1
|
Li Q, Liu X, Xu Y, Lu Z, Jiang S, Yao Y. Translation of paired box 6 (PAX6) mRNA is IRES-mediated and inhibited by cymarin in breast cancer cells. Genes Genet Syst 2023; 98:161-169. [PMID: 37793815 DOI: 10.1266/ggs.23-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Paired box 6 (PAX6) is a member of the PAX family and plays an essential role in cancer cell cycle progression, colony formation, proliferation and invasion. Its expression is upregulated in many cancers including breast cancer, but the process of PAX6 mRNA translation has rarely been studied. We found that PAX6 translation level increased in MCF-7 breast cancer cells treated with the chemotherapeutic drug adriamycin (ADM), which might be attributable to internal ribosome entry site (IRES)-mediated translation. By modifying a bicistronic luciferase plasmid that is widely used to examine IRES activity, we found that the 469-base 5'-UTR of PAX6 mRNA contains an IRES element and that core IRES activity is located between nucleotides 159 and 333. Moreover, PAX6 IRES activity was induced during ADM treatment, which may be the main reason for the elevated level of PAX6 protein. We also found that cymarin, a cardiac glycoside, acts as an inhibitor of PAX6 protein expression by impairing its IRES-mediated translation. Furthermore, MCF-7 cell proliferation was suppressed during treatment with cymarin. These results provide novel insights into the translation mechanism of PAX6 in breast cancer cells and suggest that cymarin is a promising candidate for the treatment of breast cancer via targeting the expression of PAX6.
Collapse
Affiliation(s)
- Qi Li
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| | - Xiao Liu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| | - Yun Xu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| | - Zihong Lu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| | - Sunmin Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| | - Ying Yao
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University
| |
Collapse
|
2
|
Ma L, Feng L, Ding X, Li Y. Effect of TLR4 on the growth of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways. Oncol Lett 2018; 15:3965-3970. [PMID: 29556281 DOI: 10.3892/ol.2018.7801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the effect of Toll-like receptor 4 (TLR4) on SiHa human cervical cancer cells and its potential molecular biological mechanisms. The expression of TLR4 following treatment with lipopolysaccharide (LPS) in in SiHa cervical cancer cells was detected by quantitative polymerase chain reaction (qPCR). LPS-induced cell proliferation and apoptosis were detected by MTT assay as well as staining with propidium iodide (PI) and Annexin V/PI double staining. qPCR was performed to analyze the expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-activated kinase 1 (TAK1) genes. Western blot analysis was performed to analyze the expression of myeloid differentiation 88 (MyD88), nuclear factor-κB (NF-κB), cyclin D1 and signal transducer and activator of transcription 3 (STAT3) proteins. In the present study, it was revealed that TLR4 expression in SiHa cervical cancer cells may be upregulated by LPS. Additionally, LPS was able to increase the proliferation of SiHa cells. However, LPS treatment did not have an effect on apoptosis of the cells. In addition, the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways were induced in SiHa cells by LPS. These results suggested the effect of LPS and TLR4 on proliferation of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Li Ma
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Li Feng
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Xiaoping Ding
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Yongwang Li
- Department of Anesthesiology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
3
|
Gao WQ, Ma J, Sun LL, Li Q, Zhu RY, Jin J. Paclitaxel-mediated human aryl hydrocarbon receptor mRNA translation by an internal ribosomal entry site-dependent mechanism. Oncol Rep 2017; 38:3211-3219. [PMID: 29048649 DOI: 10.3892/or.2017.5958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known in mediating the toxicities of dioxins and dioxin-like compounds. AHR is activated by a variety of endogenous ligands and participating in tumor development. Thus, it will provide a new approach for cancer prevention and treatment to study the translation mechanism of AHR in tumor cells. In this study, we show that the 5'-untranslated region (UTR) of AHR mRNA contains an internal ribosome entry site (IRES). After mapping the entire AHR 5'-UTR, we determined that the full-length 5'-UTR is indispensable for the highest IRES activity. Interestingly, we found that AHR expression is induced in ovarian (A2780), breast (MDA-MB231), hepatic (Bel7402) and colorectal cancer cells (SW620) by chemotherapeutic drug paclitaxel (PTX) through IRES-dependent translation mechanism. Moreover, IRES activity is increased in the PTX-resistant ovarian cancer cells in which AHR protein expression was also enhanced. These results strongly suggest an important role for AHR IRES-dependent translation mechanism in cancer cell response to paclitaxel treatment.
Collapse
Affiliation(s)
- Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jing Ma
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liu-Liu Sun
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
4
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
5
|
Li Q, Gao WQ, Dai WY, Yu C, Zhu RY, Jin J. ATF2 translation is induced under chemotherapeutic drug-mediated cellular stress via an IRES-dependent mechanism in human hepatic cancer Bel7402 cells. Oncol Lett 2016; 12:4795-4802. [PMID: 28105187 DOI: 10.3892/ol.2016.5274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
Activating transcription factor (ATF) 2 is a member of the ATF/cyclic AMP-responsive element binding protein family, which exhibits both oncogenic and tumor-suppressor functions. In our preliminary experiments, it was observed that the expression of the ATF2 protein was induced following treatment with adriamycin (ADR) and paclitaxel (PTX), which may be regulated by internal ribosome entry segment (IRES)-mediated translation. By constructing a bicistronic vector containing the ATF2 5'-untranslated region (UTR), it was demonstrated that the ATF2 5'-UTR contains an IRES and maps a 30-nucleotide (nt) sequence (from nt 299 to nt ~269), which was essential for the IRES activity. The ATF2 IRES activity exhibited significant variation in different cell lines. In addition, it was observed that ADR and PTX also induced ATF2 IRES activity in Bel7402 cells. The present study has demonstrated that ATF2 translation is initiated via IRES, which is upregulated by ADR and PTX, thus suggesting that the regulation of the IRES-dependent translation of ATF2 may be involved in effecting the cancer cell response to chemotherapeutic drugs-mediated cellular stress.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Yan Dai
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chuang Yu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
6
|
Betts Z, Croxford AS, Dickson AJ. Evaluating the interaction between UCOE and DHFR-linked amplification and stability of recombinant protein expression. Biotechnol Prog 2015; 31:1014-25. [DOI: 10.1002/btpr.2083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Zeynep Betts
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| | - Alexandra S Croxford
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| | - Alan J Dickson
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| |
Collapse
|
7
|
Kalita M, Tian B, Gao B, Choudhary S, Wood TG, Carmical JR, Boldogh I, Mitra S, Minna JD, Brasier AR. Systems approaches to modeling chronic mucosal inflammation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:505864. [PMID: 24228254 PMCID: PMC3818818 DOI: 10.1155/2013/505864] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/27/2022]
Abstract
The respiratory mucosa is a major coordinator of the inflammatory response in chronic airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Signals produced by the chronic inflammatory process induce epithelial mesenchymal transition (EMT) that dramatically alters the epithelial cell phenotype. The effects of EMT on epigenetic reprogramming and the activation of transcriptional networks are known, its effects on the innate inflammatory response are underexplored. We used a multiplex gene expression profiling platform to investigate the perturbations of the innate pathways induced by TGF β in a primary airway epithelial cell model of EMT. EMT had dramatic effects on the induction of the innate pathway and the coupling interval of the canonical and noncanonical NF- κ B pathways. Simulation experiments demonstrate that rapid, coordinated cap-independent translation of TRAF-1 and NF- κ B2 is required to reduce the noncanonical pathway coupling interval. Experiments using amantadine confirmed the prediction that TRAF-1 and NF- κ B2/p100 production is mediated by an IRES-dependent mechanism. These data indicate that the epigenetic changes produced by EMT induce dynamic state changes of the innate signaling pathway. Further applications of systems approaches will provide understanding of this complex phenotype through deterministic modeling and multidimensional (genomic and proteomic) profiling.
Collapse
Affiliation(s)
- Mridul Kalita
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjeev Choudhary
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Thomas G. Wood
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Joseph R. Carmical
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sankar Mitra
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Department of Internal Medicine Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Allan R. Brasier
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Institute for Translational Sciences, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 2013; 26:746-54. [PMID: 23789776 DOI: 10.1111/pcmr.12120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
We hypothesize that the interaction between angiotropic melanoma cells and the abluminal vascular surface can induce or sustain embryonic and/or stem cell migratory properties in these tumor cells. As a result, such angiotropic melanoma cells may migrate along the abluminal vascular surface, demonstrating pericytic mimicry. Through these cellular interactions, melanoma cells may migrate toward secondary sites.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
9
|
Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL. Pilot study on "pericytic mimicry" and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:19-29. [PMID: 23275074 PMCID: PMC3601217 DOI: 10.1007/s12307-012-0128-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
The interaction of tumor cells with the tumor vasculature is mainly studied for its role in tumor angiogenesis and intravascular metastasis of circulating tumor cells. In addition, a specific interaction of tumor cells with the abluminal surfaces of vessels, or angiotropism, may promote the migration of angiotropic tumor cells along the abluminal vascular surfaces in a pericytic location. This process has been termed extravascular migratory metastasis. The abluminal vascular surface may also provide a vascular niche inducing or sustaining stemness to angiotropic tumor cells. This pilot study investigated if angiotropic melanoma cells might represent a subset population with pericytic and embryonic or stem cell properties. Through microarray analysis, we showed that the interaction between melanoma cells and the abluminal surface of endothelial cells triggers significant differential expression of several genes. The most significantly differentially expressed genes have demonstrated properties linked to cancer cell migration (CCL2, ICAM1 and IL6), cancer progression (CCL2, ICAM1, SELE, TRAF1, IL6, SERPINB2 and CXCL6), epithelial to mesenchymal transition (CCL2 and IL6), embryonic/stem cell properties (CCL2, PDGFB, EVX1 and CFDP1) and pericytic recruitment (PDGFB). In addition, bioinformatics-based analysis of the differentially expressed genes has shown that the most significantly enriched functional groups included development, cell movement, cancer, and embryonic development. Finally, the investigation of pericyte/mesenchymal stem cells markers via immunostaining of human melanoma samples revealed expression of PDGFRB, NG2 and CD146 by angiotropic melanoma cells. Taken together, these preliminary data are supportive of the "pericytic mimicry" by angiotropic melanoma cells, and suggest that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes linked to cancer migration and embryonic/stem cell properties.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rübsamen D, Blees JS, Schulz K, Döring C, Hansmann ML, Heide H, Weigert A, Schmid T, Brüne B. IRES-dependent translation of egr2 is induced under inflammatory conditions. RNA (NEW YORK, N.Y.) 2012; 18:1910-1920. [PMID: 22915601 PMCID: PMC3446713 DOI: 10.1261/rna.033019.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Adjusting translation is crucial for cells to rapidly adapt to changing conditions. While pro-proliferative signaling via the PI3K-mTOR-pathway is known to induce cap-dependent translation, stress conditions, such as nutrient deprivation or hypoxia often activate alternative modes of translation, e.g., via internal ribosome entry sites (IRESs). As the effects of inflammatory conditions on translation are only poorly characterized, we aimed at identifying translationally deregulated targets in inflammatory settings. For this purpose, we cocultured breast tumor cells with conditioned medium of activated monocyte-derived macrophages (CM). Polysome profiling and microarray analysis identified early growth response-2 (egr2) to be regulated at the level of translation. Using bicistronic reporter assays, we found that egr2 contains an IRES within its 5' UTR, which facilitated enhanced translation upon CM treatment. We further provide evidence that the activity of egr2-IRES was induced by IL-1β and p38-MAPK signaling. In addition, we identified several potential IRES trans-acting factors (ITAFs) such as polypyrimidine tract binding protein (PTB) and hnRNP-A1 that directly bind to the egr2-5'UTR. In summary, our data provide evidence that egr2 expression is translationally regulated via an IRES element, which is responsive to an inflammatory environment.
Collapse
Affiliation(s)
- Daniela Rübsamen
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Johanna S. Blees
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Kathrin Schulz
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|