1
|
Lan Y, Xu B, Xi Y, Luo Y, Guo X, Huang Z, Luo D, Zhu A, He P, Li C, Huang Q, Li Q. Accurate Detection of Multiple Tumor Mutations in Formalin-Fixed Paraffin-Embedded Tissues by Coupling Sequence Artifacts Elimination and Mutation Enrichment With MeltArray. J Transl Med 2024; 104:100300. [PMID: 38042496 DOI: 10.1016/j.labinv.2023.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are the primary source of DNA for companion diagnostics (CDx) of cancers. Degradation of FFPE tissue DNA and inherent tumor heterogeneity constitute serious challenges in current CDx assays. To address these limitations, we introduced sequence artifact elimination and mutation enrichment to MeltArray, a highly multiplexed PCR approach, to establish an integrated protocol that provides accuracy, ease of use, and rapidness. Using PIK3CA mutations as a model, we established a MeltArray protocol that could eliminate sequence artifacts completely and enrich mutations from 23.5- to 59.4-fold via a single-reaction pretreatment step comprising uracil-DNA-glycosylase excision and PCR clamping. The entire protocol could identify 13 PIK3CA hotspot mutations of 0.05% to 0.5% mutant allele fractions within 5 hours. Evaluation of 106 breast cancer and 40 matched normal FFPE tissue samples showed that all 47 PIK3CA mutant samples were from the cancer tissue, and no false-positive results were detected in the normal samples. Further evaluation of 105 colorectal and 40 matched normal FFPE tissue samples revealed that 11 PIK3CA mutants were solely from the cancer sample. The detection results of our protocol were consistent with those of the droplet digital PCR assays that underwent sequence artifact elimination. Of the 60 colorectal samples with next-generation sequencing results, the MeltArray protocol detected 2 additional mutant samples with low mutant allele fractions. We conclude that the new protocol provides an improved alternative to current CDx assays for detecting tumor mutations in FFPE tissue DNA.
Collapse
Affiliation(s)
- Yanping Lan
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Boheng Xu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yuxin Xi
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yi Luo
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxia Guo
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhibin Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Danjiao Luo
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Anqi Zhu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pujing He
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changxing Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiuying Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Heo DH, Kim I, Seo H, Kim SG, Kim M, Park J, Park H, Kang S, Kim J, Paik S, Hong SE. DEEPOMICS FFPE, a deep neural network model, identifies DNA sequencing artifacts from formalin fixed paraffin embedded tissue with high accuracy. Sci Rep 2024; 14:2559. [PMID: 38297116 PMCID: PMC10831091 DOI: 10.1038/s41598-024-53167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue specimens are routinely used in pathological diagnosis, but their large number of artifactual mutations complicate the evaluation of companion diagnostics and analysis of next-generation sequencing data. Identification of variants with low allele frequencies is challenging because existing FFPE filtering tools label all low-frequency variants as artifacts. To address this problem, we aimed to develop DEEPOMICS FFPE, an AI model that can classify a true variant from an artifact. Paired whole exome sequencing data from fresh frozen and FFPE samples from 24 tumors were obtained from public sources and used as training and validation sets at a ratio of 7:3. A deep neural network model with three hidden layers was trained with input features using outputs of the MuTect2 caller. Contributing features were identified using the SHapley Additive exPlanations algorithm and optimized based on training results. The performance of the final model (DEEPOMICS FFPE) was compared with those of existing models (MuTect filter, FFPolish, and SOBDetector) by using well-defined test datasets. We found 41 discriminating properties for FFPE artifacts. Optimization of property quantification improved the model performance. DEEPOMICS FFPE removed 99.6% of artifacts while maintaining 87.1% of true variants, with an F1-score of 88.3 in the entire dataset not used for training, which is significantly higher than those of existing tools. Its performance was maintained even for low-allele-fraction variants with a specificity of 0.995, suggesting that it can be used to identify subclonal variants. Different from existing methods, DEEPOMICS FFPE identified most of the sequencing artifacts in the FFPE samples while retaining more of true variants, including those of low allele frequencies. The newly developed tool DEEPOMICS FFPE may be useful in designing capture panels for personalized circulating tumor DNA assay and identifying candidate neoepitopes for personalized vaccine design. DEEPOMICS FFPE is freely available on the web ( http://deepomics.co.kr/ffpe ) for research.
Collapse
Affiliation(s)
- Dong-Hyuk Heo
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Inyoung Kim
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Heejae Seo
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seong-Gwang Kim
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Minji Kim
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Jiin Park
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hongsil Park
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seungmo Kang
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Juhee Kim
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Soonmyung Paik
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Seong-Eui Hong
- Theragen Bio Co., Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Andreeva TV, Malyarchuk AB, Soshkina AD, Dudko NA, Plotnikova MY, Rogaev EI. Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci Int Genet 2021; 54:102538. [PMID: 34265517 DOI: 10.1016/j.fsigen.2021.102538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Research on ancient and forensic DNA is related in many ways, and the two fields must deal with similar obstacles. Therefore, communication between these two communities has the potential to improve results in both research fields. Here, we present the insights gained in the ancient DNA community with regard to analyzing DNA from aged skeletal material and the potential use of the developed protocols in forensic work. We discuss the various steps, from choosing samples for DNA extraction to deciding between classical PCR amplification and massively parallel sequencing approaches. Based on the progress made in ancient DNA analyses combined with the requirements of forensic work, we suggest that there is substantial potential for incorporating ancient DNA approaches into forensic protocols, a process that has already begun to a considerable extent. However, taking full advantage of the experiences gained from ancient DNA work will require comparative studies by the forensic DNA community to tailor the methods developed for ancient samples to the specific needs of forensic studies and case work. If successful, in our view, the benefits for both communities would be considerable.
Collapse
Affiliation(s)
- Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Jiri Sneberger
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Department of the History of the Middle Ages of Museum of West Bohemia, Kopeckeho sady 2, Pilsen 30100, Czech Republic; Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague 18086, Czech Republic
| | - Martin Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Biologicals s.r.o., Sramkova 315, Ricany 25101, Czech Republic
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7 17000, Czech Republic; Institute of Legal Medicine, Bulovka Hospital, Prague, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
5
|
Engineered viral DNA polymerase with enhanced DNA amplification capacity: a proof-of-concept of isothermal amplification of damaged DNA. Sci Rep 2020; 10:15046. [PMID: 32929102 PMCID: PMC7490695 DOI: 10.1038/s41598-020-71773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
The development of whole genome amplification (WGA) and related methods, coupled with the dramatic growth of sequencing capacities, has changed the paradigm of genomic and genetic analyses. This has led to a continual requirement of improved DNA amplification protocols and the elaboration of new tailored methods. As key elements in WGA, identification and engineering of novel, faithful and processive DNA polymerases is a driving force in the field. We have engineered the B-family DNA polymerase of virus Bam35 with a C-terminal fusion of DNA-binding motifs. The new protein, named B35-HhH, shows faithful DNA replication in the presence of magnesium or an optimised combination of magnesium and manganese divalent cofactors, which enhances the replication of damaged DNA substrates. Overall, the newly generated variant displays improved amplification performance, sensitivity, translesion synthesis and resistance to salt, which are of great interest for several applications of isothermal DNA amplification. Further, rolling-circle amplification of abasic site-containing minicircles provides a proof-of-concept for using B35-HhH for processive amplification of damaged DNA samples.
Collapse
|
6
|
Mathieson W, Thomas GA. Why Formalin-fixed, Paraffin-embedded Biospecimens Must Be Used in Genomic Medicine: An Evidence-based Review and Conclusion. J Histochem Cytochem 2020; 68:543-552. [PMID: 32697619 PMCID: PMC7400666 DOI: 10.1369/0022155420945050] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fresh-frozen tissue is the “gold standard” biospecimen type for next-generation sequencing (NGS). However, collecting frozen tissue is usually not feasible because clinical workflows deliver formalin-fixed, paraffin-embedded (FFPE) tissue blocks. Some clinicians and researchers are reticent to embrace the use of FFPE tissue for NGS because FFPE tissue can yield low quantities of degraded DNA, containing formalin-induced mutations. We describe the process by which formalin-induced deamination can lead to artifactual cytosine (C) to thymine (T) and guanine (G) to adenine (A) (C:G > T:A) mutation calls and perform a literature review of 17 publications that compare NGS data from patient-matched fresh-frozen and FFPE tissue blocks. We conclude that although it is indeed true that sequencing data from FFPE tissue can be poorer than those from frozen tissue, any differences occur at an inconsequential magnitude, and FFPE biospecimens can be used in genomic medicine with confidence:
Collapse
|
7
|
Barlow A, Hartmann S, Gonzalez J, Hofreiter M, Paijmans JLA. Consensify: A Method for Generating Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes (Basel) 2020; 11:E50. [PMID: 31906474 PMCID: PMC7017230 DOI: 10.3390/genes11010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.
Collapse
|
8
|
Lan VTT, Trang VL, Ngan NT, Son HV, Toan NL. An Internal Control for Evaluating Bisulfite Conversion in the Analysis of Short Stature Homeobox 2 Methylation in Lung Cancer. Asian Pac J Cancer Prev 2019; 20:2435-2443. [PMID: 31450918 PMCID: PMC6852808 DOI: 10.31557/apjcp.2019.20.8.2435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: The methylation status is considered as powerful diagnostic, prognostic, and predictive biomarkers. However, the limited DNA amount and conversion efficiency after bisulfite treatment are considerable hindrances in quantitative methylation analysis. In this study, we designed an artificial internal control (IC) system that contained the cytosine-free fragment (CFF) following CpG sequences of the SHOX2 promoter whose methylation status has been described as a valuable biomarker of lung cancer. Its performance in quantifying DNA recovery and bisulfite conversion efficiency as well as in detecting false-positive SHOX2 methylation was determined on samples from lung cancer patients. Material and Methods: The IC system is composed of two pConIC and pUnIC plasmids that both contain a cytosine-free (CF) sequence derived from the CFF and the CpG containing SHOX2 sequences. They are identical in sequence, except that in the ConIC insert, all cytosines have been converted into thymines. Thus, the ConIC can be used as calibrator of 100% bisulfite conversion efficiency, while the UnIC is the indicator in order to evaluate the DNA recovery, bisulfite conversion efficiency of the SHOX2 promoter sequence by quantitative real time PCR. Results: The copy number of the target sequences impacted on both DNA recovery rates and bisulfite conversion efficiency. An amount of 0.005 ng pUnIC (106 copies) showed recovery rate of 18%, similar to that of pConIC, and a bisulfite conversion efficiency of the SHOX2 reaching 98.7%. On the contrary, higher copy number of pUnIC showed incomplete conversion (<85%) and over recovery (~42%). Using this calibrator/indicator couple, we were able to detect false-positive SHOX2 methylation (3.77% instead of 0.03%) due to incomplete bisulfite conversion.Conclusion: Our results proposed a customizable internal control using the ConIC/UnIC as calibrator/indicator to quantify simultaneously and accurately the DNA recovery and bisulfite conversion efficiencies of individual sequence as well as whole genome in methylation assays, thus promoting the validation of standardized clinical DNA methylation biomarker values to progress toward clinical applications
Collapse
Affiliation(s)
| | - Vu Lan Trang
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Paris, France
| | | | | | - Nguyen Linh Toan
- Department of Pathophysiology, Medical University, Ha Dong, Vietnam
| |
Collapse
|
9
|
Mathieson W, Thomas G. Using FFPE Tissue in Genomic Analyses: Advantages, Disadvantages and the Role of Biospecimen Science. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00194-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yagüe-Capilla M, García-Caballero D, Aguilar-Pereyra F, Castillo-Acosta VM, Ruiz-Pérez LM, Vidal AE, González-Pacanowska D. Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei. Free Radic Biol Med 2019; 131:59-71. [PMID: 30472364 DOI: 10.1016/j.freeradbiomed.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Daniel García-Caballero
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Fernando Aguilar-Pereyra
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Luis M Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain.
| |
Collapse
|
11
|
|
12
|
Carøe C, Gopalakrishnan S, Vinner L, Mak SST, Sinding MHS, Samaniego JA, Wales N, Sicheritz‐Pontén T, Gilbert MTP. Single‐tube library preparation for degraded
DNA. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12871] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Carøe
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
- Department of Bio and Health InformaticsCenter for Biological Sequence AnalysisTechnical University of Denmark Lyngby Denmark
| | | | - Lasse Vinner
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
| | - Sarah S. T. Mak
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
| | - Mikkel Holger S. Sinding
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
- Natural History MuseumUniversity of Oslo Blindern Oslo Norway
| | - José A. Samaniego
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
| | - Nathan Wales
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
| | - Thomas Sicheritz‐Pontén
- Department of Bio and Health InformaticsCenter for Biological Sequence AnalysisTechnical University of Denmark Lyngby Denmark
| | - M. Thomas P. Gilbert
- Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen Denmark
- Trace and Environmental DNA LaboratoryDepartment of Environment and AgricultureCurtin University Perth WA Australia
- NTNU University Museum Trondheim Norway
| |
Collapse
|
13
|
Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL, Burbano HA, Orlando L, Krause J. A Robust Framework for Microbial Archaeology. Annu Rev Genomics Hum Genet 2017; 18:321-356. [PMID: 28460196 PMCID: PMC5581243 DOI: 10.1146/annurev-genom-091416-035526] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.
Collapse
Affiliation(s)
- Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| | - Allison Mann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma 73019
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| | - Clemens L Weiß
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Hernán A Burbano
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, 1350 Copenhagen K, Denmark
- Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université Toulouse III - Paul Sabatier, Toulouse 31000, France
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany;
| |
Collapse
|
14
|
Fattorini P, Previderé C, Carboni I, Marrubini G, Sorçaburu-Cigliero S, Grignani P, Bertoglio B, Vatta P, Ricci U. Performance of the ForenSeqTMDNA Signature Prep kit on highly degraded samples. Electrophoresis 2017; 38:1163-1174. [DOI: 10.1002/elps.201600290] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Paolo Fattorini
- Department of Medicine; Surgery and Health; University of Trieste; Trieste Italy
| | - Carlo Previderé
- Department of Public Health; Experimental and Forensic Medicine; Section of Legal Medicine and Forensic Sciences; University of Pavia; Pavia Italy
| | | | | | | | - Pierangela Grignani
- Department of Public Health; Experimental and Forensic Medicine; Section of Legal Medicine and Forensic Sciences; University of Pavia; Pavia Italy
| | - Barbara Bertoglio
- Department of Public Health; Experimental and Forensic Medicine; Section of Legal Medicine and Forensic Sciences; University of Pavia; Pavia Italy
| | - Paolo Vatta
- Scuola Internazionale Superiore di Studi Avanzati (SISSA); Functional and Structural Genomics sector; Trieste Italy
| | - Ugo Ricci
- SOD Diagnostica Genetica, A.O-U Careggi; Firenze Italy
| |
Collapse
|
15
|
Yeates DK, Zwick A, Mikheyev AS. Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections. CURRENT OPINION IN INSECT SCIENCE 2016; 18:83-88. [PMID: 27939715 DOI: 10.1016/j.cois.2016.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 05/25/2023]
Abstract
Museums and herbaria represent vast repositories of biological material. Until recently, working with these collections has been difficult, due to the poor condition of historical DNA. However, recent advances in next-generation sequencing technology, and subsequent development of techniques for preparing and sequencing historical DNA, have recently made working with collection specimens an attractive option. Here we describe the unique technical challenges of working with collection specimens, and innovative molecular methods developed to tackle them. We also highlight possible applications of collection specimens, for taxonomy, ecology and evolution. The application of next-generation sequencing methods to museum and herbaria collections is still in its infancy. However, by giving researchers access to billions of specimens across time and space, it holds considerable promise for generating future discoveries across many fields.
Collapse
Affiliation(s)
- David K Yeates
- Australian National Insect Collection, CSIRO National Research Collections Australia, PO Box 1700, Canberra, ACT 2601, Australia.
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, PO Box 1700, Canberra, ACT 2601, Australia
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun 904-0412, Japan
| |
Collapse
|
16
|
Ozga AT, Nieves‐Colón MA, Honap TP, Sankaranarayanan K, Hofman CA, Milner GR, Lewis CM, Stone AC, Warinner C. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:220-8. [PMID: 26989998 PMCID: PMC4866892 DOI: 10.1002/ajpa.22960] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. MATERIALS AND METHODS Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. RESULTS Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. DISCUSSION Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew T. Ozga
- Department of AnthropologyUniversity of OklahomaNormanOK73019
| | | | - Tanvi P. Honap
- School of Life SciencesArizona State UniversityTempeAZ85287
| | | | | | - George R. Milner
- Department of AnthropologyPennsylvania State University, University ParkPA16802
| | - Cecil M. Lewis
- Department of AnthropologyUniversity of OklahomaNormanOK73019
| | - Anne C. Stone
- School of Human Evolution and Social ChangeArizona State UniversityTempeAZ85287
- Center for Bioarchaeological Research, Arizona State UniversityTempeAZ85287
- Institute of Human Origins, Arizona State UniversityTempeAZ85287
| | - Christina Warinner
- Department of AnthropologyUniversity of OklahomaNormanOK73019
- Institute of Evolutionary Medicine, University of Zurich8057 ZurichSwitzerland
| |
Collapse
|
17
|
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 2015; 24 Pt 3:185-96. [DOI: 10.1016/j.margen.2015.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
|
18
|
Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet 2015; 16:395-408. [PMID: 26055157 DOI: 10.1038/nrg3935] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research involving ancient DNA (aDNA) has experienced a true technological revolution in recent years through advances in the recovery of aDNA and, particularly, through applications of high-throughput sequencing. Formerly restricted to the analysis of only limited amounts of genetic information, aDNA studies have now progressed to whole-genome sequencing for an increasing number of ancient individuals and extinct species, as well as to epigenomic characterization. Such advances have enabled the sequencing of specimens of up to 1 million years old, which, owing to their extensive DNA damage and contamination, were previously not amenable to genetic analyses. In this Review, we discuss these varied technical challenges and solutions for sequencing ancient genomes and epigenomes.
Collapse
Affiliation(s)
- Ludovic Orlando
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark. [2] Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, 37 allées Jules Guesde, 31000 Toulouse, France
| | - M Thomas P Gilbert
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark. [2] Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark
| |
Collapse
|
19
|
Xu C, Dong W, Shi S, Cheng T, Li C, Liu Y, Wu P, Wu H, Gao P, Zhou S. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques. Mol Ecol Resour 2015; 15:1366-74. [DOI: 10.1111/1755-0998.12413] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 03/21/2015] [Accepted: 04/04/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Shuo Shi
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
- College of Life Science; Hebei Normal University; Shijiazhuang 050024 China
| | - Tao Cheng
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Changhao Li
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Ping Wu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Hongkun Wu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Peng Gao
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| |
Collapse
|
20
|
Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernández R, da Fonseca R, Ginolhac A, Hansen AJ, Jónsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert MTP, Willerslev E, Orlando L. Ancient genomics. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130387. [PMID: 25487338 PMCID: PMC4275894 DOI: 10.1098/rstb.2013.0387] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ross Barnett
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval Velasco
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Do H, Dobrovic A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clin Chem 2015; 61:64-71. [DOI: 10.1373/clinchem.2014.223040] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
BACKGROUND
Precision medicine is dependent on identifying actionable mutations in tumors. Accurate detection of mutations is often problematic in formalin-fixed paraffin-embedded (FFPE) tissues. DNA extracted from formalin-fixed tissues is fragmented and also contains DNA lesions that are the sources of sequence artifacts. Sequence artifacts can be difficult to distinguish from true mutations, especially in the context of tumor heterogeneity, and are an increasing interpretive problem in this era of massively parallel sequencing. Understanding of the sources of sequence artifacts in FFPE tissues and implementation of preventative strategies are critical to improve the accurate detection of actionable mutations.
CONTENT
This mini-review focuses on DNA template lesions in FFPE tissues as the source of sequence artifacts in molecular analysis. In particular, fragmentation, base modification (including uracil and thymine deriving from cytosine deamination), and abasic sites are discussed as indirect or direct sources of sequence artifacts. We discuss strategies that can be implemented to minimize sequence artifacts and to distinguish true mutations from sequence artifacts. These strategies are applicable for the detection of actionable mutations in both single amplicon and massively parallel amplicon sequencing approaches.
SUMMARY
Because FFPE tissues are usually the only available material for DNA analysis, it is important to maximize the accurate informational content from FFPE DNA. Careful consideration of each step in the work flow is needed to minimize sequence artifacts. In addition, validation of actionable mutations either by appropriate experimental design or by orthogonal methods should be considered.
Collapse
Affiliation(s)
- Hongdo Do
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Alexander Dobrovic
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
22
|
Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol 2014; 79:4-20. [PMID: 25532800 DOI: 10.1016/j.jhevol.2014.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/06/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.
Collapse
|
23
|
Feuillie C, Merheb MM, Gillet B, Montagnac G, Daniel I, Hänni C. Detection of DNA sequences refractory to PCR amplification using a biophysical SERRS assay (Surface Enhanced Resonant Raman Spectroscopy). PLoS One 2014; 9:e114148. [PMID: 25502338 PMCID: PMC4264738 DOI: 10.1371/journal.pone.0114148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
The analysis of ancient or processed DNA samples is often a great challenge, because traditional Polymerase Chain Reaction – based amplification is impeded by DNA damage. Blocking lesions such as abasic sites are known to block the bypass of DNA polymerases, thus stopping primer elongation. In the present work, we applied the SERRS-hybridization assay, a fully non-enzymatic method, to the detection of DNA refractory to PCR amplification. This method combines specific hybridization with detection by Surface Enhanced Resonant Raman Scattering (SERRS). It allows the detection of a series of double-stranded DNA molecules containing a varying number of abasic sites on both strands, when PCR failed to detect the most degraded sequences. Our SERRS approach can quickly detect DNA molecules without any need for DNA repair. This assay could be applied as a pre-requisite analysis prior to enzymatic reparation or amplification. A whole new set of samples, both forensic and archaeological, could then deliver information that was not yet available due to a high degree of DNA damage.
Collapse
Affiliation(s)
- Cécile Feuillie
- Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, UMR 5276, ENS de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
- * E-mail:
| | - Maxime M. Merheb
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
- Plateforme nationale de Paléogénétique PALGENE, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
| | - Gilles Montagnac
- Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, UMR 5276, ENS de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
| | - Isabelle Daniel
- Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, UMR 5276, ENS de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
| | - Catherine Hänni
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
- Plateforme nationale de Paléogénétique PALGENE, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d′Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
24
|
Fattorini P, Previderè C, Sorçaburu-Cigliero S, Marrubini G, Alù M, Barbaro AM, Carnevali E, Carracedo A, Casarino L, Consoloni L, Corato S, Domenici R, Fabbri M, Giardina E, Grignani P, Baldassarra SL, Moratti M, Nicolin V, Pelotti S, Piccinini A, Pitacco P, Plizza L, Resta N, Ricci U, Robino C, Salvaderi L, Scarnicci F, Schneider PM, Seidita G, Trizzino L, Turchi C, Turrina S, Vatta P, Vecchiotti C, Verzeletti A, De Stefano F. The molecular characterization of a depurinated trial DNA sample can be a model to understand the reliability of the results in forensic genetics. Electrophoresis 2014; 35:3134-44. [PMID: 25176610 DOI: 10.1002/elps.201400141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
Abstract
The role of DNA damage in PCR processivity/fidelity is a relevant topic in molecular investigation of aged/forensic samples. In order to reproduce one of the most common lesions occurring in postmortem tissues, a new protocol based on aqueous hydrolysis of the DNA was developed in vitro. Twenty-five forensic laboratories were then provided with 3.0 μg of a trial sample (TS) exhibiting, in mean, the loss of 1 base of 20, and a molecular weight below 300 bp. Each participating laboratory could freely choose any combination of methods, leading to the quantification and to the definition of the STR profile of the TS, through the documentation of each step of the analytical approaches selected. The results of the TS quantification by qPCR showed significant differences in the amount of DNA recorded by the participating laboratories using different commercial kits. These data show that only DNA quantification "relative" to the used kit (probe) is possible, being the "absolute" amount of DNA inversely related to the length of the target region (r(2) = 0.891). In addition, our results indicate that the absence of a shared stable and certified reference quantitative standard is also likely involved. STR profiling was carried out selecting five different commercial kits and amplifying the TS for a total number of 212 multiplex PCRs, thus representing an interesting overview of the different analytical protocols used by the participating laboratories. Nine laboratories decided to characterize the TS using a single kit, with a number of amplifications varying from 2 to 12, obtaining only partial STR profiles. Most of the participants determined partial or full profiles using a combination of two or more kits, and a number of amplifications varying from 2 to 27. The performance of each laboratory was described in terms of number of correctly characterized loci, dropped-out markers, unreliable genotypes, and incorrect results. The incidence of unreliable and incorrect genotypes was found to be higher for participants carrying out a limited number of amplifications, insufficient to define the correct genotypes from damaged DNA samples such as the TS. Finally, from a dataset containing about 4500 amplicons, the frequency of PCR artifacts (allele dropout, allele drop-in, and allelic imbalance) was calculated for each kit showing that the new chemistry of the kits is not able to overcome the concern of template-related factors. The results of this collaborative exercise emphasize the advantages of using a standardized degraded DNA sample in the definition of which analytical parameters are critical for the outcome of the STR profiles.
Collapse
Affiliation(s)
- Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy*
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Library construction for ancient genomics: single strand or double strand? Biotechniques 2014; 56:289-90, 292-6, 298, passim. [PMID: 24924389 DOI: 10.2144/000114176] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/27/2014] [Indexed: 11/23/2022] Open
Abstract
A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts.
Collapse
|
26
|
Bi K, Linderoth T, Vanderpool D, Good JM, Nielsen R, Moritz C. Unlocking the vault: next-generation museum population genomics. Mol Ecol 2013; 22:6018-32. [PMID: 24118668 PMCID: PMC4134471 DOI: 10.1111/mec.12516] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome-scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11,000 exons (~4 Mb) from early 20th-century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate-related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low-medium coverage data, we applied a recently developed probabilistic method to call single-nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection-based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre-existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.
Collapse
Affiliation(s)
- Ke Bi
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
| | - Tyler Linderoth
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
- Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
| | - Craig Moritz
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
- Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, USA
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
27
|
Abstract
Under favorable conditions DNA can survive for thousands of years in the remains of dead organisms. The DNA extracted from such remains is invariably degraded to a small average size by processes that at least partly involve depurination. It also contains large amounts of deaminated cytosine residues that are accumulated toward the ends of the molecules, as well as several other lesions that are less well characterized.
Collapse
Affiliation(s)
- Jesse Dabney
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
28
|
Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem 2013; 59:1376-83. [PMID: 23649127 DOI: 10.1373/clinchem.2012.202390] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) tissues are routinely used for detecting mutational biomarkers in patients with cancer. A previous intractable challenge with FFPE DNA in genetic testing has been the high number of artifactual single-nucleotide changes (SNCs), particularly for the detection of low-level mutations. Pretreatment of FFPE DNA with uracil-DNA glycosylase (UDG) can markedly reduce these C:G>T:A SNCs with a small panel of amplicons. This procedure has implications for massively parallel sequencing approaches to mutation detection from DNA. We investigated whether sequence artifacts were problematic in amplicon-based massively parallel sequencing and what effect UDG pretreatment had on reducing these artifacts. METHODS We amplified selected amplicons from lung cancer FFPE DNAs using the TruSeq Cancer Panel. SNCs occurring at a frequency <10% were considered most likely to represent sequence artifacts and were enumerated for both UDG-treated and -untreated DNAs. RESULTS Massively parallel sequencing of FFPE DNA samples showed multiple SNCs, predominantly C:G>T:A changes, with a significant proportion occurring above the background sequencing error (defined as 1%). UDG pretreatment markedly reduced C:G>T:A SNCs without affecting the detection of true somatic mutations. However, C:G>T:A changes within CpG dinucleotides were often resistant to the UDG treatment as a consequence of 5-methyl cytosine being deaminated to thymine rather than uracil. CONCLUSIONS UDG pretreatment greatly facilitates the accurate discrimination of mutations in FFPE samples by use of amplicon-based approaches. This is particularly important when working with samples with low tumor purity or for the assessment of mutational heterogeneity in tumors.
Collapse
Affiliation(s)
- Hongdo Do
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget 2012; 3:546-58. [PMID: 22643842 PMCID: PMC3388184 DOI: 10.18632/oncotarget.503] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Non-reproducible sequence artefacts are frequently detected in DNA from formalin-fixed and paraffin-embedded (FFPE) tissues. However, no rational strategy has been developed for reduction of sequence artefacts from FFPE DNA as the underlying causes of the artefacts are poorly understood. As cytosine deamination to uracil is a common form of DNA damage in ancient DNA, we set out to examine whether treatment of FFPE DNA with uracil-DNA glycosylase (UDG) would lead to the reduction of C>T (and G>A) sequence artefacts. Heteroduplex formation in high resolution melting (HRM)-based assays was used for the detection of sequence variants in FFPE DNA samples. A set of samples that gave false positive HRM results for screening of the E17K mutation in exon 4 of the AKT1 gene were chosen for analysis. Sequencing of these samples showed multiple non-reproducible C:G>T:A artefacts. Treatment of the FFPE DNA with UDG prior to PCR amplification led to a very marked reduction of the sequence artefacts as indicated by both HRM and sequencing analysis. Similar results were shown for the BRAFV600 region in the same sample set and EGFR exon 19 in another sample set. UDG treatment specifically suppressed the formation of artefacts in FFPE DNA as it did not affect the detection of true KRAS codon 12 and true EGFR exon 19 and 20 mutations. We conclude that uracil in FFPE DNA leads to a significant proportion of sequence artefacts. These can be minimised by a simple UDG pre-treatment, which can be readily carried out in the same tube as the PCR, immediately prior to commencing thermal cycling. HRM is a convenient way of monitoring both the degree of damage and the effectiveness of the UDG treatment. These findings have immediate and important implications for cancer diagnostics where FFPE DNA is used as the primary genetic material for mutational studies guiding personalised medicine strategies and where simple effective strategies to detect mutations are required.
Collapse
Affiliation(s)
- Hongdo Do
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | |
Collapse
|
30
|
Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 2012; 52:87-94. [PMID: 22313406 DOI: 10.2144/000113809] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022] Open
Abstract
High-throughput sequencing technologies frequently necessitate the use of PCR for sequencing library amplification. PCR is a sometimes enigmatic process and is known to introduce biases. Here we perform a simple amplification-sequencing assay using 10 commercially available polymerase-buffer systems to amplify libraries prepared from both modern and ancient DNA. We compare the performance of the polymerases with respect to a previously uncharacterized template length bias, as well as GC-content bias, and find that simply avoiding certain polymerase can dramatically decrease the occurrence of both. For amplification of ancient DNA, we found that some commonly used polymerases strongly bias against amplification of endogenous DNA in favor of GC-rich microbial contamination, in our case reducing the fraction of endogenous sequences to almost half.
Collapse
|
31
|
Wales N, Romero-Navarro JA, Cappellini E, Gilbert MTP. Choosing the best plant for the job: a cost-effective assay to prescreen ancient plant remains destined for shotgun sequencing. PLoS One 2012; 7:e45644. [PMID: 23029156 PMCID: PMC3447772 DOI: 10.1371/journal.pone.0045644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/20/2012] [Indexed: 01/01/2023] Open
Abstract
DNA extracted from ancient plant remains almost always contains a mixture of endogenous (that is, derived from the plant) and exogenous (derived from other sources) DNA. The exogenous 'contaminant' DNA, chiefly derived from microorganisms, presents significant problems for shotgun sequencing. In some samples, more than 90% of the recovered sequences are exogenous, providing limited data relevant to the sample. However, other samples have far less contamination and subsequently yield much more useful data via shotgun sequencing. Given the investment required for high-throughput sequencing, whenever multiple samples are available, it is most economical to sequence the least contaminated sample. We present an assay based on quantitative real-time PCR which estimates the relative amounts of fungal and bacterial DNA in a sample in comparison to the endogenous plant DNA. Given a collection of contextually-similar ancient plant samples, this low cost assay aids in selecting the best sample for shotgun sequencing.
Collapse
Affiliation(s)
- Nathan Wales
- Department of Anthropology, University of Connecticut, Storrs,CT, USA.
| | | | | | | |
Collapse
|
32
|
Enzyme-free detection and quantification of double-stranded nucleic acids. Anal Bioanal Chem 2012; 404:415-22. [PMID: 22695500 DOI: 10.1007/s00216-012-6133-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.
Collapse
|
33
|
Ginolhac A, Vilstrup J, Stenderup J, Rasmussen M, Stiller M, Shapiro B, Zazula G, Froese D, Steinmann KE, Thompson JF, Al-Rasheid KAS, Gilbert TMP, Willerslev E, Orlando L. Improving the performance of true single molecule sequencing for ancient DNA. BMC Genomics 2012; 13:177. [PMID: 22574620 PMCID: PMC3430569 DOI: 10.1186/1471-2164-13-177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Second-generation sequencing technologies have revolutionized our ability to recover genetic information from the past, allowing the characterization of the first complete genomes from past individuals and extinct species. Recently, third generation Helicos sequencing platforms, which perform true Single-Molecule DNA Sequencing (tSMS), have shown great potential for sequencing DNA molecules from Pleistocene fossils. Here, we aim at improving even further the performance of tSMS for ancient DNA by testing two novel tSMS template preparation methods for Pleistocene bone fossils, namely oligonucleotide spiking and treatment with DNA phosphatase. RESULTS We found that a significantly larger fraction of the horse genome could be covered following oligonucleotide spiking however not reproducibly and at the cost of extra post-sequencing filtering procedures and skewed %GC content. In contrast, we showed that treating ancient DNA extracts with DNA phosphatase improved the amount of endogenous sequence information recovered per sequencing channel by up to 3.3-fold, while still providing molecular signatures of endogenous ancient DNA damage, including cytosine deamination and fragmentation by depurination. Additionally, we confirmed the existence of molecular preservation niches in large bone crystals from which DNA could be preferentially extracted. CONCLUSIONS We propose DNA phosphatase treatment as a mechanism to increase sequence coverage of ancient genomes when using Helicos tSMS as a sequencing platform. Together with mild denaturation temperatures that favor access to endogenous ancient templates over modern DNA contaminants, this simple preparation procedure can improve overall Helicos tSMS performance when damaged DNA templates are targeted.
Collapse
Affiliation(s)
- Aurelien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen University, 5-7 Øster Voldgade, København, 1350, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Next-generation sequencing offers new insights into DNA degradation. Trends Biotechnol 2012; 30:364-8. [PMID: 22516743 DOI: 10.1016/j.tibtech.2012.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022]
Abstract
The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested.
Collapse
|
35
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
36
|
Abstract
PCR amplification of DNA is routine in modern molecular biology. However, the application of PCR to ancient DNA (aDNA) experiments often requires significant modification to standard protocols. The degraded nature of most aDNA fragments requires targeting shorter fragments, performing replicate amplifications, incorporating multiple negative controls, combating PCR inhibition, using specific DNA polymerases to deal with damaged bases, working in a separate aDNA facility, and modifying the PCR recipe to deal with damaged and low copy-number target DNA. In this chapter, we describe how and why these procedures are implemented, discuss aDNA-specific troubleshooting methodology, and suggest modifications to commercial cloning and sequencing procedures to reduce the expense of PCR product cloning.
Collapse
Affiliation(s)
- Tara L Fulton
- Department of Biology, The Pennsylvania State University, 320 Mueller Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
37
|
Abstract
Advances in sequencing technologies have dramatically changed the field of ancient DNA (aDNA). It is now possible to generate an enormous quantity of aDNA sequence data both rapidly and inexpensively. As aDNA sequences are generally short in length, damaged, and at low copy number relative to coextracted environmental DNA, high-throughput approaches offer a tremendous advantage over traditional sequencing approaches in that they enable a complete characterization of an aDNA extract. However, the particular qualities of aDNA also present specific limitations that require careful consideration in data analysis. For example, results of high-throughout analyses of aDNA libraries may include chimeric sequences, sequencing error and artifacts, damage, and alignment ambiguities due to the short read lengths. Here, I describe typical primary data analysis workflows for high-throughput aDNA sequencing experiments, including (1) separation of individual samples in multiplex experiments; (2) removal of protocol-specific library artifacts; (3) trimming adapter sequences and merging paired-end sequencing data; (4) base quality score filtering or quality score propagation during data analysis; (5) identification of endogenous molecules from an environmental background; (6) quantification of contamination from other DNA sources; and (7) removal of clonal amplification products or the compilation of a consensus from clonal amplification products, and their exploitation for estimation of library complexity.
Collapse
Affiliation(s)
- Martin Kircher
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.
| |
Collapse
|
38
|
Abstract
Next-generation sequencing (NGS) has revolutionized ancient DNA research, especially when combined with high-throughput target enrichment methods. However, attaining high sequencing depth and accuracy from samples often remains problematic due to the damaged state of ancient DNA, in particular the extremely low copy number of ancient DNA and the abundance of uracil residues derived from cytosine deamination that lead to miscoding errors. It is therefore critical to use a highly efficient procedure for conversion of a raw DNA extract into an adaptor-ligated sequencing library, and equally important to reduce errors from uracil residues. We present a protocol for NGS library preparation that allows highly efficient conversion of DNA fragments into an adaptor-ligated form. The protocol incorporates an option to remove the vast majority of uracil miscoding lesions as part of the library preparation process. The procedure requires only two spin column purification steps and no gel purification or bead handling. Starting from an aliquot of DNA extract, a finished, highly amplified library can be generated in 5 h, or under 3 h if uracil removal is not required.
Collapse
Affiliation(s)
- Adrian W Briggs
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
39
|
Knapp M, Stiller M, Meyer M. Generating barcoded libraries for multiplex high-throughput sequencing. Methods Mol Biol 2012; 840:155-170. [PMID: 22237533 DOI: 10.1007/978-1-61779-516-9_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular barcoding is an essential tool to use the high throughput of next generation sequencing platforms optimally in studies involving more than one sample. Various barcoding strategies allow for the incorporation of short recognition sequences (barcodes) into sequencing libraries, either by ligation or polymerase chain reaction (PCR). Here, we present two approaches optimized for generating barcoded sequencing libraries from low copy number extracts and amplification products typical of ancient DNA studies.
Collapse
Affiliation(s)
- Michael Knapp
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Anatomy and Structural Biology, University of Otago, Dunedin 9016, New Zealand.
| | | | | |
Collapse
|
40
|
Staats M, Cuenca A, Richardson JE, Vrielink-van Ginkel R, Petersen G, Seberg O, Bakker FT. DNA damage in plant herbarium tissue. PLoS One 2011; 6:e28448. [PMID: 22163018 PMCID: PMC3230621 DOI: 10.1371/journal.pone.0028448] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022] Open
Abstract
Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.
Collapse
Affiliation(s)
- Martijn Staats
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Argelia Cuenca
- Laboratory of Molecular Systematics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - James E. Richardson
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- Laboratorio de Botánica y Sistemática, Universidad de Los Andes, Bogotá, Colombia
| | | | - Gitte Petersen
- Laboratory of Molecular Systematics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ole Seberg
- Laboratory of Molecular Systematics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Freek T. Bakker
- Biosystematics Group, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
Molak M, Ho SYW. Evaluating the impact of post-mortem damage in ancient DNA: a theoretical approach. J Mol Evol 2011; 73:244-55. [PMID: 22101653 DOI: 10.1007/s00239-011-9474-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
Abstract
The growth of ancient DNA research has offered exceptional opportunities and raised great expectations, but has also presented some considerable challenges. One of the ongoing issues is the impact of post-mortem damage in DNA molecules. Nucleotide alterations and DNA strand breakages lead to a significant decrease in the quantity of DNA molecules of useful length in a sample and to errors in the final DNA sequences obtained. We present a model of age-dependent DNA damage and quantify the influence of that damage on subsequent steps in the sequencing process, including the polymerase chain reaction and cloning. Calculations using our model show that deposition conditions, rather than the age of a sample, have the greatest influence on the level of DNA damage. In turn, this affects the probability of interpreting an erroneous (possessing damage-derived mutations) sequence as being authentic. We also evaluated the effect of post-mortem damage on real data sets using a Bayesian phylogenetic approach. According to our study, damage-derived sequence alterations appear to have little impact on the final DNA sequences. This indicates the effectiveness of current methods for sequence authentication and validation.
Collapse
Affiliation(s)
- Martyna Molak
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
42
|
Fattorini P, Marrubini G, Sorçaburu-Cigliero S, Pitacco P, Grignani P, Previderè C. CE analysis and molecular characterisation of depurinated DNA samples. Electrophoresis 2011; 32:3042-52. [PMID: 22002769 DOI: 10.1002/elps.201100130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 11/08/2022]
Abstract
A DNA sample was partially degraded by scalar heat-acid treatments to study the extent of apurinic-apyrimidinic (A-P) lesions produced along the molecule. A CE-UV method allowed us to measure the rate of depurination at pH 5.0 and 70°C which was calculated to be 5.41×10(-6) s(-1) for adenine and 6.27×10(-6) s(-1) for guanine. CE identified depurination on treated samples when it occurred with a loss of >4% of the basic moieties. The molecular features of the A-P enriched samples were investigated by using molecular assays (agarose gel electrophoresis, UV spectrophotometry and quantitative PCR) and the consistency of the results of the STR typing were compared with the degree of depurination of the PCR template. The treated DNA samples showed molecular features such as fragmentation, altered OD(260) /OD(280) ratios and decreased ability of the quantitative PCR to synthesise the human target, related to the severity of depurination. A satisfactory correlation between the degree of damage and the amount of residual PCR-sensitive target sequences was also demonstrated (r(2) =0.9717). The conventional and mini-STR typing of the samples showed that the genetic outcome was influenced by a depurination damage that exceeded 4% when locus drop-outs and artefactual PCR results were evident. As the success of STR typing depends on the integrity of the DNA recovered from the samples, the CE-UV, physical and molecular assays described here are proposed as a set of useful methods in the analysis of certain forensic and clinical samples, for a critical evaluation of the outcome of the genetic testing.
Collapse
Affiliation(s)
- Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Italy.
| | | | | | | | | | | |
Collapse
|