1
|
Kumar D, Ghosh SK. Chromosome hitchhiking: a potential strategy adopted by the selfish yeast plasmids to ensure symmetric inheritance during cell division. Biochem Soc Trans 2024; 52:2359-2372. [PMID: 39670686 DOI: 10.1042/bst20231555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells. These similarities include formation of a complex where the plasmid- or viral encoded proteins bind to a plasmid- or viral genome-borne locus, respectively and interaction of the complex with the host proteins. These together form a partitioning system that ensures stable symmetric inheritance of both these genomes from mother to daughter cells. Recent studies with substantial evidence showed that the 2-micron plasmid, like episomes of viruses such as Epstein-Barr virus, relies on tethering itself to the host chromosomes in a non-random fashion for equal segregation. This review delves into the probable chromosome hitchhiking mechanisms of 2-micron plasmid during its segregation, highlighting the roles of specific plasmid-encoded proteins and their interactions with host proteins and the chromosomes. Understanding these mechanisms provides broader insights into the genetic stability and inheritance of extrachromosomal genetic elements across diverse biological systems.
Collapse
Affiliation(s)
- Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Ma CH, Kumar D, Jayaram M, Ghosh SK, Iyer VR. The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation. PLoS Genet 2023; 19:e1010986. [PMID: 37812641 PMCID: PMC10586699 DOI: 10.1371/journal.pgen.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Makkuni Jayaram
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Livestrong Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
Mereshchuk A, Johnstone PS, Chew JSK, Dobson MJ. The yeast 2-micron plasmid Rep2 protein has Rep1-independent partitioning function. Nucleic Acids Res 2022; 50:10571-10585. [PMID: 36156142 PMCID: PMC9561267 DOI: 10.1093/nar/gkac810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Equal partitioning of the multi-copy 2-micron plasmid of the budding yeast Saccharomyces cerevisiae requires association of the plasmid Rep1 and Rep2 proteins with the plasmid STB partitioning locus. Determining how the Rep proteins contribute has been complicated by interactions between the components. Here, each Rep protein was expressed fused to the DNA-binding domain of the bacterial repressor protein LexA in yeast harboring a replication-competent plasmid that had LexA-binding sites but lacked STB. Plasmid transmission to daughter cells was increased only by Rep2 fusion expression. Neither Rep1 nor a functional RSC2 complex (a chromatin remodeler required for 2-micron plasmid partitioning) were needed for the improvement. Deletion analysis showed the carboxy-terminal 65 residues of Rep2 were required and sufficient for this Rep1-independent inheritance. Mutation of a conserved basic motif in this domain impaired Rep1-independent and Rep protein/STB-dependent plasmid partitioning. Our findings suggest Rep2, which requires Rep1 and the RSC2 complex for functional association with STB, directly participates in 2-micron plasmid partitioning by linking the plasmid to a host component that is efficiently partitioned during cell division. Further investigation is needed to reveal the host factor targeted by Rep2 that contributes to the survival of these plasmids in their budding yeast hosts.
Collapse
Affiliation(s)
- Anastasiia Mereshchuk
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peter S Johnstone
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Joyce S K Chew
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie J Dobson
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
4
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
5
|
Sau S, Ghosh SK, Liu YT, Ma CH, Jayaram M. Hitchhiking on chromosomes: A persistence strategy shared by diverse selfish DNA elements. Plasmid 2019; 102:19-28. [PMID: 30726706 DOI: 10.1016/j.plasmid.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
An underlying theme in the segregation of low-copy bacterial plasmids is the assembly of a 'segrosome' by DNA-protein and protein-protein interactions, followed by energy-driven directed movement. Analogous partitioning mechanisms drive the segregation of host chromosomes as well. Eukaryotic extra-chromosomal elements, exemplified by budding yeast plasmids and episomes of certain mammalian viruses, harbor partitioning systems that promote their physical association with chromosomes. In doing so, they indirectly take advantage of the spindle force that directs chromosome movement to opposite cell poles. Molecular-genetic, biochemical and cell biological studies have revealed several unsuspected aspects of 'chromosome hitchhiking' by the yeast 2-micron plasmid, including the ability of plasmid sisters to associate symmetrically with sister chromatids. As a result, the plasmid overcomes the 'mother bias' experienced by plasmids lacking a partitioning system, and elevates itself to near chromosome status in equal segregation. Chromosome association for stable propagation, without direct energy expenditure, may also be utilized by a small minority of bacterial plasmids-at least one case has been reported. Given the near perfect accuracy of chromosome segregation, it is not surprising that elements residing in evolutionarily distant host organisms have converged upon the common strategy of gaining passage to daughter cells as passengers on chromosomes.
Collapse
Affiliation(s)
- Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yen-Ting Liu
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, UT Austin, Austin, TX TX7 8712, USA.
| |
Collapse
|
6
|
A Rizvi SM, Prajapati HK, Nag P, Ghosh SK. The 2-μm plasmid encoded protein Raf1 regulates both stability and copy number of the plasmid by blocking the formation of the Rep1-Rep2 repressor complex. Nucleic Acids Res 2017; 45:7167-7179. [PMID: 28472368 PMCID: PMC5499539 DOI: 10.1093/nar/gkx316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
The 2-μm plasmid of the budding yeast Saccharomyces cerevisiae achieves a high chromosome-like stability with the help of four plasmid-encoded (Rep1, Rep2, Raf1 and Flp) and several host-encoded proteins. Rep1 and Rep2 and the DNA locus STB form the partitioning system ensuring equal segregation of the plasmid. The Flp recombinase and its target sites FRTs form the amplification system which is responsible for the steady state plasmid copy number. In this work we show that the absence of Raf1 can affect both the plasmid stability and the steady sate copy number. We also show that the Rep proteins do bind to the promoter regions of the 2-μm encoded genes, as predicted by earlier models and Raf1 indeed blocks the formation of the Rep1–Rep2 repressor complex not by blocking the transcription of the REP1 and REP2 genes but by physically associating with the Rep proteins and negating their interactions. This explains the role of Raf1 in both the partitioning and the amplification systems as the Rep1–Rep2 complex is believed to modulate both these systems. Based on this study, we have provided, from a systems biology perspective, a model for the mechanism of the 2-μm plasmid maintenance.
Collapse
Affiliation(s)
- Syed M A Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Hemant K Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Purba Nag
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane Queensland 4006, Australia
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
7
|
Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet 2017; 64:25-42. [PMID: 28597305 DOI: 10.1007/s00294-017-0719-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Since its discovery in the early 70s, the 2 micron plasmid of Saccharomyces cerevisiae continues to intrigue researchers with its high protein-coding capacity and a selfish nature yet high stability, earning it the title of a 'miniaturized selfish genetic element'. It codes for four proteins (Rep1, Rep2, Raf1, and Flp) vital for its own survival and recruits several host factors (RSC2, Cohesin, Cse4, Kip1, Bik1, Bim1, and microtubules) for its faithful segregation during cell division. The plasmid maintains a high-copy number with the help of Flp-mediated recombination. The plasmids organize in the form of clusters that hitch-hike the host chromosomes presumably with the help of the plasmid-encoded Rep proteins and host factors such as microtubules, Kip1 motor, and microtubule-associated proteins Bik1 and Bim1. Although there is no known yeast cell phenotype associated with the 2 micron plasmid, excessive copies of the plasmid are lethal for the cells, warranting a tight control over the plasmid copy number. This control is achieved through a combination of feedback loops involving the 2 micron encoded proteins. Thus, faithful segregation and a concomitant tightly controlled plasmid copy number ensure an optimized benign parasitism of the 2 micron plasmid within budding yeast.
Collapse
Affiliation(s)
- Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Prajapati HK, Rizvi SMA, Rathore I, Ghosh SK. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast. Mol Microbiol 2017; 103:1046-1064. [PMID: 28004422 DOI: 10.1111/mmi.13608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
Abstract
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self-encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid-borne proteins Rep1, Rep2 and a cis-acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co-segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub-nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule-associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.
Collapse
Affiliation(s)
- Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Liu YT, Chang KM, Ma CH, Jayaram M. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome. Nucleic Acids Res 2016; 44:8302-23. [PMID: 27492289 PMCID: PMC5041486 DOI: 10.1093/nar/gkw694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Keng-Ming Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
11
|
Wilhelm L, Bürmann F, Minnen A, Shin HC, Toseland CP, Oh BH, Gruber S. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLife 2015; 4. [PMID: 25951515 PMCID: PMC4442127 DOI: 10.7554/elife.06659] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Smc–ScpAB forms elongated, annular structures that promote chromosome segregation, presumably by compacting and resolving sister DNA molecules. The mechanistic basis for its action, however, is only poorly understood. Here, we have established a physical assay to determine whether the binding of condensin to native chromosomes in Bacillus subtilis involves entrapment of DNA by the Smc–ScpAB ring. To do so, we have chemically cross-linked the three ring interfaces in Smc–ScpAB and thereafter isolated intact chromosomes under protein denaturing conditions. Exclusively species of Smc–ScpA, which were previously cross-linked into covalent rings, remained associated with chromosomal DNA. DNA entrapment is abolished by mutations that interfere with the Smc ATPase cycle and strongly reduced when the recruitment factor ParB is deleted, implying that most Smc–ScpAB is loaded onto the chromosome at parS sites near the replication origin. We furthermore report a physical interaction between native Smc–ScpAB and chromosomal DNA fragments. DOI:http://dx.doi.org/10.7554/eLife.06659.001 The genome of any living organism holds all the genetic information that the organism needs to live and grow. This information is written in the sequence of the organism's DNA, and is often divided into sub-structures called chromosomes. Different species have different sized genomes, but even bacteria with some of the smallest genomes still contain DNA molecules that are thousand times longer than the length of their cells. DNA molecules must thus be highly compacted in order to fit inside the cells. DNA compaction is particularly important during cell division, when the DNA is being equally distributed to the newly formed cells. In plants, animals and all other eukaryotes, large protein complexes known as condensin and cohesin play a major role in compacting, and then separating, the cell's chromosomes. Many bacteria also have condensin-like complexes. At the core of all these complexes are pairs of so-called SMC proteins. However, it is not clear how these SMC proteins direct chromosomes to become highly compacted when cells are dividing. Wilhelm et al. have now developed two new approaches to investigate how SMC proteins associate with bacterial DNA. These approaches were then used to study how SMC proteins coordinate the compaction of chromosomes in a bacterium called Bacillus subtilis. The experiments revealed that SMC proteins are in direct physical contact with the bacterial chromosome, and that bacterial DNA fibers are physically captured within a ring structure formed by the SMC proteins. Wilhelm et al. suggest that these new findings, and recent technological advances, have now set the stage for future studies to gain mechanistic insight into these protein complexes that organize and segregate chromosomes. DOI:http://dx.doi.org/10.7554/eLife.06659.002
Collapse
Affiliation(s)
- Larissa Wilhelm
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Bürmann
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anita Minnen
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ho-Chul Shin
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Christopher P Toseland
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Stephan Gruber
- Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
12
|
Sau S, Liu YT, Ma CH, Jayaram M. Stable persistence of the yeast plasmid by hitchhiking on chromosomes during vegetative and germ-line divisions of host cells. Mob Genet Elements 2015; 5:1-8. [PMID: 26442178 DOI: 10.1080/2159256x.2015.1031359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Yen-Ting Liu
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
13
|
Abstract
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Kerry S Bloom
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280;
| |
Collapse
|
14
|
Sau S, Conrad MN, Lee CY, Kaback DB, Dresser ME, Jayaram M. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation. ACTA ACUST UNITED AC 2014; 205:643-61. [PMID: 24914236 PMCID: PMC4050733 DOI: 10.1083/jcb.201312002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The yeast 2 micron plasmid engages a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael N Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David B Kaback
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
15
|
Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence. Plasmid 2013; 70:2-17. [DOI: 10.1016/j.plasmid.2013.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/21/2013] [Accepted: 03/02/2013] [Indexed: 01/24/2023]
|
16
|
Liu YT, Ma CH, Jayaram M. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids. Nucleic Acids Res 2013; 41:4144-58. [PMID: 23423352 PMCID: PMC3627588 DOI: 10.1093/nar/gkt096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
The 2-micron plasmid, a high copy extrachromosomal element in Saccharomyces cerevisiae, propagates itself with nearly the same stability as the chromosomes of its host. Plasmid stability is conferred by a partitioning system consisting of the plasmid-coded proteins Rep1 and Rep2 and a cis-acting locus STB. Circumstantial evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation during mitosis. However, the coupling mechanism has not been elucidated. In order to probe into this question more incisively, we have characterized the segregation of a single-copy STB reporter plasmid by manipulating mitosis to force sister chromatids to co-segregate either without mother-daughter bias or with a finite daughter bias. We find that the STB plasmid sisters are tightly correlated to sister chromatids in the extents of co-segregation as well as the bias in co-segregation under these conditions. Furthermore, this correlation is abolished by delaying spindle organization or preventing cohesin assembly during a cell cycle. Normal segregation of the 2-micron plasmid has been shown to require spindle integrity and the cohesin complex. Our results are accommodated by a model in which spindle- and cohesin-dependent association of plasmid sisters with sister chromatids promotes their segregation by a hitchhiking mechanism.
Collapse
Affiliation(s)
| | | | - Makkuni Jayaram
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Ma CH, Cui H, Hajra S, Rowley PA, Fekete C, Sarkeshik A, Ghosh SK, Yates JR, Jayaram M. Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus. Nucleic Acids Res 2012; 41:2340-53. [PMID: 23275556 PMCID: PMC3575823 DOI: 10.1093/nar/gks1338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the 'partitioning complex' is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mehta GD, Rizvi SMA, Ghosh SK. Cohesin: a guardian of genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1324-42. [PMID: 22677545 DOI: 10.1016/j.bbamcr.2012.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
Ability to reproduce is one of the hallmark features of all life forms by which new organisms are produced from their progenitors. During this process each cell duplicates its genome and passes a copy of its genome to the daughter cells along with the cellular matrix. Unlike bacteria, in eukaryotes there is a definite time gap between when the genome is duplicated and when it is physically separated. Therefore, for precise halving of the duplicated genome into two, it is required that each pair of duplicated chromosomes, termed sister chromatids, should be paired together in a binary fashion from the moment they are generated. This pairing function between the duplicated genome is primarily provided by a multimeric protein complex, called cohesin. Thus, genome integrity largely depends on cohesin as it ensures faithful chromosome segregation by holding the sister chromatids glued together from S phase to anaphase. In this review, we have discussed the life cycle of cohesin during both mitotic and meiotic cell divisions including the structure and architecture of cohesin complex, relevance of cohesin associated proteins, mechanism of cohesin loading onto the chromatin, cohesion establishment and the mechanism of cohesin disassembly during anaphase to separate the sister chromatids. We have also focused on the role of posttranslational modifications in cohesin biology. For better understanding of the complexity of the cohesin regulatory network to the readers, we have presented an interactome profiling of cohesin core subunits in budding yeast during mitosis and meiosis.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | | |
Collapse
|
19
|
Structure, replication efficiency and fragility of yeast ARS elements. Res Microbiol 2012; 163:243-53. [DOI: 10.1016/j.resmic.2012.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/21/2012] [Indexed: 11/16/2022]
|
20
|
Jayaram M. Association of a centromere specific nucleosome with the yeast plasmid partitioning locus: Implications beyond plasmid partitioning. Mob Genet Elements 2011; 1:203-207. [PMID: 22479687 DOI: 10.4161/mge.1.3.17431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The genetically defined point centromeres of budding yeasts and the epigenetically specified regional centromeres of all other eukaryotes harbor a common epigenetic mark in the form of a non-standard nucleosome. Although, the composition of the protein core of the centromere specific nucleosome and the nature of the DNA wrap around it are at present controversial, there is no doubt that this specialized nucleosome harbors a variant of the standard histone H3 (cenH3). The association of cenH3, called Cse4 in Saccharomyces cerevisiae, with the partitioning locus (STB) of the high copy selfish plasmid 2 micron circle that resides in the yeast nucleus and propagates itself stably is intriguing. Recent observations are consistent with Cse4 being a nucleosome component at STB. A common nucleosome identity for the partitioning loci of the chromosomes and the plasmid of yeast support arguments based on evolutionary considerations that the origin of the unusual point centromere of budding yeasts may be traced to the STB locus of an ancestral plasmid.
Collapse
Affiliation(s)
- Makkuni Jayaram
- Section of Molecular Genetics and Microbiology; University of Texas at Austin; Austin, TX USA
| |
Collapse
|
21
|
Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere. Proc Natl Acad Sci U S A 2011; 108:13671-6. [PMID: 21807992 DOI: 10.1073/pnas.1101944108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae 2-μm plasmid is a multicopy selfish genome that resides in the nucleus. The genetic organization of the plasmid is optimized for stable, high-copy propagation in host-cell populations. The plasmid's partitioning system poaches host factors, including the centromere-specific histone H3-variant Cse4 and the cohesin complex, enabling replicated plasmid copies to segregate equally in a chromosome-coupled fashion. We have characterized the in vivo chromatin topology of the plasmid partitioning locus STB in its Cse4-associated and Cse4-nonassociated states. We find that the occupancy of Cse4 at STB induces positive DNA supercoiling, with a linking difference (ΔLk) contribution estimated between +1 and +2 units. One plausible explanation for this contrary topology is the presence of a specialized Cse4-containing nucleosome with a right-handed DNA writhe at a functional STB, contrasted by a standard histone H3-containing nucleosome with a left-handed DNA writhe at a nonfunctional STB. The similarities between STB and centromere in their nucleosome signature and DNA topology would be consistent with the potential origin of the unusual point centromere of budding yeast chromosomes from the partitioning locus of an ancestral plasmid.
Collapse
|
22
|
Huang CC, Hajra S, Ghosh SK, Jayaram M. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications in centromere evolution. Mol Cell Biol 2011; 31:1030-40. [PMID: 21173161 PMCID: PMC3067819 DOI: 10.1128/mcb.01191-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the 2μm circle--a multicopy plasmid that resides in the yeast nucleus and propagates itself stably. Cse4 is essential for the functional assembly of the plasmid partitioning complex, including the recruitment of the yeast cohesin complex at STB. We have located Cse4 association strictly at the origin-proximal subregion of STB. Three of the five directly repeated tandem copies of a 62-bp consensus sequence element constituting this region are necessary and sufficient for the recruitment of Cse4. The association of Cse4 with STB is dependent on Scm3, the loading factor responsible for the incorporation of Cse4 into the CEN nucleosome. A chromosomally integrated copy of STB confers on the integration site the capacity for Cse4 association as well as cohesin assembly. The localization of Cse4 in chromatin digested by micrococcal nuclease is consistent with the potential assembly of one Cse4-containing nucleosome, but not more than two, at STB. The remarkable ability of STB to acquire a very specialized, and strictly regulated, chromosome segregation factor suggests its plausible evolutionary kinship with CEN.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sujata Hajra
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
23
|
Hu B, Itoh T, Mishra A, Katoh Y, Chan KL, Upcher W, Godlee C, Roig MB, Shirahige K, Nasmyth K. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol 2011; 21:12-24. [PMID: 21185190 PMCID: PMC4763544 DOI: 10.1016/j.cub.2010.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/23/2010] [Accepted: 12/02/2010] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Cohesin complex that holds sister chromatins together until anaphase is comprised of three core subunits: Smc1 and Smc3, two long-rod-shaped proteins with an ABC-like ATPase head (nucleotide-binding domain [NBD]) and a dimerization domain linked by a 50 nm long intramolecular antiparallel coiled-coil, and Scc1, an α-kleisin subunit interconnecting the NBD domains of Smc1 and Smc3. Cohesin's stable association with chromosomes is thought to involve entrapment of chromatin fibers by its tripartite Smc1-Smc3-Scc1 ring via a poorly understood mechanism dependent on a separate Scc2/4 loading complex. A key issue concerns where entrapment initially takes place: at sites where cohesin is found stably associated or at distinct "loading" sites from which it translocates. RESULTS In this study, we find transition state mutant versions (Smc1E1158Q and SmcE1155Q) defective in disengagement of their nucleotide binding domains (NBDs), unlike functional cohesin, colocalize with Scc2/4 at core centromeres, sites that catalyze wild-type cohesin's recruitment to sequences 20 kb or more away. In addition to Scc2/4, the unstable association of transition state complexes with core centromeres requires Scc1's association with Smc1 and Smc3 NBDs, ATP-driven NBD engagement, cohesin's Scc3 subunit, and its hinge domain. CONCLUSION We propose that cohesin's association with chromosomes is driven by two key events. NBD engagement driven by ATP binding produces an unstable association with specific loading sites like core centromeres, whereas subsequent ATP hydrolysis triggers DNA entrapment, which permits translocation along chromatin fibers.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Takehiko Itoh
- Laboratory of In Silico Functional Genomics, Graduate School of Bioscience, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Ajay Mishra
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yuki Katoh
- Laboratory of In Silico Functional Genomics, Graduate School of Bioscience, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Kok-Lung Chan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - William Upcher
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Camilla Godlee
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maurici B. Roig
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Katsuhiko Shirahige
- Laboratory of In Silico Functional Genomics, Graduate School of Bioscience, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
24
|
Skibbens RV. Buck the establishment: reinventing sister chromatid cohesion. Trends Cell Biol 2010; 20:507-13. [PMID: 20620062 DOI: 10.1016/j.tcb.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/01/2023]
Abstract
The time between chromosome replication and segregation can be from hours to decades. Cohesion is thus crucial for identifying replication products as sister chromatids from S-phase until mitosis. Early models posited active sister chromatid tethering reactions in which cohesins deposited onto each sister chromatid are converted to a paired state by replication-fork-associated establishment factors. Subsequent, but now largely marginalized, models suggested instead that establishment occurs passively - requiring only cohesin preloading and passage of the replication fork through huge cohesin rings. More recent models return to active establishment reactions but remain predicated on preloaded ring structures. Here, new models are presented in which replication-coupled cohesin deposition is followed by conversion to a pairing-competent C-clamp structure that does not require DNA entrapment.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
25
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Mehta GD, Agarwal MP, Ghosh SK. Centromere identity: a challenge to be faced. Mol Genet Genomics 2010; 284:75-94. [PMID: 20585957 DOI: 10.1007/s00438-010-0553-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/16/2010] [Indexed: 11/26/2022]
Abstract
The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|