strand breaks that are subsequently converted to double-strand breaks (DSB). Here, we investigated the cellular manifestations of these breaks that link these mechanisms to cell death, and we further tested the relevance of DNA repair pathways in protection of cells against CNDAC damage. The present investigations demonstrate that following exposure to CNDAC and a wash into drug-free medium, chromosomal aberrations, DNA strand breaks, and multinucleate cells arose. These portended loss of viability and were dependent upon exposure time, CNDAC concentration, and passage through mitosis. Following a pulse incubation with CNDAC, live cell imaging using GFP-tagged histone H2B as a marker demonstrated a normal rate of progression to mitosis, but a concentration-dependent delay in passage to a second mitosis. Progression through mitosis was also delayed and accompanied by formation of multinucleate cells. CNDAC-treated cells lacking XPF-ERCC1 nuclease function showed a 16-fold increase in chromosome aberrations. Chromosomal damage in Rad51D-mutant cells (homologous recombination repair deficient) were even more severely affected with extensive aberrations. Rodent or human Polq (POLQ) mutant cells, defective in Pol θ-mediated alternative end joining, did not show enhanced cellular sensitivity to CNDAC. These findings are consistent with formation of DSBs in the second S-phase following exposure, resulting in chromosome aberrations, aberrant mitoses, and subsequent apoptosis.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kei-Ichi Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Impact of XPF rs2276466 polymorphism on cancer susceptibility: a meta-analysis. Biosci Rep 2019; 39:BSR20181785. [PMID: 31040199 PMCID: PMC6533207 DOI: 10.1042/bsr20181785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 01/14/2023] Open
Abstract
Association between the xeroderma pigmentosum complementation group F (XPF)rs2276466 located in the excision repair cross complementation group 4 (ERCC4) gene and cancer susceptibility has been widely investigated. However, results thus far have remained controversial. A meta-analysis was performed to identify the impact of this polymorphism on cancer susceptibility. PubMed, Embase and Science-Web databases were searched systematically up to May 20, 2018, to obtain all the records evaluating the association between the rs2276466 polymorphism and the risk of all types of cancers. We used the odds ratio (OR) as a measure of effect, and pooled the data in a Mantel-Haenszel weighed random-effects meta-analysis to provide a summary estimate of the impact of this polymorphism on gastrointestinal cancer, neurogenic cancer and other cancers (breast cancer and SCCHN). All the analyses were carried out in STATA 14.1.11 case–control studies that consisted of 5730 cases and 6756 controls, were eventually included in our meta-analysis. The significant association was observed between the XPFrs2276466 polymorphism and neurogenic cancer susceptibility (recessive model: OR = 1.648, 95% CI = 1.294–2.098, P<0.001). Furthermore, no significant impact of this polymorphism was detected on decreased gastrointestinal cancer risk (dominant model: OR = 1.064, 95%CI = 0.961–1.177, P = 0.233). The rs2276466 polymorphism might play different roles in carcinogenesis of various cancer types. Current evidence did not suggest that this polymorphism was directly associated with gastrointestinal susceptibility. However, this polymorphism might contribute to increased neurogenic cancer risk. More preclinical and epidemiological studies are still imperative for further evaluation
Collapse
|
12
|
Abstract
Persistent, in particular neuropathic pain affects millions of people worldwide. However, the response rate of patients to existing analgesic drugs is less than 50%. There are several possibilities to increase this response rate, such as optimization of the pharmacokinetic and pharmacodynamic properties of analgesics. Another promising approach is to use prognostic biomarkers in patients to determine the optimal pharmacological therapy for each individual. Here, we discuss recent efforts to identify plasma and CSF biomarkers, as well as genetic biomarkers and sensory testing, and how these readouts could be exploited for the prediction of a suitable pharmacological treatment. Collectively, the information on single biomarkers may be stored in knowledge bases and processed by machine-learning and related artificial intelligence techniques, resulting in the optimal pharmacological treatment for individual pain patients. We highlight the potential for biomarker-based individualized pain therapies and discuss biomarker reliability and their utility in clinical practice, as well as limitations of this approach.
Collapse
|
13
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
14
|
Gu L, Lingeman R, Yakushijin F, Sun E, Cui Q, Chao J, Hu W, Li H, Hickey RJ, Stark JM, Yuan YC, Chen Y, Vonderfecht SL, Synold TW, Shi Y, Reckamp KL, Horne D, Malkas LH. The Anticancer Activity of a First-in-class Small-molecule Targeting PCNA. Clin Cancer Res 2018; 24:6053-6065. [PMID: 29967249 DOI: 10.1158/1078-0432.ccr-18-0592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Proliferating cell nuclear antigen (PCNA) plays an essential role in regulating DNA synthesis and repair and is indispensable to cancer cell growth and survival. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was ubiquitously expressed in a broad range of cancer cells and tumor tissues, but not significantly in nonmalignant cells. We found the L126-Y133 region of caPCNA is structurally altered and more accessible to protein-protein interaction. A cell-permeable peptide harboring the L126-Y133 sequence blocked PCNA interaction in cancer cells and selectively kills cancer cells and xenograft tumors. On the basis of these findings, we sought small molecules targeting this peptide region as potential broad-spectrum anticancer agents. EXPERIMENTAL DESIGN By computer modeling and medicinal chemistry targeting a surface pocket partly delineated by the L126-Y133 region of PCNA, we identified a potent PCNA inhibitor (AOH1160) and characterized its therapeutic properties and potential toxicity. RESULTS AOH1160 selectively kills many types of cancer cells at below micromolar concentrations without causing significant toxicity to a broad range of nonmalignant cells. Mechanistically, AOH1160 interferes with DNA replication, blocks homologous recombination-mediated DNA repair, and causes cell-cycle arrest. It induces apoptosis in cancer cells and sensitizes them to cisplatin treatment. AOH1160 is orally available to animals and suppresses tumor growth in a dosage form compatible to clinical applications. Importantly, it does not cause significant toxicity at 2.5 times of an effective dose. CONCLUSIONS These results demonstrated the favorable therapeutic properties and the potential of AOH1160 as a broad-spectrum therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular & Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California.
| | - Robert Lingeman
- Department of Molecular & Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Fumiko Yakushijin
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Emily Sun
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Qi Cui
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Jianfei Chao
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Weidong Hu
- Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California
| | - Hongzhi Li
- Department of Bioinformatics, Beckman Research Institute of City of Hope, Duarte, California
| | - Robert J Hickey
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California.,Translational Biomarker Discovery Core, Beckman Research Institute of City of Hope, Duarte, California
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, California
| | - Yate-Ching Yuan
- Department of Bioinformatics, Beckman Research Institute of City of Hope, Duarte, California
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Steven L Vonderfecht
- Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Yanhong Shi
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Karen L Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Linda H Malkas
- Department of Molecular & Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
15
|
Kuo MS, Adam J, Dorvault N, Robin A, Friboulet L, Soria JC, Olaussen KA. A novel antibody-based approach to detect the functional ERCC1-202 isoform. DNA Repair (Amst) 2018; 64:34-44. [PMID: 29482102 DOI: 10.1016/j.dnarep.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/26/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
ERCC1/XPF endonuclease plays an important role in multiple DNA repair pathways and stands as a potential prognostic and predictive biomarker for cisplatin-based chemotherapy. Four distinct ERCC1 isoforms arising from alternative splicing have been described (201, 202, 203 and 204) but only the 202 isoform is functional in DNA excision repair, when interacting with its obligate partner XPF. Currently, there is no tool to assess specifically the expression of ERCC1-202 due to high sequence homology between the four isoforms. Here, we generated monoclonal antibodies directed against the heterodimer of ERCC1 and its obligate interacting partner XPF by genetic immunization. We obtained three monoclonal antibodies (2C11, 7C3 and 10D10) recognizing specifically the heterodimer ERCC1-202/XPF as well as the ERCC1-204/XPF with no affinity to ERCC1 or XPF monomers. By combining one of these three heterodimer-specific antibodies with a commercial anti-ERCC1 antibody (clone 4F9) unable to recognize the 204 isoform in a proximity ligation assay (PLA), we managed to specifically detect the functional ERCC1-202 isoform. This methodological breakthrough can constitute a basis for the development of clinical tests to evaluate ERCC1 functional proficiency.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
| | - Julien Adam
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
| | - Nicolas Dorvault
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
| | - Angélique Robin
- UF de Pharmacologie Biologie, Saint Louis Hopital, Institut de Génétique Moléculaire, 75010, Paris, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France
| | - Jean-Charles Soria
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France; Gustave Roussy, Université Paris-Saclay, Drug Development Department (DITEP), 94805, Villejuif, France
| | - Ken A Olaussen
- INSERM U981, Gustave Roussy, 94805, Villejuif, France; Faculté de médecine, Université Paris-Sud, 94270, Kremlin-Bicêtre, France.
| |
Collapse
|
16
|
Hu Y, Zhang Q, Xu L, Wang J, Rao J, Guo Z, Wang S. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters. Anal Bioanal Chem 2017; 409:6677-6688. [DOI: 10.1007/s00216-017-0623-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
17
|
Lehmann J, Seebode C, Smolorz S, Schubert S, Emmert S. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF. Cell Mol Life Sci 2017; 74:2081-2094. [PMID: 28130555 PMCID: PMC11107539 DOI: 10.1007/s00018-017-2455-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
The XPF/ERCC1 heterodimeric complex is essentially involved in nucleotide excision repair (NER), interstrand crosslink (ICL), and double-strand break repair. Defects in XPF lead to severe diseases like xeroderma pigmentosum (XP). Up until now, XP-F patient cells have been utilized for functional analyses. Due to the multiple roles of the XPF/ERCC1 complex, these patient cells retain at least one full-length allele and residual repair capabilities. Despite the essential function of the XPF/ERCC1 complex for the human organism, we successfully generated a viable immortalised human XPF knockout cell line with complete loss of XPF using the CRISPR/Cas9 technique in fetal lung fibroblasts (MRC5Vi cells). These cells showed a markedly increased sensitivity to UVC, cisplatin, and psoralen activated by UVA as well as reduced repair capabilities for NER and ICL repair as assessed by reporter gene assays. Using the newly generated knockout cells, we could show that human XPF is markedly involved in homologous recombination repair (HRR) but dispensable for non-homologous end-joining (NHEJ). Notably, ERCC1 was not detectable in the nucleus of the XPF knockout cells indicating the necessity of a functional XPF/ERCC1 heterodimer to allow ERCC1 to enter the nucleus. Overexpression of wild-type XPF could reverse this effect as well as the repair deficiencies.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
| | - Sabine Smolorz
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Schubert
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| |
Collapse
|
18
|
Koncar RF, Feldman R, Bahassi EM, Hashemi Sadraei N. Comparative molecular profiling of HPV-induced squamous cell carcinomas. Cancer Med 2017; 6:1673-1685. [PMID: 28556593 PMCID: PMC5504316 DOI: 10.1002/cam4.1108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/29/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 5% of all cancer incidences result from human papillomavirus (HPV) infection. HPV infection most commonly leads to cancers of the anogenital region or oropharynx. It is unknown whether different HPV-mediated cancers collectively share a molecular signature and it is important to determine if there are targetable alterations common to different types of HPV-positive tumors. We analyzed 743 p53 wild-type samples of anal, cervical, oropharyngeal, and vulvar squamous cell carcinomas which underwent multiplatform testing at a commercial molecular profiling service. Expression of 24 proteins was measured by immunohistochemistry (IHC), mutation of 48 genes was determined by next-generation and Sanger sequencing, and copy number alteration for six genes was determined by in situ hybridization. The four cohorts had remarkably similar molecular profiles. No gene had a statistically significant difference in mutation frequency or copy number change between the four different types of squamous cell carcinomas. The only significant differences between cohorts were frequency of ERCC1 and SPARC loss as determined by IHC. In all four cancer types, oncogene mutation and PD-L1 expression was relatively infrequent. The most commonly mutated gene was PIK3CA, with mutations most often affecting the helical domain of the protein and accompanied by concurrent lack of PTEN expression. Loss of MGMT and RRM1 was common among the four cohorts and may be predictive of response to cytotoxic therapies not currently being used to treat these cancer types. The similar molecular profiles of the four cohorts indicate that treatment strategies may be similarly efficacious across HPV-positive cancers.
Collapse
Affiliation(s)
- Robert F Koncar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | | | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Nooshin Hashemi Sadraei
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
19
|
Wyatt HDM, Laister RC, Martin SR, Arrowsmith CH, West SC. The SMX DNA Repair Tri-nuclease. Mol Cell 2017; 65:848-860.e11. [PMID: 28257701 PMCID: PMC5344696 DOI: 10.1016/j.molcel.2017.01.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
The efficient removal of replication and recombination intermediates is essential for the maintenance of genome stability. Resolution of these potentially toxic structures requires the MUS81-EME1 endonuclease, which is activated at prometaphase by formation of the SMX tri-nuclease containing three DNA repair structure-selective endonucleases: SLX1-SLX4, MUS81-EME1, and XPF-ERCC1. Here we show that SMX tri-nuclease is more active than the three individual nucleases, efficiently cleaving replication forks and recombination intermediates. Within SMX, SLX4 co-ordinates the SLX1 and MUS81-EME1 nucleases for Holliday junction resolution, in a reaction stimulated by XPF-ERCC1. SMX formation activates MUS81-EME1 for replication fork and flap structure cleavage by relaxing substrate specificity. Activation involves MUS81's conserved N-terminal HhH domain, which mediates incision site selection and SLX4 binding. Cell cycle-dependent formation and activation of this tri-nuclease complex provides a unique mechanism by which cells ensure chromosome segregation and preserve genome integrity.
Collapse
Affiliation(s)
- Haley D M Wyatt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rob C Laister
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
20
|
Aasa J, Vare D, Motwani HV, Jenssen D, Törnqvist M. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 805:38-45. [PMID: 27402481 DOI: 10.1016/j.mrgentox.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
Abstract
Glycidol (Gly) is an electrophilic low-molecular weight epoxide that is classified by IARC as probably carcinogenic to humans. Humans might be exposed to Gly from food, e.g. refined vegetable oils, where Gly has been found as a food process contaminant. It is therefore important to investigate and quantify the genotoxicity of Gly as a primary step towards cancer risk assessment of the human exposure. Here, quantification of the mutagenic potency expressed per dose (AUC: area under the concentration-time curve) of Gly has been performed in Chinese hamster ovary (CHO) cells, using the HPRT assay. The dose of Gly was estimated in the cell exposure medium by trapping Gly with a strong nucleophile, cob(I)alamin, to form stable cobalamin adducts for analysis by LC-MS/MS. Gly was stable in the exposure medium during the time for cell treatment, and thus the dose in vitro is the initial concentration×cell treatment time. Gly induced mutations in the hprt-gene at a rate of 0.08±0.01 mutations/10(5) cells/mMh. Through comparison with the effect of ionizing radiation in the same system a relative mutagenic potency of 9.5rad-eq./mMh was obtained, which could be used for comparison of genotoxicity of chemicals and between test systems and also in procedures for quantitative cancer risk assessment. Gly was shown to induce strand breaks, that were repaired by base excision repair. Furthermore, Gly-induced lesions, present during replication, were found to delay the replication fork elongation. From experiments with repair deficient cells, homologous recombination repair and the ERCC1-XPF complex were indicated to be recruited to support in the repair of the damage related to the stalled replication elongation. The type of DNA damage responsible for the mutagenic effect of Gly could not be concluded from the present study.
Collapse
Affiliation(s)
- Jenny Aasa
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Vare
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Dag Jenssen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
21
|
Li XY, Huang J, Jiang HX, Du YC, Han GM, Kong DM. Molecular logic gates based on DNA tweezers responsive to multiplex restriction endonucleases. RSC Adv 2016. [DOI: 10.1039/c6ra05132d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Self-assembled DNA tweezers containing four different restriction endonuclease recognition sites were designed and a set of logic gates were constructed.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
| | - Juan Huang
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
| | - Hong-Xin Jiang
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University Tianjin
- People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
22
|
Abstract
Non-small cell lung cancer has seen an unprecedented augmentation of therapeutic options over the last couple of years. Improved understanding of molecular drivers and the role of the immune system in cancer therapy have brought new drugs to the armamentarium. Despite these advances, cytotoxic chemotherapy remains a substantial part of therapy for most patients in locally advanced and metastatic stage. Initially thought to be a chemotherapy-resistant entity, meta-analyses in the mid-1990s demonstrated modest efficacy of platinum-based therapy. Further combination trials demonstrated enhanced efficacy for several regimen in first and second lines, including the introduction of antimetabolites, taxanes, and anti-angiogenic agents. Maintenance chemotherapy has been another novel, successful approach for management of metastatic disease. Herein, we summarize the current concepts of chemotherapy, its applicability to the different histologies, and novel concepts of therapy.
Collapse
Affiliation(s)
- Martin F Dietrich
- Harold C. Simmons Cancer Center, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 8852, Dallas, TX, 75390-8852, USA.
| | - David E Gerber
- Harold C. Simmons Cancer Center, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 8852, Dallas, TX, 75390-8852, USA.
| |
Collapse
|
23
|
Liu YC, Chang PY, Chao CCK. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene. Nucleic Acids Res 2015; 43:10760-81. [PMID: 26384430 PMCID: PMC4678856 DOI: 10.1093/nar/gkv934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| | - Pu-Yuan Chang
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China
| | - Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
24
|
Zhang P, Sridharan D, Lambert MW. Nuclear α Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage. J Cell Biochem 2015; 117:671-83. [PMID: 26297932 DOI: 10.1002/jcb.25352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Abstract
Nonerythroid α spectrin (αIISp) and the Fanconi anemia (FA) protein, FANCD2, play critical roles in DNA interstrand cross-link (ICL) repair during S phase. Both are needed for recruitment of repair proteins, such as XPF, to sites of damage and repair of ICLs. However, the relationship between them in ICL repair and whether αIISp is involved in FANCD2's function in repair is unclear. The present studies show that, after ICL formation, FANCD2 disassociates from αIISp and localizes, before αIISp, at sites of damage in nuclear foci. αIISp and FANCD2 foci do not co-localize, in contrast to our previous finding that αIISp and the ICL repair protein, XPF, co-localize and follow a similar time course for formation. Knock-down of αIISp has no effect on monoubiquitination of FANCD2 (FANCD2-Ub) or its localization to chromatin or foci, though it leads to decreased ICL repair. Studies using cells from FA patients, defective in ICL repair and αIISp, have elucidated an important role for αIISp in the function of non-Ub FANCD2. In FA complementation group A (FA-A) cells, in which FANCD2 is not monoubiquitinated and does not form damage-induced foci, we demonstrate that restoration of αIISp levels to normal, by knocking down the protease μ-calpain, leads to formation of non-Ub FANCD2 foci after ICL damage. Since restoration of αIISp levels in FA-A cells restores DNA repair and cell survival, we propose that αIISp is critical for recruitment of non-Ub FANCD2 to sites of damage, which has an important role in the repair response and ICL repair.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Deepa Sridharan
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| |
Collapse
|
25
|
Adam-Zahir S, Plowman PN, Bourton EC, Sharif F, Parris CN. Increased γ-H2AX and Rad51 DNA Repair Biomarker Expression in Human Cell Lines Resistant to the Chemotherapeutic Agents Nitrogen Mustard and Cisplatin. Chemotherapy 2015; 60:310-20. [PMID: 26138778 DOI: 10.1159/000430086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023]
Abstract
Chemotherapeutic anticancer drugs mediate cytotoxicity by a number of mechanisms. However, alkylating agents which induce DNA interstrand crosslinks (ICL) are amongst the most effective anticancer agents and often form the mainstay of many anticancer therapies. The effectiveness of these drugs can be limited by the development of drug resistance in cancer cells and many studies have demonstrated that alterations in DNA repair kinetics are responsible for drug resistance. In this study we developed two cell lines resistant to the alkylating agents nitrogen mustard (HN2) and cisplatin (Pt). To determine if drug resistance was associated with enhanced ICL DNA repair we used immunocytochemistry and imaging flow cytometry to quantitate the number of γ-H2AX and Rad51 foci in the nuclei of cells after drug exposure. γ-H2AX was used to evaluate DNA strand breaks caused by repair incision nucleases and Rad51 was used to measure the activity of homologous recombination in the repair of ICL. In the drug-resistant derivative cell lines there was overall a significant increase in the number and persistence of both γ-H2AX and Rad51 foci in the nuclei of cells over a 72-hour period, when compared to the non-resistant parental cell lines (ANOVA p < 0.0001). In a Pt-resistant ovarian cancer cell line (A2780cis(R)) a similar enhancement of DNA repair was observed when compared to the non-drug-resistant wild-type ovarian cancer cells (A2780) following exposure to HN2. Our data suggest that using DNA repair biomarkers to evaluate mechanisms of resistance in cancer cell lines and human tumours may be of experimental and clinical benefit. We concede, however, that examination of a larger population of cell lines and tumours is required to fully evaluate the validity of this approach.
Collapse
Affiliation(s)
- Sheba Adam-Zahir
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge, UK
| | | | | | | | | |
Collapse
|
26
|
Faridounnia M, Wienk H, Kovačič L, Folkers GE, Jaspers NGJ, Kaptein R, Hoeijmakers JHJ, Boelens R. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex. J Biol Chem 2015; 290:20541-55. [PMID: 26085086 DOI: 10.1074/jbc.m114.635169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/15/2022] Open
Abstract
The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.
Collapse
Affiliation(s)
- Maryam Faridounnia
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hans Wienk
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lidija Kovačič
- the Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia, and
| | - Gert E Folkers
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nicolaas G J Jaspers
- the Department of Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Robert Kaptein
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan H J Hoeijmakers
- the Department of Genetics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rolf Boelens
- From the Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands,
| |
Collapse
|
27
|
Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 2015; 569:153-61. [PMID: 26074087 DOI: 10.1016/j.gene.2015.06.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1-XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1-XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5' to 3' away from a junction. ERCC1-XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1-XPF complex cleaves the 3' tails of DNA intermediates in preparation for further processing. ERCC1-XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1-XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome.
Collapse
Affiliation(s)
- Mandira Manandhar
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Karen S Boulware
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Xuelei M, Jingwen H, Wei D, Hongyu Z, Jing Z, Changle S, Lei L. ERCC1 plays an important role in predicting survival outcomes and treatment response for patients with HNSCC: A meta-analysis. Oral Oncol 2015; 51:483-92. [DOI: 10.1016/j.oraloncology.2015.02.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
|
29
|
Stefanou DT, Bamias A, Episkopou H, Kyrtopoulos SA, Likka M, Kalampokas T, Photiou S, Gavalas N, Sfikakis PP, Dimopoulos MA, Souliotis VL. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer. PLoS One 2015; 10:e0117654. [PMID: 25659114 PMCID: PMC4320060 DOI: 10.1371/journal.pone.0117654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023] Open
Abstract
Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Dimitra T. Stefanou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Hara Episkopou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Catholic University of Louvain, Brussels, 1200, Belgium
| | - Soterios A. Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Likka
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Theodore Kalampokas
- Second Department of Obstetrics & Gynaecology, Athens University Medical School, 11528 Athens, Greece
| | - Stylianos Photiou
- Second Department of Obstetrics & Gynaecology, Athens University Medical School, 11528 Athens, Greece
| | - Nikos Gavalas
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Petros P. Sfikakis
- First Department of Propedeutic Medicine, Athens University Medical School, 11527 Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Athens University Medical School, 11528 Athens, Greece
| | - Vassilis L. Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
- * E-mail:
| |
Collapse
|
30
|
Souliotis VL, Sfikakis PP. Increased DNA double-strand breaks and enhanced apoptosis in patients with lupus nephritis. Lupus 2014; 24:804-15. [PMID: 25542905 DOI: 10.1177/0961203314565413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE DNA double-strand breaks (DSBs) lead to mutations, genomic instability and apoptotic death, whereas accumulation of apoptotic cells results in excessive autoantigen presentation and autoantibody formation. We aimed to measure DSB levels in lupus nephritis, a severe complication of the prototypic systemic autoimmune disease. METHODS The intrinsic DNA damage and the apoptosis induction/DSB levels were evaluated in peripheral blood mononuclear cells of six patients and 10 healthy controls following exposure to genotoxic agents (melphalan, cisplatin) ex vivo. DSBs were assessed using immunofluorescence quantification of γH2AX foci and comet assay. RESULTS Intrinsic DNA damage was increased in lupus versus control cells in both assays (Olive Tail Moment units of 15.8 ± 2.3 versus 3.0 ± 1.4 in comet, p < 0.01; % γH2AX-positive cells: 13.6 ± 1.8 versus 4.6 ± 0.9, p < 0.01, respectively). Melphalan or cisplatin doses as low as 9.9 ± 4.8 or 29.8 ± 8.3 µg/ml, respectively, were sufficient to induce apoptosis in lupus cells; control cells required doses of 32.3 ± 7.7 and 67.7 ± 5.5 µg/ml, respectively. Drug-induced DSB levels were increased in lupus versus control cells, with the area under the curve (AUC) for melphalan-induced DSBs being 3050 ± 610 (% γH2AX-positive staining cells) × (drug dose) in patients and 1580 ± 350 in controls (p < 0.05); the corresponding values for cisplatin-induced AUC were 13900 ± 1800 for lupus and 4500 ± 750 for controls (p < 0.01). Interestingly, within either lupus patients or controls examined, the accumulation of DSBs correlated with apoptosis degrees (all p < 0.01). Results in lupus cells were not associated with individual disease activity level or treatment modalities at the time of the study. CONCLUSION These findings suggest a novel mechanism by which increased accumulation of DSBs may render cells more sensitive to apoptosis, thus contributing to the induction of systemic autoimmunity.
Collapse
Affiliation(s)
- V L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - P P Sfikakis
- Rheumatology Unit, First Department of Propedeutic Internal Medicine, Athens University Medical School, Athens, Greece
| |
Collapse
|
31
|
Mishra AK, Dormi SS, Turchi AM, Woods DS, Turchi JJ. Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer. Biochem Pharmacol 2014; 93:25-33. [PMID: 25449597 DOI: 10.1016/j.bcp.2014.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
Abstract
Platinum-based chemotherapeutics exert their therapeutic efficacy via the formation of DNA adducts which interfere with DNA replication, transcription and cell division and ultimately induce cell death. Repair and tolerance of these Pt-DNA lesions by nucleotide excision repair (NER) and homologous recombination (HR) can substantially reduce the effectiveness of therapy. Inhibition of these repair pathways, therefore, holds the potential to sensitize cancer cells to Pt treatment and increase clinical efficacy. Replication Protein A (RPA) plays essential roles in both NER and HR, along with its role in DNA replication and DNA damage checkpoint activation. Each of these functions is, in part, mediated by RPA binding to single-stranded DNA (ssDNA). Here we report the synthesis and characterization of novel derivatives of RPA small molecule inhibitors and their activity in models of epithelial ovarian cancer (EOC) and non-small cell lung cancer (NSCLC). We have synthesized analogs of our previously reported RPA inhibitor TDRL-505 and determined the structure-activity relationships. These data led us to the identification of TDRL-551, which exhibited a greater than 2-fold increase in in vitro activity. TDRL-551 showed synergy with Pt in tissue culture models of EOC and in vivo efficacy, as a single agent and in combination with platinum, in a NSCLC xenograft model. These data demonstrate the utility of RPA inhibition in EOC and NSCLC and the potential in developing novel anticancer therapeutics that target RPA-DNA interactions.
Collapse
Affiliation(s)
- Akaash K Mishra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Silvana S Dormi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alaina M Turchi
- NERx Biosciences Inc. 351W. 10th Street, Suite 510, Indianapolis, IN 46202, USA
| | - Derek S Woods
- NERx Biosciences Inc. 351W. 10th Street, Suite 510, Indianapolis, IN 46202, USA
| | - John J Turchi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; NERx Biosciences Inc. 351W. 10th Street, Suite 510, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Song C, Zhang Q, Han GM, Du YC, Kong DM. A facile fluorescence method for endonuclease detection using exonuclease III-aided signal amplification of a molecular beacon. RSC Adv 2014. [DOI: 10.1039/c4ra09676b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Kehrli KRM, Sidorova JM. Mitomycin C reduces abundance of replication forks but not rates of fork progression in primary and transformed human cells. Oncoscience 2014; 1:540-555. [PMID: 25580447 PMCID: PMC4278321 DOI: 10.18632/oncoscience.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA crosslinks can block replication in vitro and slow down S phase progression in vivo. We characterized the effect of mitomycin C crosslinker on S phase globally and on individual replication forks in wild type and FANCD2-deficient human cells. FANCD2 is critical to crosslink repair, and is also implicated in facilitating DNA replication. We used DNA fiber analysis to demonstrate persistent reduction in abundance but not progression rate of replication forks during an S phase of MMC-treated cells. FANCD2 deficiency did not eliminate this phenotype. Immunoprecipitation of EdU-labeled DNA indicated that replication was not suppressed in the domains that were undergoing response to MMC as marked by the presence of γH2AX, and in fact γH2AX was overrepresented on DNA that had replicated immediately after MMC in wild type through less so in FANCD2-depleted cells. FANCD2-depleted cells also produced fewer tracks of uninterrupted replication of up to 240Kb long, regardless of MMC treatment. Overall, the data suggest that crosslinks may not pose a block to S phase as a whole, but instead profoundly change its progress by reducing density of replication forks and causing at least a fraction of forks to operate within a DNA damage response-altered chromatin.
Collapse
Affiliation(s)
- Keffy R M Kehrli
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
34
|
Liccardi G, Hartley JA, Hochhauser D. Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin Cancer Res 2014; 20:3496-506. [PMID: 24780295 DOI: 10.1158/1078-0432.ccr-13-2695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) plays an important role in cellular response to chemotherapy and radiotherapy through modulation of DNA repair. EGFR activates DNA-dependent protein kinase (DNA-PK) stimulating repair of DNA strand breaks (SB) and interstrand crosslinks (ICL). We investigated the role of EGFR in repair of ionizing radiation (IR)-induced SB independently of DNA-PK. EXPERIMENTAL DESIGN The EGFR interactome was investigated via mass spectrometry. IR-induced EGFR-ERCC1 binding was validated biochemically and via proximity ligation assay in different cell lines including the M059K and M059J glioma cell lines, proficient and deficient for the expression of DNAPKcs, respectively. EGFR-ERCC1 functional significance following IR-induced SB was investigated in knockdown experiments with the Comet and γH2AX foci assays. The effect of this interaction was tested with EGFR-ERCC1 knockdown in combination with gefitinib and NU7026 using the MTT and apoptosis assays. RESULTS This study demonstrates that EGFR inhibition further impairs IR-induced DNA repair in cells lacking expression of DNAPKcs or in combination with the DNAPK inhibitor NU7026. Our data suggest a role for EGFR in DNA repair independent of DNAPKcs but dependent on ERCC1. Alkaline comet and γH2AX foci assays in cells depleted of EGFR, ERCC1, or EGFR-ERCC1 expression demonstrated involvement of this interaction in DNA repair. Cellular survival and apoptosis data correlate with levels of residual DNA damage underlying the importance of this complex following SB. CONCLUSION These data emphasize the importance of understanding the various mechanisms by which EGFR modulates DNA repair to optimize targeted therapy for patients with cancer.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - John A Hartley
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Authors' Affiliation: Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
35
|
A PCNA-derived cell permeable peptide selectively inhibits neuroblastoma cell growth. PLoS One 2014; 9:e94773. [PMID: 24728180 PMCID: PMC3984256 DOI: 10.1371/journal.pone.0094773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/19/2014] [Indexed: 12/03/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA's interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors.
Collapse
|
36
|
Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732. [PMID: 24086043 DOI: 10.1101/cshperspect.a012732] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions caused by a variety of endogenous metabolites, environmental exposures, and cancer chemotherapeutic agents that have two reactive groups. The common feature of these diverse lesions is that two nucleotides on opposite strands are covalently joined. ICLs prevent the separation of two DNA strands and therefore essential cellular processes including DNA replication and transcription. ICLs are mainly detected in S phase when a replication fork stalls at an ICL. Damage signaling and repair of ICLs are promoted by the Fanconi anemia pathway and numerous posttranslational modifications of DNA repair and chromatin structural proteins. ICLs are also detected and repaired in nonreplicating cells, although the mechanism is less clear. A unique feature of ICL repair is that both strands of DNA must be incised to completely remove the lesion. This is accomplished in sequential steps to prevent creating multiple double-strand breaks. Unhooking of an ICL from one strand is followed by translesion synthesis to fill the gap and create an intact duplex DNA, harboring a remnant of the ICL. Removal of the lesion from the second strand is likely accomplished by nucleotide excision repair. Inadequate repair of ICLs is particularly detrimental to rapidly dividing cells, explaining the bone marrow failure characteristic of Fanconi anemia and why cross-linking agents are efficacious in cancer therapy. Herein, recent advances in our understanding of ICLs and the biological responses they trigger are discussed.
Collapse
Affiliation(s)
- Cheryl Clauson
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
37
|
Friboulet L, Postel-Vinay S, Sourisseau T, Adam J, Stoclin A, Ponsonnailles F, Dorvault N, Commo F, Saulnier P, Salome-Desmoulez S, Pottier G, André F, Kroemer G, Soria JC, Olaussen KA. ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform. Cell Cycle 2013; 12:3298-306. [PMID: 24036546 DOI: 10.4161/cc.26309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies.
Collapse
Affiliation(s)
- Luc Friboulet
- Gustave Roussy; Villejuif, France; INSERM, U981; IRCIV; Villejuif, France; Département Hospitalo-Universitaire Thorax Innovation (DHU TORINO); Villejuif, France; Université Paris Sud; Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pfäffle HN, Wang M, Gheorghiu L, Ferraiolo N, Greninger P, Borgmann K, Settleman J, Benes CH, Sequist LV, Zou L, Willers H. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res 2013; 73:6254-63. [PMID: 23966292 DOI: 10.1158/0008-5472.can-13-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.
Collapse
Affiliation(s)
- Heike N Pfäffle
- Authors' Affiliations: Laboratory of Cellular & Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts; Research Oncology, Genentech, Inc., South San Francisco, California; Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich, Munich; and Center for Oncology, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
INTRODUCTION Homologous recombination repair (HRR) is a critical pathway for the repair of DNA damage caused by cisplatin or poly-ADP ribose polymerase (PARP) inhibitors. HRR may be impaired by multiple mechanisms in cancer, which complicates assessing the functional HRR status in cells. Here, we monitored the ability of non-small-cell lung cancer (NSCLC) cells to form subnuclear foci of DNA repair proteins as a surrogate of HRR proficiency. METHODS We assessed clonogenic survival of 16 NSCLC cell lines in response to cisplatin, mitomycin C (MMC), and the PARP inhibitor olaparib. Thirteen tumor explants from patients with NSCLC were subjected to cisplatin ex vivo. Cells were assayed for foci of repair-associated proteins such as BRCA1, FANCD2, RAD51, and γ-H2AX. RESULTS Four cell lines (25%) showed an impaired RAD51 foci-forming ability in response to cisplatin. Impaired foci formation correlated with cellular sensitivity to cisplatin, MMC and olaparib. Foci responses complemented or superseded genomic information suggesting alterations in the ATM/ATR and FA/BRCA pathways. Because baseline foci in untreated cells did not predict drug sensitivity, we adapted an ex vivo biomarker assay to monitor damage-induced RAD51 foci in NSCLC explants from patients. Ex vivo cisplatin treatment of explants identified two tumors (15%) exhibiting compromised RAD51 foci induction. CONCLUSIONS A fraction of NSCLC harbors HRR defects that may sensitize the affected tumors to DNA-damaging agents including PARP inhibitors. We propose that foci-based functional biomarker assays represent a powerful tool for prospective determination of treatment sensitivity, but will require ex vivo techniques for induction of DNA damage to unmask the underlying HRR defect.
Collapse
|
40
|
Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013; 19:200-7. [PMID: 23708066 PMCID: PMC3668666 DOI: 10.1097/ppo.0b013e318292e4e3] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, there have been multiple breakthroughs in our understanding of lung cancer biology. Despite significant advances in molecular targeted therapies, DNA-damaging cytotoxic therapies will remain the mainstay of lung cancer management for the near future. Similar to the concept of personalized targeted therapies, there is mounting evidence that perturbations in DNA repair pathways are common in lung cancers, altering the resistance of the affected tumors to many chemotherapeutics as well as radiation. Defects in DNA repair may be due to a multitude of mechanisms including gene mutations, epigenetic events, and alterations in signal transduction pathways such as epidermal growth factor receptor and phosphoinositide 3-kinase/AKT. Functional biomarkers that assess the subcellular localization of central repair proteins in response to DNA damage may prove useful for individualization of cytotoxic therapies including poly(adenosine diphosphate-ribose) polymerase inhibitors. A better mechanistic understanding of cellular sensitivity and resistance to DNA damaging agents should facilitate the development of novel, individualized treatment approaches. Absolute resistance to radiation therapy, however, does not exist. To some extent, radiation therapy will always have to remain unselective and indiscriminant to eradicate persistent, drug-resistant tumor stem cell pools.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Christopher G. Azzoli
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Wil L. Santivasi
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| | - Fen Xia
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| |
Collapse
|
41
|
Zhang P, Herbig U, Coffman F, Lambert MW. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage. Nucleic Acids Res 2013; 41:5321-40. [PMID: 23571757 PMCID: PMC3664817 DOI: 10.1093/nar/gkt235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35–40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07042, USA
| | | | | | | |
Collapse
|
42
|
Ma L, Su M, Li T, Wang Z. Microarray-based fluorescence assay of endonuclease functionality and inhibition. Analyst 2013; 138:1048-52. [DOI: 10.1039/c2an36638j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Cheng H, Zhang Z, Borczuk A, Powell CA, Balajee AS, Lieberman HB, Halmos B. PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis 2012; 34:739-49. [PMID: 23275151 DOI: 10.1093/carcin/bgs393] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Platinum compounds are the foundation of chemotherapy regimens for non-small cell lung cancer (NSCLC) despite poor response rates and limited response duration. It has been reported that tumor expression of excision repair cross-complementation group 1 (ERCC1), a key component in nucleotide excision repair, may correlate with clinical response to platinum agents. We found that most primary lung tumor specimens demonstrated a stronger protein expression of poly (adenosine diphosphate ribose) polymerases 1 (PARP1) than their normal counterparts. Therefore, we hypothesized that combining PARP inhibition with platinum compounds may be an approach to improve platinum-based therapy for NSCLC. Drug combination experiments revealed that two distinct PARP inhibitors, olaparib and veliparib, not only potentiated the cell killing by cisplatin but also conferred cytotoxicity as a single agent specifically in ERCC1-low HCC827 and PC9 but not in ERCC1-high A549 and H157 lung cancer cells. Moreover, small interfering RNA knockdown of ERCC1 in A549 and H157 cells increased their sensitivities to both cisplatin and olaparib in a synergistic manner in our model. Furthermore, mechanistic studies indicated that combined PARP inhibitor and cisplatin could lead to sustained DNA double-strand breaks, prolonged G2/M cell cycle arrest with distinct activation of checkpoint kinase 1 signaling and more pronounced apoptosis preferentially in lung cancer cells with low ERCC1 expression. Collectively, these data suggest that there is a synergistic relationship between PARP inhibition and low ERCC1 expression in NSCLC that could be exploited for novel therapeutic approaches in lung cancer therapy based on tumor ERCC1 expression.
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Medicine, Division of Hematology/Oncology, Herbert Irving Comprehensive Cancer Center, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to Cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 2012; 7:e51563. [PMID: 23251575 PMCID: PMC3520950 DOI: 10.1371/journal.pone.0051563] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/01/2012] [Indexed: 02/02/2023] Open
Abstract
Testicular Germ Cell Tumors (TGCT) and patient-derived cell lines are extremely sensitive to cisplatin and other interstrand cross-link (ICL) inducing agents. Nevertheless, a subset of TGCTs are either innately resistant or acquire resistance to cisplatin during treatment. Understanding the mechanisms underlying TGCT sensitivity/resistance to cisplatin as well as the identification of novel strategies to target cisplatin-resistant TGCTs have major clinical implications. Herein, we have examined the proficiency of five embryonal carcinoma (EC) cell lines to repair cisplatin-induced ICLs. Using γH2AX staining as a marker of double strand break formation, we found that EC cell lines were either incapable of or had a reduced ability to repair ICL-induced damage. The defect correlated with reduced Homologous Recombination (HR) repair, as demonstrated by the reduction of RAD51 foci formation and by direct evaluation of HR efficiency using a GFP-reporter substrate. HR-defective tumors cells are known to be sensitive to the treatment with poly(ADP-ribose) polymerase (PARP) inhibitor. In line with this observation, we found that EC cell lines were also sensitive to PARP inhibitor monotherapy. The magnitude of sensitivity correlated with HR-repair reduced proficiency and with the expression levels and activity of PARP1 protein. In addition, we found that PARP inhibition strongly enhanced the response of the most resistant EC cells to cisplatin, by reducing their ability to overcome the damage. These results point to a reduced proficiency of HR repair as a source of sensitivity of ECs to ICL-inducing agents and PARP inhibitor monotherapy, and suggest that pharmacological inhibition of PARP can be exploited to target the stem cell component of the TGCTs (namely ECs) and to enhance the sensitivity of cisplatin-resistant TGCTs to standard treatments.
Collapse
|
45
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
46
|
Vare D, Groth P, Carlsson R, Johansson F, Erixon K, Jenssen D. DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells. DNA Repair (Amst) 2012; 11:976-85. [DOI: 10.1016/j.dnarep.2012.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
47
|
Duquette ML, Zhu Q, Taylor ER, Tsay AJ, Shi LZ, Berns MW, McGowan CH. CtIP is required to initiate replication-dependent interstrand crosslink repair. PLoS Genet 2012; 8:e1003050. [PMID: 23144634 PMCID: PMC3493458 DOI: 10.1371/journal.pgen.1003050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/12/2012] [Indexed: 11/26/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that block the progression of replication and transcription. CtIP is a conserved DNA repair protein that facilitates DNA end resection in the double-strand break (DSB) repair pathway. Here we show that CtIP plays a critical role during initiation of ICL processing in replicating human cells that is distinct from its role in DSB repair. CtIP depletion sensitizes human cells to ICL inducing agents and significantly impairs the accumulation of DNA damage response proteins RPA, ATR, FANCD2, γH2AX, and phosphorylated ATM at sites of laser generated ICLs. In contrast, the appearance of γH2AX and phosphorylated ATM at sites of laser generated double strand breaks (DSBs) is CtIP-independent. We present a model in which CtIP functions early in ICL repair in a BRCA1– and FANCM–dependent manner prior to generation of DSB repair intermediates. One of the most lethal forms of DNA damage is the interstrand crosslink (ICL). An ICL is a chemical bridge between two nucleotides on complementary strands of DNA. An unrepaired ICL is toxic because it poses an unsurpassable block to DNA replication and transcription. Certain forms of cancer treatment exploit the toxicity of ICL generating agents to target rapidly dividing cells. Sensitivity to crosslinking agents is a defining characteristic of Fanconi Anemia (FA), a hereditary syndrome characterized by an increased risk in cancer development and hematopoietic abnormalities frequently resulting in bone marrow failure. The mechanism underlying ICL repair is important to human health; however, the sequence of molecular events governing ICL repair is poorly understood. Here we describe how the repair protein CtIP functions to initiate ICL repair in replicating cells in a manner distinct from its previously described role in other forms of DNA repair.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
SLX4, the newly identified Fanconi anemia protein, FANCP, is implicated in repairing DNA damage induced by DNA interstrand cross-linking (ICL) agents, topoisomerase I (TOP1) inhibitors, and in Holliday junction resolution. It interacts with and enhances the activity of XPF-ERCC1, MUS81-EME1, and SLX1 nucleases, but the requirement for the specific nucleases in SLX4 function is unclear. Here, by complementing a null FA-P Fanconi anemia cell line with SLX4 mutants that specifically lack the interaction with each of the nucleases, we show that the SLX4-dependent XPF-ERCC1 activity is essential for ICL repair but is dispensable for repairing TOP1 inhibitor-induced DNA lesions. Conversely, MUS81-SLX4 interaction is critical for resistance to TOP1 inhibitors but is less important for ICL repair. Mutation of SLX4 that abrogates interaction with SLX1 results in partial resistance to both cross-linking agents and TOP1 inhibitors. These results demonstrate that SLX4 modulates multiple DNA repair pathways by regulating appropriate nucleases.
Collapse
|
49
|
Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res 2012; 318:1973-86. [PMID: 22721696 PMCID: PMC3408789 DOI: 10.1016/j.yexcr.2012.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 01/23/2023]
Abstract
Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo – Health Science Campus, Toledo, OH – 43614, USA
| | - Kathirvel Gopalakrishnan
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH – 43614, USA
| | - Bhaskar Kahali
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL – 32610, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL – 32610, USA
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo – Health Science Campus, Toledo, OH – 43614, USA
| |
Collapse
|
50
|
Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12:587-98. [PMID: 22918414 DOI: 10.1038/nrc3342] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumours with specific DNA repair defects can be completely dependent on back-up DNA repair pathways for their survival. This dependence can be exploited therapeutically to induce synthetic lethality in tumour cells. For instance, homologous recombination (HR)-deficient tumours can be effectively targeted by DNA double-strand break-inducing agents. However, not all HR-defective tumours respond equally well to this type of therapy. Tumour cells may acquire resistance by invoking biochemical mechanisms that reduce drug action or by acquiring additional alterations in DNA damage response pathways. A thorough understanding of these processes is important for predicting treatment response and for the development of novel treatment strategies that prevent the emergence of therapy-resistant tumours.
Collapse
Affiliation(s)
- Peter Bouwman
- Division of Molecular Pathology and Cancer Systems Biology Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|