1
|
Sedivy EL, Smith JL, Grossman AD. An antisense RNA regulates production of DnaA and affects sporulation in Bacillus subtilis. PLoS Genet 2025; 21:e1011625. [PMID: 40367294 PMCID: PMC12112137 DOI: 10.1371/journal.pgen.1011625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/27/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
DnaA is the replication initiator and a transcription factor in virtually all bacteria. Although the synthesis and activity of DnaA are highly regulated, the mechanisms of regulation vary between organisms. We found that production of DnaA in Bacillus subtilis is regulated by an antisense RNA that overlaps with the 5' untranslated region upstream of the dnaA open reading frame. We initially observed this RNA in in vitro transcription experiments and found that its production was inhibited by DnaA. This RNA, now called ArrA for antisense RNA repressor of dnaA, is made in vivo. We identified the arrA promoter and made a mutation that greatly reduced (or eliminated) production of ArrA RNA in vitro and in vivo. In vivo, this arrA promoter mutation caused an increase in the amount of mRNA and protein from dnaA and dnaN, indicating that arrA expression normally inhibits expression of the dnaA-dnaN operon. The arrA mutation also caused a delay in sporulation that was alleviated by loss of sda, a sporulation-inhibitory gene that is directly activated by DnaA. arrA appears to be conserved in some members of the Bacillus genus, indicating that arrA has evolved in at least some endospore-forming bacteria to modulate production of DnaA and enable timely and robust sporulation.
Collapse
Affiliation(s)
- Emma L. Sedivy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janet L. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Li Y, Cao X, Chai Y, Chen R, Zhao Y, Borriss R, Ding X, Wu X, Ye J, Hao D, He J, Wang G, Cao M, Jiang C, Han Z, Fan B. A phosphate starvation induced small RNA promotes Bacillus biofilm formation. NPJ Biofilms Microbiomes 2024; 10:115. [PMID: 39472585 PMCID: PMC11522486 DOI: 10.1038/s41522-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.
Collapse
Affiliation(s)
- Yulong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
- School of Agriculture, Ningxia University, Ningxia, China
| | - Xianming Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, USA
| | - Ruofu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| | - Jian He
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Mingmin Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Chunliang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Zhengmin Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
3
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. J Bacteriol 2024; 206:e0005224. [PMID: 38819154 PMCID: PMC11332163 DOI: 10.1128/jb.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function, and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations, they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the YS deletion mutants results from distinct enzymatic vulnerabilities.IMPORTANCEBacteria require multiple trace metal ions for survival. Metal homeostasis relies on the tightly regulated expression of metal uptake, storage, and efflux proteins. Metal intoxication occurs when metal homeostasis is perturbed and often results from enzyme mis-metalation. In Bacillus subtilis, Mn-dependent superoxide dismutase (MnSOD) is the most abundant Mn-containing protein and is important for oxidative stress resistance. Here, we report novel roles for MnSOD and a co-regulated membrane protein, YqgC, in Mn homeostasis. Loss of both MnSOD and YqgC (but not the individual proteins) prevents the efficient expression of Mn efflux proteins and leads to a large-scale perturbation of the metabolome due to inhibition of Mg-dependent enzymes, including key chorismate-utilizing MST (menaquinone, siderophore, and tryptophan) family enzymes.
Collapse
Affiliation(s)
- Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Miguel Piñeros
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, New York, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, USA
| | - Yuanchan Luo
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Janice J. Im
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Peng A, Yin G, Zuo W, Zhang L, Du G, Chen J, Wang Y, Kang Z. Regulatory RNAs in Bacillus subtilis: A review on regulatory mechanism and applications in synthetic biology. Synth Syst Biotechnol 2024; 9:223-233. [PMID: 38385150 PMCID: PMC10877136 DOI: 10.1016/j.synbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria exhibit a rich repertoire of RNA molecules that intricately regulate gene expression at multiple hierarchical levels, including small RNAs (sRNAs), riboswitches, and antisense RNAs. Notably, the majority of these regulatory RNAs lack or have limited protein-coding capacity but play pivotal roles in orchestrating gene expression by modulating transcription, post-transcription or translation processes. Leveraging and redesigning these regulatory RNA elements have emerged as pivotal strategies in the domains of metabolic engineering and synthetic biology. While previous investigations predominantly focused on delineating the roles of regulatory RNA in Gram-negative bacterial models such as Escherichia coli and Salmonella enterica, this review aims to summarize the mechanisms and functionalities of endogenous regulatory RNAs inherent to typical Gram-positive bacteria, notably Bacillus subtilis. Furthermore, we explore the engineering and practical applications of these regulatory RNA elements in the arena of synthetic biology, employing B. subtilis as a foundational chassis.
Collapse
Affiliation(s)
- Anqi Peng
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Singh RN, Sani RK. Genome-Wide Computational Prediction and Analysis of Noncoding RNAs in Oleidesulfovibrio alaskensis G20. Microorganisms 2024; 12:960. [PMID: 38792789 PMCID: PMC11124144 DOI: 10.3390/microorganisms12050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the "rules of life of OA G20" during biofilm formation.
Collapse
Affiliation(s)
- Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota Mines, Rapid City, SD 57701, USA
| |
Collapse
|
6
|
Lawaetz AC, Cowley LA, Denham EL. Genome-wide annotation of transcript boundaries using bacterial Rend-seq datasets. Microb Genom 2024; 10. [PMID: 38668652 DOI: 10.1099/mgen.0.001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Accurate annotation to single-nucleotide resolution of the transcribed regions in genomes is key to optimally analyse RNA-seq data, understand regulatory events and for the design of experiments. However, currently most genome annotations provided by GenBank generally lack information about untranslated regions. Additionally, information regarding genomic locations of non-coding RNAs, such as sRNAs, or anti-sense RNAs is frequently missing. To provide such information, diverse RNA-seq technologies, such as Rend-seq, have been developed and applied to many bacterial species. However, incorporating this vast amount of information into annotation files has been limited and is bioinformatically challenging, resulting in UTRs and other non-coding elements being overlooked or misrepresented. To overcome this problem, we present pyRAP (python Rend-seq Annotation Pipeline), a software package that analyses Rend-seq datasets to accurately resolve transcript boundaries genome-wide. We report the use of pyRAP to find novel transcripts, transcript isoforms, and RNase-dependent sRNA processing events. In Bacillus subtilis we uncovered 63 novel transcripts and provide genomic coordinates with single-nucleotide resolution for 2218 5'UTRs, 1864 3'UTRs and 161 non-coding RNAs. In Escherichia coli, we report 117 novel transcripts, 2429 5'UTRs, 1619 3'UTRs and 91 non-coding RNAs, and in Staphylococcus aureus, 16 novel transcripts, 664 5'UTRs, 696 3'UTRs, and 81 non-coding RNAs. Finally, we use pyRAP to produce updated annotation files for B. subtilis 168, E. coli K-12 MG1655, and S. aureus 8325 for use in the wider microbial genomics research community.
Collapse
Affiliation(s)
- Andreas C Lawaetz
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lauren A Cowley
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Milner Centre for Evolution, Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Emma L Denham
- Life Sciences Department, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
7
|
Sachla AJ, Soni V, Piñeros M, Luo Y, Im JJ, Rhee KY, Helmann JD. The Bacillus subtilis yqgC-sodA operon protects magnesium-dependent enzymes by supporting manganese efflux. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580342. [PMID: 38405924 PMCID: PMC10888875 DOI: 10.1101/2024.02.14.580342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.
Collapse
Affiliation(s)
- Ankita J. Sachla
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miguel Piñeros
- School of Integrative Plant Sciences, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Yuanchan Luo
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Janice J. Im
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA
| |
Collapse
|
8
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
9
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
10
|
Jolley EA, Yakhnin H, Tack DC, Babitzke P, Bevilacqua PC. Transcriptome-wide probing reveals RNA thermometers that regulate translation of glycerol permease genes in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1365-1378. [PMID: 37217261 PMCID: PMC10573289 DOI: 10.1261/rna.079652.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
Korobeinikova A, Laalami S, Berthy C, Putzer H. RNase Y Autoregulates Its Synthesis in Bacillus subtilis. Microorganisms 2023; 11:1374. [PMID: 37374876 DOI: 10.3390/microorganisms11061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The instability of messenger RNA is crucial to the control of gene expression. In Bacillus subtilis, RNase Y is the major decay-initiating endoribonuclease. Here, we show how this key enzyme regulates its own synthesis by modulating the longevity of its mRNA. Autoregulation is achieved through cleavages in two regions of the rny (RNase Y) transcript: (i) within the first ~100 nucleotides of the open reading frame, immediately inactivating the mRNA for further rounds of translation; (ii) cleavages in the rny 5' UTR, primarily within the 5'-terminal 50 nucleotides, creating entry sites for the 5' exonuclease J1 whose progression is blocked around position -15 of the rny mRNA, potentially by initiating ribosomes. This links the functional inactivation of the transcript by RNase J1 to translation efficiency, depending on the ribosome occupancy at the translation initiation site. By these mechanisms, RNase Y can initiate degradation of its own mRNA when the enzyme is not occupied with degradation of other RNAs and thus prevent its overexpression beyond the needs of RNA metabolism.
Collapse
Affiliation(s)
- Anna Korobeinikova
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Soumaya Laalami
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Clément Berthy
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, CNRS, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
12
|
Norris MH, Bluhm AP, Metrailer MC, Jiranantasak T, Kirpich A, Hadfield T, Ponciano JM, Blackburn JK. Beyond the spore, the exosporium sugar anthrose impacts vegetative Bacillus anthracis gene regulation in cis and trans. Sci Rep 2023; 13:5060. [PMID: 36977718 PMCID: PMC10050317 DOI: 10.1038/s41598-023-32162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The Bacillus anthracis exosporium nap is the outermost portion of spore that interacts with the environment and host systems. Changes to this layer have the potential to impact wide-ranging physiological and immunological processes. The unique sugar, anthrose, normally coats the exosporium nap at its most distal points. We previously identified additional mechanisms rendering B. anthracis anthrose negative. In this work, several new ant - B. anthracis strains are identified and the impact of anthrose negativity on spore physiology is investigated. We demonstrate that live-attenuated Sterne vaccines as well as culture filtrate anthrax vaccines generate antibodies targeting non-protein components of the spore. The role of anthrose as a vegetative B. anthracis Sterne signaling molecule is implicated by luminescent expression strain assays, RNA-seq experiments, and toxin secretion analysis by western blot. Pure anthrose and the sporulation-inducing nucleoside analogue decoyinine had similar effects on toxin expression. Co-culture experiments demonstrated gene expression changes in B. anthracis depend on intracellular anthrose status (cis) in addition to anthrose status of extracellular interactions (trans). These findings provide a mechanism for how a unique spore-specific sugar residue affects physiology, expression and genetics of vegetative B. anthracis with impacts on the ecology, pathogenesis, and vaccinology of anthrax.
Collapse
Affiliation(s)
- Michael H Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Andrew P Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Morgan C Metrailer
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Treenate Jiranantasak
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Alexander Kirpich
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Ted Hadfield
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Geissler AS, Fehler AO, Poulsen LD, González-Tortuero E, Kallehauge TB, Alkan F, Anthon C, Seemann SE, Rasmussen MD, Breüner A, Hjort C, Vinther J, Gorodkin J. CRISPRi screen for enhancing heterologous α-amylase yield in Bacillus subtilis. J Ind Microbiol Biotechnol 2023; 50:kuac028. [PMID: 36564025 PMCID: PMC9936203 DOI: 10.1093/jimb/kuac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation. Since these classes of RNA are also understudied, we targeted the corresponding genomic regions with CRIPSRi knockdown to test for any potential impact on the yield. From differentially expression analysis, we selected 53 non-coding candidates. Although CRISPRi knockdowns target both the sense and the antisense strand, the CRISPRi experiment cannot link causes for yield changes to the sense or antisense disruption. Nevertheless, we observed on several instances with strong changes in enzyme yield. The knockdown targeting the genomic region for a putative antisense RNA of the 3' UTR of the skfA-skfH operon led to a 21% increase in yield. In contrast, the knockdown targeting the genomic regions of putative antisense RNAs of the cytochrome c oxidase subunit 1 (ctaD), the sigma factor sigH, and the uncharacterized gene yhfT decreased yields by 31 to 43%.
Collapse
Affiliation(s)
- Adrian Sven Geissler
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| | - Annaleigh Ohrt Fehler
- Section for Computational and RNA Biology, Department of Biology,
University of Copenhagen, 2200 Copenhagen,Denmark
| | - Line Dahl Poulsen
- Section for Computational and RNA Biology, Department of Biology,
University of Copenhagen, 2200 Copenhagen,Denmark
| | - Enrique González-Tortuero
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| | | | - Ferhat Alkan
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| | - Stefan Ernst Seemann
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| | | | | | | | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology,
University of Copenhagen, 2200 Copenhagen,Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of
Veterinary and Animal Sciences, University of Copenhagen, 1870
Frederiksberg,Denmark
| |
Collapse
|
14
|
Anast JM, Etter AJ, Schmitz‐Esser S. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs. Microbiologyopen 2022; 11:e1315. [PMID: 36314750 PMCID: PMC9484302 DOI: 10.1002/mbo3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.
Collapse
Affiliation(s)
- Justin M. Anast
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Andrea J. Etter
- Department of Nutrition and Food SciencesThe University of VermontBurlingtonVermontUSA
| | - Stephan Schmitz‐Esser
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| |
Collapse
|
15
|
Model-Based Design of Synthetic Antisense RNA for Predictable Gene Repression. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2518:111-124. [PMID: 35666442 DOI: 10.1007/978-1-0716-2421-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our enhanced understanding of RNA folding and function has increased the use of small RNA regulators. Among these RNA regulators, synthetic antisense RNA (asRNA) is designed to contain an RNA sequence complementary to the target mRNA sequence, and the formation of double-stranded RNA (dsRNA) facilitates gene repression due to dsRNA degradation or prevention of ribosome access to the mRNA. Despite the simple complementarity rule, however, predictably tunable repression has been challenging when synthetic asRNAs are used. Here, the protocol for model-based asRNA design is described. This model can predict synthetic asRNA-mediated repression efficiency using two parameters: the change in free energy of complex formation (ΔGCF) and percent mismatch of the target binding region (TBR). The model has been experimentally validated in both Gram-positive and Gram-negative bacteria as well as for target genes in both plasmids and chromosomes. These asRNAs can be created by simply replacing the TBR sequence with one that is complementary to the target mRNA sequence of interest. In principle, this protocol can be applied to design and build asRNAs for predictable gene repression in various contexts, including multiple target genes and organisms, making asRNAs predictably tunable regulators for broad applications.
Collapse
|
16
|
Role of Hfq in glucose utilization, biofilm formation and quorum sensing system in Bacillus subtilis. Biotechnol Lett 2022; 44:845-855. [PMID: 35614284 DOI: 10.1007/s10529-022-03262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Hfq is an RNA-binding protein, its main function is to participate in post-transcriptional regulation of bacteria and regulate small regulatory RNA (sRNA) and messenger RNA (mRNA) stability, but the Hfq function of Bacillus subtilis (B. subtilis) has not been fully explained. In this study, we used the strains of B. subtilis168 (BS168), BS168Δhfq and BS168Δhfq-C to explore the effects of Hfq on the glucose utilization, biofilm formation and quorum sensing (QS) system of B. subtilis. The results showed that the knockout of hfq resulted in growth defects when bacteria were cultured in the Luria-Bertani (LB) medium, but we did not observe the same effects in Nitrogen medium (NM) and Inorganic Salt-free medium (ISM). We further found that the growth of strains under different glucose concentrations was also different, which was related to the expression of CcpA. Interestingly, the hfq mutant showed increased resistance to a high-glucose environment. Furthermore, the biofilm and extracellular poly saccharides (EPS) formation of BS168Δhfq decreased significantly. At the same time, changes were observed in the morphology of the biofilm, such as larger intercellular space of the biofilm and thinner edge. The qRT-PCR results confirmed that the hfq knockout caused significant up-regulation or down-regulation of gene expression in QS system, and down-regulated genes were involved in the positive regulation of biofilm formation. Taken together, we demonstrated that Hfq plays a vital role in glucose utilization, biofilm formation and QS of B. subtilis, which provides a new perspective for subsequent related research.
Collapse
|
17
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
18
|
Brantl S, Müller P. Cis- and Trans-Encoded Small Regulatory RNAs in Bacillus subtilis. Microorganisms 2021; 9:microorganisms9091865. [PMID: 34576762 PMCID: PMC8464778 DOI: 10.3390/microorganisms9091865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing are the most abundant posttranscriptional regulators in all three kingdoms of life. Over the past 20 years, a variety of approaches have been employed to discover chromosome-encoded sRNAs in a multitude of bacterial species. However, although largely improved bioinformatics tools are available to predict potential targets of base-pairing sRNAs, it is still challenging to confirm these targets experimentally and to elucidate the mechanisms as well as the physiological role of their sRNA-mediated regulation. Here, we provide an overview of currently known cis- and trans-encoded sRNAs from B. subtilis with known targets and defined regulatory mechanisms and on the potential role of RNA chaperones that are or might be required to facilitate sRNA regulation in this important Gram-positive model organism.
Collapse
|
19
|
Prezza G, Ryan D, Mädler G, Reichardt S, Barquist L, Westermann AJ. Comparative genomics provides structural and functional insights into Bacteroides RNA biology. Mol Microbiol 2021; 117:67-85. [PMID: 34379855 DOI: 10.1111/mmi.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of the RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homologue to have an RNA-related function. We apply an in-silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions, and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic co-conservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Gohar Mädler
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Durand S, Callan-Sidat A, McKeown J, Li S, Kostova G, Hernandez-Fernaud JR, Alam MT, Millard A, Allouche D, Constantinidou C, Condon C, Denham EL. Identification of an RNA sponge that controls the RoxS riboregulator of central metabolism in Bacillus subtilis. Nucleic Acids Res 2021; 49:6399-6419. [PMID: 34096591 PMCID: PMC8216469 DOI: 10.1093/nar/gkab444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA-mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.
Collapse
Affiliation(s)
- Sylvain Durand
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adam Callan-Sidat
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Josie McKeown
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Stephen Li
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gergana Kostova
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Juan R Hernandez-Fernaud
- School of Life Sciences, Proteomics Research Technology Platform, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Mohammad Tauqeer Alam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Andrew Millard
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Delphine Allouche
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chrystala Constantinidou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Ciarán Condon
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emma L Denham
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| |
Collapse
|
21
|
Guérin C, Lee BH, Fradet B, van Dijk E, Mirauta B, Thermes C, Bernardet JF, Repoila F, Duchaud E, Nicolas P, Rochat T. Transcriptome architecture and regulation at environmental transitions in flavobacteria: the case of an important fish pathogen. ISME COMMUNICATIONS 2021; 1:33. [PMID: 36739365 PMCID: PMC9723704 DOI: 10.1038/s43705-021-00029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The family Flavobacteriaceae (phylum Bacteroidetes) is a major component of soil, marine and freshwater ecosystems. In this understudied family, Flavobacterium psychrophilum is a freshwater pathogen that infects salmonid fish worldwide, with critical environmental and economic impact. Here, we report an extensive transcriptome analysis that established the genome map of transcription start sites and transcribed regions, predicted alternative sigma factor regulons and regulatory RNAs, and documented gene expression profiles across 32 biological conditions mimicking the pathogen life cycle. The results link genes to environmental conditions and phenotypic traits and provide insights into gene regulation, highlighting similarities with better known bacteria and original characteristics linked to the phylogenetic position and the ecological niche of the bacterium. In particular, osmolarity appears as a signal for transition between free-living and within-host programs and expression patterns of secreted proteins shed light on probable virulence factors. Further investigations showed that a newly discovered sRNA widely conserved in the genus, Rfp18, is required for precise expression of proteases. By pointing proteins and regulatory elements probably involved in host-pathogen interactions, metabolic pathways, and molecular machineries, the results suggest many directions for future research; a website is made available to facilitate their use to fill knowledge gaps on flavobacteria.
Collapse
Affiliation(s)
- Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Benjamin Fradet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Bogdan Mirauta
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005, Paris, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Francis Repoila
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eric Duchaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Tatiana Rochat
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
22
|
An RNA-centric global view of Clostridioides difficile reveals broad activity of Hfq in a clinically important gram-positive bacterium. Proc Natl Acad Sci U S A 2021; 118:2103579118. [PMID: 34131082 PMCID: PMC8237595 DOI: 10.1073/pnas.2103579118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gram-positive human pathogen Clostridioides difficile has emerged as the leading cause of antibiotic-associated diarrhea. However, little is known about the bacterium's transcriptome architecture and mechanisms of posttranscriptional control. Here, we have applied transcription start site and termination mapping to generate a single-nucleotide-resolution RNA map of C. difficile 5' and 3' untranslated regions, operon structures, and noncoding regulators, including 42 sRNAs. Our results indicate functionality of many conserved riboswitches and predict cis-regulatory RNA elements upstream of multidrug resistance (MDR)-type ATP-binding cassette (ABC) transporters and transcriptional regulators. Despite growing evidence for a role of Hfq in RNA-based gene regulation in C. difficile, the functions of Hfq-based posttranscriptional regulatory networks in gram-positive pathogens remain controversial. Using Hfq immunoprecipitation followed by sequencing of bound RNA species (RIP-seq), we identify a large cohort of transcripts bound by Hfq and show that absence of Hfq affects transcript stabilities and steady-state levels. We demonstrate sRNA expression during intestinal colonization by C. difficile and identify infection-related signals impacting its expression. As a proof of concept, we show that the utilization of the abundant intestinal metabolite ethanolamine is regulated by the Hfq-dependent sRNA CDIF630nc_085. Overall, our study lays the foundation for understanding clostridial riboregulation with implications for the infection process and provides evidence for a global role of Hfq in posttranscriptional regulation in a gram-positive bacterium.
Collapse
|
23
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
24
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
25
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Ritchey LE, Tack DC, Yakhnin H, Jolley EA, Assmann SM, Bevilacqua PC, Babitzke P. Structure-seq2 probing of RNA structure upon amino acid starvation reveals both known and novel RNA switches in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2020; 26:1431-1447. [PMID: 32611709 PMCID: PMC7491331 DOI: 10.1261/rna.075986.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/28/2020] [Indexed: 06/01/2023]
Abstract
RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of Bacillus subtilis grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces yfmG expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of yfmG regulates yfmG expression. Our results are consistent with a model in which a slow rate of yfmH translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the yfmG leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.
Collapse
Affiliation(s)
- Laura E Ritchey
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
27
|
Cervantes-Rivera R, Puhar A. Whole-genome Identification of Transcriptional Start Sites by Differential RNA-seq in Bacteria. Bio Protoc 2020; 10:e3757. [PMID: 33659416 PMCID: PMC7842792 DOI: 10.21769/bioprotoc.3757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 07/23/2020] [Indexed: 11/02/2022] Open
Abstract
Gene transcription in bacteria often starts some nucleotides upstream of the start codon. Identifying the specific Transcriptional Start Site (TSS) is essential for genetic manipulation, as in many cases upstream of the start codon there are sequence elements that are involved in gene expression regulation. Taken into account the classical gene structure, we are able to identify two kinds of transcriptional start site: primary and secondary. A primary transcriptional start site is located some nucleotides upstream of the translational start site, while a secondary transcriptional start site is located within the gene encoding sequence. Here, we present a step by step protocol for genome-wide transcriptional start sites determination by differential RNA-sequencing (dRNA-seq) using the enteric pathogen Shigella flexneri serotype 5a strain M90T as model. However, this method can be employed in any other bacterial species of choice. In the first steps, total RNA is purified from bacterial cultures using the hot phenol method. Ribosomal RNA (rRNA) is specifically depleted via hybridization probes using a commercial kit. A 5'-monophosphate-dependent exonuclease (TEX)-treated RNA library enriched in primary transcripts is then prepared for comparison with a library that has not undergone TEX-treatment, followed by ligation of an RNA linker adaptor of known sequence allowing the determination of TSS with single nucleotide precision. Finally, the RNA is processed for Illumina sequencing library preparation and sequenced as purchased service. TSS are identified by in-house bioinformatic analysis. Our protocol is cost-effective as it minimizes the use of commercial kits and employs freely available software.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| |
Collapse
|
28
|
Bartel J, Varadarajan AR, Sura T, Ahrens CH, Maaß S, Becher D. Optimized Proteomics Workflow for the Detection of Small Proteins. J Proteome Res 2020; 19:4004-4018. [DOI: 10.1021/acs.jproteome.0c00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Adithi R. Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| |
Collapse
|
29
|
Ul Haq I, Müller P, Brantl S. Intermolecular Communication in Bacillus subtilis: RNA-RNA, RNA-Protein and Small Protein-Protein Interactions. Front Mol Biosci 2020; 7:178. [PMID: 32850966 PMCID: PMC7430163 DOI: 10.3389/fmolb.2020.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
In bacterial cells we find a variety of interacting macromolecules, among them RNAs and proteins. Not only small regulatory RNAs (sRNAs), but also small proteins have been increasingly recognized as regulators of bacterial gene expression. An average bacterial genome encodes between 200 and 300 sRNAs, but an unknown number of small proteins. sRNAs can be cis- or trans-encoded. Whereas cis-encoded sRNAs interact only with their single completely complementary mRNA target transcribed from the opposite DNA strand, trans-encoded sRNAs are only partially complementary to their numerous mRNA targets, resulting in huge regulatory networks. In addition to sRNAs, uncharged tRNAs can interact with mRNAs in T-box attenuation mechanisms. For a number of sRNA-mRNA interactions, the stability of sRNAs or translatability of mRNAs, RNA chaperones are required. In Gram-negative bacteria, the well-studied abundant RNA-chaperone Hfq fulfils this role, and recently another chaperone, ProQ, has been discovered and analyzed in this respect. By contrast, evidence for RNA chaperones or their role in Gram-positive bacteria is still scarce, but CsrA might be such a candidate. Other RNA-protein interactions involve tmRNA/SmpB, 6S RNA/RNA polymerase, the dual-function aconitase and protein-bound transcriptional terminators and antiterminators. Furthermore, small proteins, often missed in genome annotations and long ignored as potential regulators, can interact with individual regulatory proteins, large protein complexes, RNA or the membrane. Here, we review recent advances on biological role and regulatory principles of the currently known sRNA-mRNA interactions, sRNA-protein interactions and small protein-protein interactions in the Gram-positive model organism Bacillus subtilis. We do not discuss RNases, ribosomal proteins, RNA helicases or riboswitches.
Collapse
Affiliation(s)
| | | | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
30
|
Abstract
Here, we describe SR7, a dual-function antisense RNA encoded on the Bacillus subtilis chromosome. This RNA was earlier described as SigB-dependent regulatory RNA S1136 and reported to reduce the amount of the small ribosomal subunit under ethanol stress. We found that the 5ʹ portion of SR7 encodes a small protein composed of 39 amino acids which we designated SR7P. It is translated from a 185 nt SigB-dependent mRNA under five different stress conditions and a longer SigB-independent RNA constitutively. About three-fold higher amounts of SR7P were detected in B. subtilis cells exposed to salt, ethanol, acid or heat stress. Co-elution experiments with SR7PC-FLAG and Far-Western blotting demonstrated that SR7P interacts with the glycolytic enzyme enolase. Enolase is a scaffolding component of the B. subtilis degradosome where it interacts with RNase Y and phosphofructokinase PfkA. We found that SR7P increases the amount of RNase Y bound to enolase without affecting PfkA. RNA does not bridge the SR7P-enolase-RNase Y interaction. In vitro-degradation assays with the known RNase Y substrates yitJ and rpsO mRNA revealed enhanced enzymatic activity of enolase-bound RNase Y in the presence of SR7P. Northern blots showed a major effect of enolase and a minor effect of SR7P on the half-life of rpsO mRNA indicating a fine-tuning role of SR7P in RNA degradation.
Collapse
Affiliation(s)
- Inam Ul Haq
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| |
Collapse
|
31
|
Boonstra M, Schaffer M, Sousa J, Morawska L, Holsappel S, Hildebrandt P, Sappa PK, Rath H, de Jong A, Lalk M, Mäder U, Völker U, Kuipers OP. Analyses of competent and non-competent subpopulations of Bacillus subtilis reveal yhfW, yhxC and ncRNAs as novel players in competence. Environ Microbiol 2020; 22:2312-2328. [PMID: 32249531 PMCID: PMC7317962 DOI: 10.1111/1462-2920.15005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
Upon competence-inducing nutrient-limited conditions, only part of the Bacillus subtilis population becomes competent. Here, we separated the two subpopulations by fluorescence-assisted cell sorting (FACS). Using RNA-seq, we confirmed the previously described ComK regulon. We also found for the first time significantly downregulated genes in the competent subpopulation. The downregulated genes are not under direct control by ComK but have higher levels of corresponding antisense RNAs in the competent subpopulation. During competence, cell division and replication are halted. By investigating the proteome during competence, we found higher levels of the regulators of cell division, MinD and Noc. The exonucleases SbcC and SbcD were also primarily regulated at the post-transcriptional level. In the competent subpopulation, yhfW was newly identified as being highly upregulated. Its absence reduces the expression of comG, and has a modest, but statistically significant effect on the expression of comK. Although expression of yhfW is higher in the competent subpopulation, no ComK-binding site is present in its promoter region. Mutants of yhfW have a small but significant defect in transformation. Metabolomic analyses revealed significant reductions in tricarboxylic acid (TCA) cycle metabolites and several amino acids in a ΔyhfW mutant. RNA-seq analysis of ΔyhfW revealed higher expression of the NAD synthesis genes nadA, nadB and nadC.
Collapse
Affiliation(s)
- Mirjam Boonstra
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Marc Schaffer
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Joana Sousa
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Luiza Morawska
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Siger Holsappel
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Petra Hildebrandt
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Praveen Kumar Sappa
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Hermann Rath
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Anne de Jong
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Michael Lalk
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Oscar P Kuipers
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| |
Collapse
|
32
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
33
|
Hwang S, Lee N, Jeong Y, Lee Y, Kim W, Cho S, Palsson BO, Cho BK. Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Res 2020; 47:6114-6129. [PMID: 31131406 PMCID: PMC6614810 DOI: 10.1093/nar/gkz471] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Determining transcriptional and translational regulatory elements in GC-rich Streptomyces genomes is essential to elucidating the complex regulatory networks that govern secondary metabolite biosynthetic gene cluster (BGC) expression. However, information about such regulatory elements has been limited for Streptomyces genomes. To address this limitation, a high-quality genome sequence of β-lactam antibiotic-producing Streptomyces clavuligerus ATCC 27 064 is completed, which contains 7163 newly annotated genes. This provides a fundamental reference genome sequence to integrate multiple genome-scale data types, including dRNA-Seq, RNA-Seq and ribosome profiling. Data integration results in the precise determination of 2659 transcription start sites which reveal transcriptional and translational regulatory elements, including −10 and −35 promoter components specific to sigma (σ) factors, and 5′-untranslated region as a determinant for translation efficiency regulation. Particularly, sequence analysis of a wide diversity of the −35 components enables us to predict potential σ-factor regulons, along with various spacer lengths between the −10 and −35 elements. At last, the primary transcriptome landscape of the β-lactam biosynthetic pathway is analyzed, suggesting temporal changes in metabolism for the synthesis of secondary metabolites driven by transcriptional regulation. This comprehensive genetic information provides a versatile genetic resource for rational engineering of secondary metabolite BGCs in Streptomyces.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Bédard ASV, Hien EDM, Lafontaine DA. Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194501. [PMID: 32036061 DOI: 10.1016/j.bbagrm.2020.194501] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.
Collapse
Affiliation(s)
- Anne-Sophie Vézina Bédard
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Elsa D M Hien
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
35
|
Harden TT, Herlambang KS, Chamberlain M, Lalanne JB, Wells CD, Li GW, Landick R, Hochschild A, Kondev J, Gelles J. Alternative transcription cycle for bacterial RNA polymerase. Nat Commun 2020; 11:448. [PMID: 31974358 PMCID: PMC6978322 DOI: 10.1038/s41467-019-14208-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.
Collapse
Affiliation(s)
- Timothy T Harden
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA
| | | | | | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher D Wells
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ann Hochschild
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA, 02454, USA.
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
36
|
Lei L, Yang Y, Yang Y, Wu S, Ma X, Mao M, Hu T. Mechanisms by Which Small RNAs Affect Bacterial Activity. J Dent Res 2019; 98:1315-1323. [PMID: 31547763 DOI: 10.1177/0022034519876898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oral cavity contains a distinct habitat that supports diverse bacterial flora. Recent observations have provided additional evidence that sRNAs are key regulators of bacterial physiology and pathogenesis. These sRNAs have been divided into 5 functional groups: cis-encoded RNAs, trans-encoded RNAs, RNA regulators of protein activity, bacterial CRISPR (clustered regularly interspaced short palindromic repeat) RNAs, and a novel category of miRNA-size small RNAs (msRNAs). In this review, we discuss a critical group of key commensal and opportunistic oral pathogens. In general, supragingival bacterial sRNAs function synergistically to fine-tune the regulation of cellular processes and stress responses in adaptation to environmental changes. Particularly in the cariogenic bacteria Streptococcus mutans, both the antisense vicR RNA and msRNA1657 can impede the metabolism of bacterial exopolysaccharides, prevent biofilm formation, and suppress its cariogenicity. In Enterococcus faecalis, selected sRNAs control the expression of proteins involved in diverse cellular processes and stress responses. In subgingival plaques, sRNAs from periodontal pathogens can function as novel bacterial signaling molecules that mediate bacterial-human interactions in periodontal homeostasis. In Porphyromonas gingivalis, the expression profiles of putative sRNA101 and sRNA42 were found to respond to hemin availability after hemin starvation. Regarding Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), a major periodontal pathogen associated with aggressive periodontitis, the predicted sRNAs interact with several virulence genes, including those encoding leukotoxin and cytolethal distending toxin. Furthermore, in clinical isolates, these associated RNAs could be explored not only as potential biomarkers for oral disease monitoring but also as alternative types of regulators for drug design. Thus, this emerging subspecialty of bacterial regulatory RNAs could reshape our understanding of bacterial gene regulation from their key roles of endogenous regulatory RNAs to their activities in pathologic processes.
Collapse
Affiliation(s)
- L Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Y Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Wu
- West China Hospital, Sichuan University, Chengdu, China
| | - X Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - M Mao
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - T Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Brantl S, Müller P. Toxin⁻Antitoxin Systems in Bacillus subtilis. Toxins (Basel) 2019; 11:toxins11050262. [PMID: 31075979 PMCID: PMC6562991 DOI: 10.3390/toxins11050262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Toxin-antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
38
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|
39
|
Marincola G, Wencker FDR, Ziebuhr W. The Many Facets of the Small Non-coding RNA RsaE (RoxS) in Metabolic Niche Adaptation of Gram-Positive Bacteria. J Mol Biol 2019; 431:4684-4698. [PMID: 30914292 DOI: 10.1016/j.jmb.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Small regulatory RNAs (sRNAs) are increasingly recognized as players in the complex regulatory networks governing bacterial gene expression. RsaE (synonym RoxS) is an sRNA that is highly conserved in bacteria of the Bacillales order. Recent analyses in Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis identified RsaE/RoxS as a potent riboregulator of central carbon metabolism and energy balance with many molecular RsaE/RoxS functions and targets being shared across species. Similarities and species-specific differences in cellular processes modulated by RsaE/RoxS suggest that this sRNA plays a prominent role in the adaptation of Gram-positive bacteria to niches with varying nutrient availabilities and environmental cues. This review summarizes recent findings on the molecular function of RsaE/RoxS and its interaction with mRNA targets. Special emphasis will be on the integration of RsaE/RoxS into metabolic regulatory circuits and, derived from this, the role of RsaE/RoxS as a putative driver to generate phenotypic heterogeneity in bacterial populations. In this respect, we will particularly discuss heterogeneous RsaE expression in S. epidermidis biofilms and its possible contribution to metabolic niche diversification, programmed bacterial lysis and biofilm matrix production.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| |
Collapse
|
40
|
Wolf IR, Paschoal AR, Quiroga C, Domingues DS, de Souza RF, Pretto-Giordano LG, Vilas-Boas LA. Functional annotation and distribution overview of RNA families in 27 Streptococcus agalactiae genomes. BMC Genomics 2018; 19:556. [PMID: 30055586 PMCID: PMC6064168 DOI: 10.1186/s12864-018-4951-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023] Open
Abstract
Background Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-positive bacterium that colonizes the gastrointestinal and genitourinary tract of humans. This bacterium has also been isolated from various animals, such as fish and cattle. Non-coding RNAs (ncRNAs) can act as regulators of gene expression in bacteria, such as Streptococcus pneumoniae and Streptococcus pyogenes. However, little is known about the genomic distribution of ncRNAs and RNA families in S. agalactiae. Results Comparative genome analysis of 27 S. agalactiae strains showed more than 5 thousand genomic regions identified and classified as Core, Exclusive, and Shared genome sequences. We identified 27 to 89 RNA families per genome distributed over these regions, from these, 25 were in Core regions while Shared and Exclusive regions showed variations amongst strains. We propose that the amount and type of ncRNA present in each genome can provide a pattern to contribute in the identification of the clonal types. Conclusions The identification of RNA families provides an insight over ncRNAs, sRNAs and ribozymes function, that can be further explored as targets for antibiotic development or studied in gene regulation of cellular processes. RNA families could be considered as markers to determine infection capabilities of different strains. Lastly, pan-genome analysis of GBS including the full range of functional transcripts provides a broader approach in the understanding of this pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-4951-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Alexandre Rossi Paschoal
- Universidade Tecnológica Federal do Paraná, Campus Cornélio Procópio, Cornélio Procópio, Paraná, Brazil.
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - Rogério Fernandes de Souza
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Laurival Antonio Vilas-Boas
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
41
|
Lalanne JB, Taggart JC, Guo MS, Herzel L, Schieler A, Li GW. Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry. Cell 2018; 173:749-761.e38. [PMID: 29606352 PMCID: PMC5978003 DOI: 10.1016/j.cell.2018.03.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/24/2017] [Accepted: 03/01/2018] [Indexed: 12/01/2022]
Abstract
Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.
Collapse
Affiliation(s)
- Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James C Taggart
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica S Guo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lydia Herzel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ariel Schieler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Zhou Z, Liu F, Zhang X, Zhou X, Zhong Z, Su H, Li J, Li H, Feng F, Lan J, Zhang Z, Fu H, Hu Y, Cao S, Chen W, Deng J, Yu J, Zhang W, Peng G. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda. PLoS One 2018; 13:e0191991. [PMID: 29385201 PMCID: PMC5791997 DOI: 10.1371/journal.pone.0191991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Surfactin secreted by Bacillus subtilis can confer strong, diverse antipathogenic effects, thereby benefitting the host. Carbon source is an important factor for surfactin production. However, the mechanism that bacteria utilize cellulose, the most abundant substance in the intestines of herbivores, to produce surfactin remains unclear. Here, we used B. subtilis HH2, isolated from the feces of a giant panda, as a model to determine changes in surfactin expression in the presence of different concentrations of cellulose by quantitative polymerase chain reaction and high-performance liquid chromatography. We further investigated the antimicrobial effects of surfactin against three common intestinal pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella enterica) and its resistance to high temperature (60-121°C), pH (1-12), trypsin (100-300 μg/mL, pH 8), and pepsin (100-300 μg/mL, pH 2). The results showed that the surfactin expressed lowest in bacteria cultured in the presence of 1% glucose medium as the carbon source, whereas increased in an appropriate cellulose concentration (0.67% glucose and 0.33% cellulose). The surfactin could inhibit E. coli and Staphylococcus aureus, but did not affect efficiently for Salmonella enterica. The antibacterial ability of surfactin did not differ according to temperature (60-100°C), pH (2-11), trypsin (100-300 μg/mL), and pepsin (100-300 μg/mL; P > 0.05), but decreased significantly at extreme environments (121°C, pH 1 or 12; P < 0.05) compared with that in the control group (37°C, pH = 7, without any protease). In conclusion, our findings indicated that B. subtilis HH2 could increase surfactin expression in an appropriate cellulose environment and thus provide benefits to improve the intestinal health of herbivores.
Collapse
Affiliation(s)
- Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Furui Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaiyi Su
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jin Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haozhou Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fan Feng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jingchao Lan
- The Key Laboratory of Conservation Biology on Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Zhihe Zhang
- The Key Laboratory of Conservation Biology on Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weigang Chen
- Institute of Wild Animals, Chengdu Zoo, Chengdu, China
| | - Jiabo Deng
- Institute of Wild Animals, Chengdu Zoo, Chengdu, China
| | - Jianqiu Yu
- Institute of Wild Animals, Chengdu Zoo, Chengdu, China
| | - Wenping Zhang
- The Key Laboratory of Conservation Biology on Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
Pinatel E, Peano C. RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction. Methods Mol Biol 2018; 1716:239-265. [PMID: 29222757 DOI: 10.1007/978-1-4939-7528-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely "on" or "off" state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Italy.
| |
Collapse
|
44
|
Cerutti F, Mallet L, Painset A, Hoede C, Moisan A, Bécavin C, Duval M, Dussurget O, Cossart P, Gaspin C, Chiapello H. Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in Listeria. BMC Genomics 2017; 18:882. [PMID: 29145803 PMCID: PMC5689173 DOI: 10.1186/s12864-017-4242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens. RESULTS We designed a robust and generic phylogenomics approach that detects correlated evolution between sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133, coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct negative post-transcriptional regulation. CONCLUSIONS Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs coevolving with seven internalin genes, some of which being important virulence factors in Listeria.
Collapse
Affiliation(s)
- Franck Cerutti
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Ludovic Mallet
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Anaïs Painset
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France.,Present address: Public Health England, 61 Colindale Avenue, London, NW9 5EQ, England
| | - Claire Hoede
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Annick Moisan
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France.,Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR 3756 IP CNRS, Paris, France
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| | - Olivier Dussurget
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.,INSERM, U604,F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| | - Christine Gaspin
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France
| | - Hélène Chiapello
- Université de Toulouse, INRA, UR 875 Unité Mathématiques et Informatique Appliquées de Toulouse, Auzeville, 31326, Castanet-Tolosan, France.
| |
Collapse
|
45
|
Abstract
In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers) that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using β-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification.IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets.
Collapse
|
46
|
Ren J, Sang Y, Qin R, Cui Z, Yao YF. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol 2017; 12:1045-1057. [PMID: 28796533 DOI: 10.2217/fmb-2017-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Acid is an important environmental condition encountered frequently by Salmonella enterica serovar Typhimurium during its pathogenesis, but the role of small-noncoding RNAs (sRNAs) in response to acid stress is poorly understood. METHODS We used RNA sequencing to explore acid-responsive sRNAs in S. Typhimurium. RESULTS It identified that 6S RNA encoded by the ssrS was significantly upregulated at pH 3.0. The 6S RNA knockout strain showed a reduced ability to survive at pH 3.0. Additionally, genes in Salmonella pathogenicity island-1 were downregulated in the 6S RNA knockout strain. The loss of 6S RNA significantly reduced S. Typhimurium invasion ability in HeLa cells and virulence in a mouse model. CONCLUSION These findings demonstrate that 6S RNA plays an important role in S. Typhimurium survival under extremely acid conditions and for invasion of epithelial cells.
Collapse
Affiliation(s)
- Jie Ren
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Feng Yao
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
47
|
Friedman RC, Kalkhof S, Doppelt-Azeroual O, Mueller SA, Chovancová M, von Bergen M, Schwikowski B. Common and phylogenetically widespread coding for peptides by bacterial small RNAs. BMC Genomics 2017; 18:553. [PMID: 28732463 PMCID: PMC5521070 DOI: 10.1186/s12864-017-3932-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background While eukaryotic noncoding RNAs have recently received intense scrutiny, it is becoming clear that bacterial transcription is at least as pervasive. Bacterial small RNAs and antisense RNAs (sRNAs) are often assumed to be noncoding, due to their lack of long open reading frames (ORFs). However, there are numerous examples of sRNAs encoding for small proteins, whether or not they also have a regulatory role at the RNA level. Methods Here, we apply flexible machine learning techniques based on sequence features and comparative genomics to quantify the prevalence of sRNA ORFs under natural selection to maintain protein-coding function in 14 phylogenetically diverse bacteria. Importantly, we quantify uncertainty in our predictions, and follow up on them using mass spectrometry proteomics and comparison to datasets including ribosome profiling. Results A majority of annotated sRNAs have at least one ORF between 10 and 50 amino acids long, and we conservatively predict that 409±191.7 unannotated sRNA ORFs are under selection to maintain coding (mean estimate and 95% confidence interval), an average of 29 per species considered here. This implies that overall at least 10.3±0.5% of sRNAs have a coding ORF, and in some species around 20% do. 165±69 of these novel coding ORFs have some antisense overlap to annotated ORFs. As experimental validation, many of our predictions are translated in published ribosome profiling data and are identified via mass spectrometry shotgun proteomics. B. subtilis sRNAs with coding ORFs are enriched for high expression in biofilms and confluent growth, and S. pneumoniae sRNAs with coding ORFs are involved in virulence. sRNA coding ORFs are enriched for transmembrane domains and many are predicted novel components of type I toxin/antitoxin systems. Conclusions We predict over two dozen new protein-coding genes per bacterial species, but crucially also quantified the uncertainty in this estimate. Our predictions for sRNA coding ORFs, along with predicted novel type I toxins and tools for sorting and visualizing genomic context, are freely available in a user-friendly format at http://disco-bac.web.pasteur.fr. We expect these easily-accessible predictions to be a valuable tool for the study not only of bacterial sRNAs and type I toxin-antitoxin systems, but also of bacterial genetics and genomics. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin C Friedman
- Systems Biology Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France. .,Molecular Microbial Pathogenesis Unit, Department of Cell Biology and Infection, Institut Pasteur, Paris, France. .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Current Address: Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, Coburg, Germany
| | - Olivia Doppelt-Azeroual
- Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Stephan A Mueller
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Current Address: Neuroproteomics, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martina Chovancová
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Benno Schwikowski
- Systems Biology Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J Bacteriol 2017; 199:JB.00086-17. [PMID: 28439033 DOI: 10.1128/jb.00086-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.
Collapse
|
49
|
James K, Cockell SJ, Zenkin N. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics. Methods 2017; 120:76-84. [PMID: 28434904 DOI: 10.1016/j.ymeth.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses.
Collapse
Affiliation(s)
- Katherine James
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK.
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, William Leech Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
50
|
Goodson JR, Klupt S, Zhang C, Straight P, Winkler WC. LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens. Nat Microbiol 2017; 2:17003. [PMID: 28191883 DOI: 10.1038/nmicrobiol.2017.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/04/2017] [Indexed: 01/22/2023]
Abstract
A valuable resource available in the search for new natural products is the diverse microbial life that spans the planet. A large subset of these microorganisms synthesize complex specialized metabolites exhibiting biomedically important activities. A limiting step to the characterization of these compounds is an elucidation of the genetic regulatory mechanisms that oversee their production. Although proteins that control transcription initiation of specialized metabolite gene clusters have been identified, those affecting transcription elongation have not been broadly investigated. In this study, we analysed the phylogenetic distribution of the large, widespread NusG family of transcription elongation proteins and found that it includes a cohesive outgroup of paralogues (herein coined LoaP), which are often positioned adjacent or within gene clusters for specialized metabolites. We established Bacillus amyloliquefaciens LoaP as a paradigm for this protein subgroup and showed that it regulated the transcriptional readthrough of termination sites located within two different antibiotic biosynthesis operons. Both of these antibiotics have been implicated in plant-protective activities, demonstrating that LoaP controls an important regulon of specialized metabolite genes for this microorganism. These data therefore reveal transcription elongation as a point of regulatory control for specialized metabolite pathways and introduce a subgroup of NusG proteins for this purpose.
Collapse
Affiliation(s)
- Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, The University of Maryland, 3112 Biosciences Research Building, College Park, Maryland 20742, USA
| | - Steven Klupt
- Department of Cell Biology and Molecular Genetics, The University of Maryland, 3112 Biosciences Research Building, College Park, Maryland 20742, USA
| | - Chengxi Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, TAMU 2128 - Rm 435, College Station, Texas 77843, USA
| | - Paul Straight
- Department of Biochemistry and Biophysics, Texas A&M University, TAMU 2128 - Rm 435, College Station, Texas 77843, USA
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, The University of Maryland, 3112 Biosciences Research Building, College Park, Maryland 20742, USA
| |
Collapse
|