1
|
Vascon F, De Felice S, Gasparotto M, Huber ST, Catalano C, Chinellato M, Mezzetti R, Grinzato A, Filippini F, Maso L, Jakobi AJ, Cendron L. Snapshots of Pseudomonas aeruginosa SOS response reveal structural requisites for LexA autoproteolysis. iScience 2025; 28:111726. [PMID: 39898034 PMCID: PMC11787620 DOI: 10.1016/j.isci.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Antimicrobial resistance poses a severe threat to human health and Pseudomonas aeruginosa stands out among the pathogens responsible for this emergency. The SOS response to DNA damage is crucial in bacterial evolution, influencing resistance development and adaptability in challenging environments, especially under antibiotic exposure. Recombinase A (RecA) and the transcriptional repressor LexA are the key players that orchestrate this process, determining either the silencing or the active transcription of the genes under their control. By integrating state-of-the-art structural approaches with in vitro binding and functional assays, we elucidated the molecular events activating the SOS response in P. aeruginosa, focusing on the RecA-LexA interaction. Our findings identify the conserved determinants and strength of the interactions that allow RecA to trigger LexA autocleavage and inactivation. These results provide the groundwork for designing novel antimicrobial strategies and exploring the potential translation of Escherichia coli-derived approaches, to address the implications of P. aeruginosa infections.
Collapse
Affiliation(s)
- Filippo Vascon
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Sofia De Felice
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Matteo Gasparotto
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Department of Translational Brain Research, Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, 68159 Mannheim, Germany
| | - Stefan T. Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CD Delft, the Netherlands
| | - Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Monica Chinellato
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Department of Medicine, University of Padua, Via Giustiniani 2, 35121 Padova, Italy
| | - Riccardo Mezzetti
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Alessandro Grinzato
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- CM01 Beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Francesco Filippini
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
- Aethon Therapeutics, Long Island City, NY 11101, USA
| | - Arjen J. Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CD Delft, the Netherlands
| | - Laura Cendron
- Department of Biology, University of Padua, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
2
|
Cory MB, Li A, Hurley CM, Carman PJ, Pumroy RA, Hostetler ZM, Perez RM, Venkatesh Y, Li X, Gupta K, Petersson EJ, Kohli RM. The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation. Nat Struct Mol Biol 2024; 31:1522-1531. [PMID: 38755298 PMCID: PMC11521096 DOI: 10.1038/s41594-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Michael B Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina M Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth A Pumroy
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rahul M Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Chatterjee C, Mohan GR, Chinnasamy HV, Biswas B, Sundaram V, Srivastava A, Matheshwaran S. Anti-mutagenic agent targeting LexA to combat antimicrobial resistance in mycobacteria. J Biol Chem 2024; 300:107650. [PMID: 39122002 PMCID: PMC11408154 DOI: 10.1016/j.jbc.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global threat demanding innovations for effective control of pathogens. The bacterial SOS response, regulated by the master regulators, LexA and RecA, contributes to AMR through advantageous mutations. Targeting the LexA/RecA system with a novel inhibitor could suppress the SOS response and potentially reduce the occurrence of AMR. RecA presents a challenge as a therapeutic target due to its conserved structure and function across species, including humans. Conversely, LexA which is absent in eukaryotes, can be potentially targeted, due to its involvement in SOS response which is majorly responsible for adaptive mutagenesis and AMR. Our studies combining bioinformatic, biochemical, biophysical, molecular, and cell-based assays present a unique inhibitor of mycobacterial LexA, wherein we show that the inhibitor interacts directly with the catalytic site residues of LexA of Mycobacterium tuberculosis (Mtb), consequently hindering its cleavage, suppressing SOS response thereby reducing mutation frequency and AMR.
Collapse
Affiliation(s)
- Chitral Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Gokul Raj Mohan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Hariharan V Chinnasamy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India; Kotak School of Sustainability, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
4
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
5
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
6
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
7
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
9
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Payne-Dwyer AL, Syeda AH, Shepherd JW, Frame L, Leake MC. RecA and RecB: probing complexes of DNA repair proteins with mitomycin C in live Escherichia coli with single-molecule sensitivity. J R Soc Interface 2022; 19:20220437. [PMID: 35946163 PMCID: PMC9363994 DOI: 10.1098/rsif.2022.0437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 01/02/2023] Open
Abstract
The RecA protein and RecBCD complex are key bacterial components for the maintenance and repair of DNA. RecBCD is a helicase-nuclease that uses homologous recombination to resolve double-stranded DNA breaks. It also facilitates coating of single-stranded DNA with RecA to form RecA filaments, a vital step in the double-stranded break DNA repair pathway. However, questions remain about the mechanistic roles of RecA and RecBCD in live cells. Here, we use millisecond super-resolved fluorescence microscopy to pinpoint the spatial localization of fluorescent reporters of RecA or RecB at physiological levels of expression in individual live Escherichia coli cells. By introducing the DNA cross-linker mitomycin C, we induce DNA damage and quantify the resulting steady state changes in stoichiometry, cellular protein copy number and molecular mobilities of RecA and RecB. We find that both proteins accumulate in molecular hotspots to effect repair, resulting in RecA stoichiometries equivalent to several hundred molecules that assemble largely in dimeric subunits before DNA damage, but form periodic subunits of approximately 3-4 molecules within mature filaments of several thousand molecules. Unexpectedly, we find that the physiologically predominant forms of RecB are not only rapidly diffusing monomers, but slowly diffusing dimers.
Collapse
Affiliation(s)
- Alex L. Payne-Dwyer
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Lewis Frame
- School of Natural Sciences, University of York, York YO10 5DD, UK
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
11
|
Genome-Wide Identification of the LexA-Mediated DNA Damage Response in Streptomyces venezuelae. J Bacteriol 2022; 204:e0010822. [PMID: 35862789 PMCID: PMC9380542 DOI: 10.1128/jb.00108-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus Streptomyces contain LexA and RecA homologs, but their roles in Streptomyces have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent recA promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in S. venezuelae. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing Streptomyces bacteria and establish the existence of the SOS response in Streptomyces. Collectively, our work reveals significant insights into the DNA damage response in Streptomyces that will promote further studies to understand how these important bacteria adapt to their environment.
Collapse
|
12
|
Jaramillo‐Riveri S, Broughton J, McVey A, Pilizota T, Scott M, El Karoui M. Growth-dependent heterogeneity in the DNA damage response in Escherichia coli. Mol Syst Biol 2022; 18:e10441. [PMID: 35620827 PMCID: PMC9136515 DOI: 10.15252/msb.202110441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
In natural environments, bacteria are frequently exposed to sub-lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub-lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single-cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS-induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth-dependent heterogeneity in the DNA damage response.
Collapse
Affiliation(s)
| | - James Broughton
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Alexander McVey
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
- Present address:
OGI Bio LtdEdinburghUK
| | - Teuta Pilizota
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| | - Matthew Scott
- Department of Applied MathematicsUniversity of WaterlooWaterlooONCanada
| | - Meriem El Karoui
- Institute of Cell Biology and SynthSysUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
The small DdrR protein directly interacts with the UmuDAb regulator of the mutagenic DNA damage response in Acinetobacter baumannii. J Bacteriol 2022; 204:e0060121. [PMID: 35191762 DOI: 10.1128/jb.00601-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii poses a great threat in healthcare settings worldwide with clinical isolates displaying an ever-evolving multidrug-resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes is co-repressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR. It is currently unknown how DdrR establishes this repression. Here, we use surface plasmon resonance spectrometry to show that DdrR forms a stable complex with the UmuDAb regulator. Our results indicate that the carboxy-terminal dimerization domain of UmuDAb forms the interaction interface with DdrR. Our in vitro data also show that RecA-mediated inactivation of UmuDAb is inhibited when this transcription factor is bound to its target DNA. In addition, we show that DdrR interacts with a putative prophage repressor, homologous to LexA superfamily proteins. These data suggest that DdrR modulates DNA damage response and prophage induction in A. baumannii by binding to LexA-like regulators. Importance We previously identified a 50-residue bacteriophage protein, gp7, which interacts with and modulates the function of the LexA transcription factor from Bacillus thuringiensis. Here we present data that indicates that the small DdrR protein from A. baumannii likely coordinates the SOS response and prophage processes by also interacting with LexA superfamily members. We suggest that similar small proteins that interact with LexA-like proteins to coordinate DNA repair and bacteriophage functions may be common to many bacteria that mount the SOS response.
Collapse
|
14
|
Zou J, Peng B, Qu J, Zheng J. Are Bacterial Persisters Dormant Cells Only? Front Microbiol 2022; 12:708580. [PMID: 35185807 PMCID: PMC8847742 DOI: 10.3389/fmicb.2021.708580] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial persisters are a sub-population of phenotypic variants that tolerate high concentrations of antibiotics within the genetically homogeneous cells. They resume division upon the removal of drugs. Bacterial persistence is one of major causes of antibiotic treatment failure and recurrent infection. Cell dormancy, triggered by toxin/antitoxin pair, (p)ppGpp, SOS response and ATP levels, is known to be the mechanistic basis for persistence. However, recent studies have demonstrated that bacteria with active metabolism can maintain persistence by lowering intracellular antibiotic concentration via an efflux pump. Additionally, others and our work have showed that cell wall deficient bacteria (CWDB), including both L-form and spheroplasts that produced by β-lactam antibiotics, are associated with antibiotic persistence. They are not dormant cells as their cell walls have been completely damaged. In this review, we discuss the various types of persisters and highlight the contribution of non-walled bacteria on bacterial persistence.
Collapse
Affiliation(s)
- Jin Zou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Zhuhai, Macau SAR, China
| |
Collapse
|
15
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Müller AU, Kummer E, Schilling CM, Ban N, Weber-Ban E. Transcriptional control of mycobacterial DNA damage response by sigma adaptation. SCIENCE ADVANCES 2021; 7:eabl4064. [PMID: 34851662 PMCID: PMC8635444 DOI: 10.1126/sciadv.abl4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo–electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term “sigma adaptation.” PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.
Collapse
|
17
|
Jones EC, Uphoff S. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 2021; 6:981-990. [PMID: 34183814 PMCID: PMC7611437 DOI: 10.1038/s41564-021-00930-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
The bacterial SOS response stands as a paradigm of gene networks controlled by a master transcriptional regulator. Self-cleavage of the SOS repressor, LexA, induces a wide range of cell functions that are critical for survival and adaptation when bacteria experience stress conditions1, including DNA repair2, mutagenesis3,4, horizontal gene transfer5–7, filamentous growth, and the induction of bacterial toxins8–12, toxin-antitoxin systems13, virulence factors6,14, and prophages15–17. SOS induction is also implicated in biofilm formation and antibiotic persistence11,18–20. Considering the fitness burden of these functions, it is surprising that the expression of LexA-regulated genes is highly variable across cells10,21–23 and that cell subpopulations induce the SOS response spontaneously even in the absence of stress exposure9,11,12,16,24,25. Whether this reflects a population survival strategy or a regulatory inaccuracy is unclear, as are the mechanisms underlying SOS heterogeneity. Here, we developed a single-molecule imaging approach based on a HaloTag fusion to directly monitor LexA inside live Escherichia coli cells, demonstrating the existence of 3 main states of LexA: DNA-bound stationary molecules, free LexA and degraded LexA species. These analyses elucidate the mechanisms by which DNA-binding and degradation of LexA regulate the SOS response in vivo. We show that self-cleavage of LexA occurs frequently throughout the population during unperturbed growth, rather than being restricted to a subpopulation of cells, which causes substantial cell-to-cell variation in LexA abundances. LexA variability underlies SOS gene expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.
Collapse
Affiliation(s)
- Emma C Jones
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Ziegler M, Zieringer J, Takors R. Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large-scale conditions. Microb Biotechnol 2021; 14:993-1010. [PMID: 33369128 PMCID: PMC8085953 DOI: 10.1111/1751-7915.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/05/2022] Open
Abstract
In large-scale fed-batch production processes, microbes are exposed to heterogeneous substrate availability caused by long mixing times. Escherichia coli, the most common industrial host for recombinant protein production, reacts by recurring accumulation of the alarmone ppGpp and energetically wasteful transcriptional strategies. Here, we compare the regulatory responses of the stringent response mutant strain E. coli SR and its parent strain E. coli MG1655 to repeated nutrient starvation in a two-compartment scale-down reactor. Our data show that E. coli SR can withstand these stress conditions without a ppGpp-mediated stress response maintaining fully functional ammonium uptake and biomass formation. Furthermore, E. coli SR exhibited a substantially reduced short-term transcriptional response compared to E. coli MG1655 (less than half as many differentially expressed genes). E. coli SR proceeded adaptation via more general SOS response pathways by initiating negative regulation of transcription, translation and cell division. Our results show that locally induced stress responses propagating through the bioreactor do not result in cyclical induction and repression of genes in E. coli SR, but in a reduced and coordinated response, which makes it potentially suitable for large-scale production processes.
Collapse
Affiliation(s)
- Martin Ziegler
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Julia Zieringer
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
20
|
Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Cells 2021; 10:cells10040924. [PMID: 33923690 PMCID: PMC8072749 DOI: 10.3390/cells10040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.
Collapse
|
21
|
Lu H, Hua Y. PprI: The Key Protein in Response to DNA Damage in Deinococcus. Front Cell Dev Biol 2021; 8:609714. [PMID: 33537302 PMCID: PMC7848106 DOI: 10.3389/fcell.2020.609714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxyribonucleic acid (DNA) damage response (DDR) pathways are essential for maintaining the integrity of the genome when destabilized by various damaging events, such as ionizing radiation, ultraviolet light, chemical or oxidative stress, and DNA replication errors. The PprI–DdrO system is a newly identified pathway responsible for the DNA damage response in Deinococcus, in which PprI (also called IrrE) acts as a crucial component mediating the extreme resistance of these bacteria. This review describes studies about PprI sequence conservation, regulatory function, structural characteristics, biochemical activity, and hypothetical activation mechanisms as well as potential applications.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Abstract
Feedback mechanisms are critical to control physiological responses. In gene regulation, one important example, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production. NAR is common across the tree of life, enabling rapid homeostatic control of gene expression. NAR behavior can be described in accordance with its core biochemical parameters, but how constrained these parameters are by evolution is unclear. Here, we describe a model genetic network controlled by an NAR circuit within the bacterium Escherichia coli and elucidate these constraints by experimentally changing a key parameter and measuring its effect on circuit response and fitness. This analysis yielded a parameter-fitness landscape representing the genetic network, providing a window into what gene-environment conditions favor evolution of this regulatory strategy. Feedback mechanisms are fundamental to the control of physiological responses. One important example in gene regulation, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production through transcriptional repression. This enables more-rapid homeostatic control of gene expression. NAR circuits presumably evolve to limit the fitness costs of gratuitous gene expression. The key biochemical reactions of NAR can be parameterized using a mathematical model of promoter activity; however, this model of NAR has been studied mostly in the context of synthetic NAR circuits that are disconnected from the target genes of the TFs. Thus, it remains unclear how constrained NAR parameters are in a native circuit context, where the TF target genes can have fitness effects on the cell. To quantify these constraints, we created a panel of Escherichia coli strains with different lexA-NAR circuit parameters and analyzed the effect on SOS response function and bacterial fitness. Using a mathematical model for NAR, these experimental data were used to calculate NAR parameter values and derive a parameter-fitness landscape. Without feedback, survival of DNA damage was decreased due to high LexA concentrations and slower SOS “turn-on” kinetics. However, we show that, even in the absence of DNA damage, the lexA promoter is strong enough that, without feedback, high levels of lexA expression result in a fitness cost to the cell. Conversely, hyperfeedback can mimic lexA deletion, which is also costly. This work elucidates the lexA-NAR parameter values capable of balancing the cell’s requirement for rapid SOS response activation with limiting its toxicity. IMPORTANCE Feedback mechanisms are critical to control physiological responses. In gene regulation, one important example, termed negative autoregulation (NAR), occurs when a transcription factor (TF) inhibits its own production. NAR is common across the tree of life, enabling rapid homeostatic control of gene expression. NAR behavior can be described in accordance with its core biochemical parameters, but how constrained these parameters are by evolution is unclear. Here, we describe a model genetic network controlled by an NAR circuit within the bacterium Escherichia coli and elucidate these constraints by experimentally changing a key parameter and measuring its effect on circuit response and fitness. This analysis yielded a parameter-fitness landscape representing the genetic network, providing a window into what gene-environment conditions favor evolution of this regulatory strategy.
Collapse
|
23
|
Myka KK, Marians KJ. Two components of DNA replication-dependent LexA cleavage. J Biol Chem 2020; 295:10368-10379. [PMID: 32513870 PMCID: PMC7383369 DOI: 10.1074/jbc.ra120.014224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Induction of the SOS response, a cellular system triggered by DNA damage in bacteria, depends on DNA replication for the generation of the SOS signal, ssDNA. RecA binds to ssDNA, forming filaments that stimulate proteolytic cleavage of the LexA transcriptional repressor, allowing expression of > 40 gene products involved in DNA repair and cell cycle regulation. Here, using a DNA replication system reconstituted in vitro in tandem with a LexA cleavage assay, we studied LexA cleavage during DNA replication of both undamaged and base-damaged templates. Only a ssDNA-RecA filament supported LexA cleavage. Surprisingly, replication of an undamaged template supported levels of LexA cleavage like that induced by a template carrying two site-specific cyclobutane pyrimidine dimers. We found that two processes generate ssDNA that could support LexA cleavage. 1) During unperturbed replication, single-stranded regions formed because of stochastic uncoupling of the leading-strand DNA polymerase from the replication fork DNA helicase, and 2) on the damaged template, nascent leading-strand gaps were generated by replisome lesion skipping. The two pathways differed in that RecF stimulated LexA cleavage during replication of the damaged template, but not normal replication. RecF appears to facilitate RecA filament formation on the leading-strand ssDNA gaps generated by replisome lesion skipping.
Collapse
Affiliation(s)
- Kamila K Myka
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute Memorial Sloan Kettering Cancer Center, New York, New York USA
| |
Collapse
|
24
|
Hostetler ZM, Cory MB, Jones CM, Petersson EJ, Kohli RM. The Kinetic and Molecular Basis for the Interaction of LexA and Activated RecA Revealed by a Fluorescent Amino Acid Probe. ACS Chem Biol 2020; 15:1127-1133. [PMID: 31999086 PMCID: PMC7230020 DOI: 10.1021/acschembio.9b00886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterial DNA damage response (the SOS response) is a key pathway involved in antibiotic evasion and a promising target for combating acquired antibiotic resistance. Activation of the SOS response is controlled by two proteins: the repressor LexA and the DNA damage sensor RecA. Following DNA damage, direct interaction between RecA and LexA leads to derepression of the SOS response. However, the exact molecular details of this interaction remain unknown. Here, we employ the fluorescent unnatural amino acid acridonylalanine (Acd) as a minimally perturbing probe of the E. coli RecA:LexA complex. Using LexA labeled with Acd, we report the first kinetic model for the reversible binding of LexA to activated RecA. We also characterize the effects that specific amino acid truncations or substitutions in LexA have on RecA:LexA binding strength and demonstrate that a mobile loop encoding LexA residues 75-84 comprises a key recognition interface for RecA. Beyond insights into SOS activation, our approach also further establishes Acd as a sensitive fluorescent probe for investigating the dynamics of protein-protein interactions in other complex systems.
Collapse
Affiliation(s)
- Zachary M. Hostetler
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael B. Cory
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chloe M. Jones
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
25
|
Lu H, Wang L, Li S, Pan C, Cheng K, Luo Y, Xu H, Tian B, Zhao Y, Hua Y. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO. Nucleic Acids Res 2019; 47:9925-9933. [PMID: 31410466 PMCID: PMC6765133 DOI: 10.1093/nar/gkz720] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
DdrO is an XRE family transcription repressor that, in coordination with the metalloprotease PprI, is critical in the DNA damage response of Deinococcus species. Here, we report the crystal structure of Deinococcus geothermalis DdrO. Biochemical and structural studies revealed the conserved recognizing α-helix and extended dimeric interaction of the DdrO protein, which are essential for promoter DNA binding. Two conserved oppositely charged residues in the HTH motif of XRE family proteins form salt bridge interactions that are essential for promoter DNA binding. Notably, the C-terminal domain is stabilized by hydrophobic interactions of leucine/isoleucine-rich helices, which is critical for DdrO dimerization. Our findings suggest that DdrO is a novel XRE family transcriptional regulator that forms a distinctive dimer. The structure also provides insight into the mechanism of DdrO-PprI-mediated DNA damage response in Deinococcus.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Shengjie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Chaoming Pan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuxia Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| |
Collapse
|
26
|
Sameach H, Ruthstein S. EPR Distance Measurements as a Tool to Characterize Protein‐DNA Interactions. Isr J Chem 2019. [DOI: 10.1002/ijch.201900091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hila Sameach
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| |
Collapse
|
27
|
Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Structure 2019; 27:1094-1102.e4. [PMID: 31056420 DOI: 10.1016/j.str.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7. Here we report the crystallographic structure of phage-borne gp7 at 1.7-Å resolution, and characterize the 4:2 stoichiometry and potential interaction with LexA using surface plasmon resonance, static light scattering, and small-angle X-ray scattering. These data suggest that gp7 stabilizes LexA binding to operator DNA via coordination of the N- and C-terminal domains of LexA. Furthermore, we have found that gp7 can interact with LexA from Staphylococcus aureus, a significant human pathogen. Our results provide structural evidence as to how phage factors can directly associate with LexA to modulate the SOS response.
Collapse
|
28
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
29
|
Culyba MJ. Ordering up gene expression by slowing down transcription factor binding kinetics. Curr Genet 2018; 65:401-406. [PMID: 30353359 DOI: 10.1007/s00294-018-0896-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Efficient regulation of a complex genetic response requires that the gene products, which catalyze the response, be synthesized in a temporally ordered manner to match the sequential nature of the reaction pathway they act upon. Transcription regulation networks coordinate this aspect of cellular control by modulating transcription factor (TF) concentrations through time. The effect a TF has on the timing of gene expression is often modeled assuming that the TF-promoter binding reaction is in thermodynamic equilibrium with changes in TF concentration over time; however, non-equilibrium dynamics resulting from relatively slow TF-binding kinetics can result in different network behavior. Here, I highlight a recent study of the bacterial SOS response, where a single TF regulates multiple target promoters, to show how a disequilibrium of TF binding at promoters results in a more complex behavior, enabling a larger temporal separation of promoter activities that depends not only upon slow TF binding kinetics at promoters, but also on the magnitude of the response stimulus. I also discuss the dependence of network behavior on specific TF regulatory mechanisms and the implications non-equilibrium dynamics have for stochastic gene expression.
Collapse
Affiliation(s)
- Matthew J Culyba
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, 857 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
30
|
Culyba MJ, Kubiak JM, Mo CY, Goulian M, Kohli RM. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. PLoS Genet 2018; 14:e1007405. [PMID: 29856734 PMCID: PMC5999292 DOI: 10.1371/journal.pgen.1007405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/13/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023] Open
Abstract
Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter’s activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of ‘early’, ‘middle’, and ‘late’ genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene’s transcription as a function of stimulus dose. As the precise timing of gene expression is critical for cells to respond and adapt to new environments, it is important to understand the underlying mechanisms which control this timing. In this report, we studied the timing of transcription for genes in the bacterial DNA damage repair pathway (known as the SOS response), a regulatory system where each gene is controlled by the same transcriptional repressor, LexA. By specifically isolating the role of the LexA binding interaction at SOS gene promoters, we found a relationship between the amount of DNA damage incurred by the cell, LexA binding kinetics at a promoter, and the timing of promoter activation. Our data fit a kinetic model that reveals how a disequilibrium between the LexA-operator binding reaction and cellular LexA concentrations causes timing differences between genes to emerge only at higher doses of DNA damage. Taken together, we show that non-equilibrium DNA binding kinetics is the mechanism by which a single transcription factor can modulate timing differences across an entire network of genes as a function of stimulus dose.
Collapse
Affiliation(s)
- Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| | - Jeffrey M. Kubiak
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Charlie Y. Mo
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rahul M. Kohli
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
31
|
Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L, Zehavi Y, Moskovitz Y, Juven-Gershon T, Ben-Tal N, Ruthstein S. Structural and Dynamics Characterization of the MerR Family Metalloregulator CueR in its Repression and Activation States. Structure 2017; 25:988-996.e3. [PMID: 28578875 DOI: 10.1016/j.str.2017.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CueR (Cu export regulator) is a metalloregulator protein that "senses" Cu(I) ions with very high affinity, thereby stimulating DNA binding and the transcription activation of two other metalloregulator proteins. The crystal structures of CueR when unbound or bound to DNA and a metal ion are very similar to each other, and the role of CueR and Cu(I) in initiating the transcription has not been fully understood yet. Using double electron-electron resonance (DEER) measurements and structure modeling, we investigate the conformational changes that CueR undergoes upon binding Cu(I) and DNA in solution. We observe three distinct conformations, corresponding to apo-CueR, DNA-bound CueR in the absence of Cu(I) (the "repression" state), and CueR-Cu(I)-DNA (the "activation" state). We propose a detailed structural mechanism underlying CueR's regulation of the transcription process. The mechanism explicitly shows the dependence of CueR activity on copper, thereby revealing the important negative feedback mechanism essential for regulating the intracellular copper concentration.
Collapse
Affiliation(s)
- Hila Sameach
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Aya Narunsky
- Department of Biochemistry and Molecular Biochemistry, George S. Wise Faculty of Life sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Salome Azoulay-Ginsburg
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Lada Gevorkyan-Aiapetov
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yonathan Zehavi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yoni Moskovitz
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biochemistry, George S. Wise Faculty of Life sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Sharon Ruthstein
- The Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
32
|
Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen 2017; 6. [PMID: 28397370 PMCID: PMC5552922 DOI: 10.1002/mbo3.477] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The extreme radiation resistance of Deinococcus bacteria requires the radiation‐stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation‐induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo‐IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM‐containing DNA or interaction of IrrE with DNA‐bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE‐dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation‐resistant Deinococcus species.
Collapse
Affiliation(s)
- Laurence Blanchard
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Philippe Guérin
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - David Roche
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Stéphane Cruveiller
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - David Pignol
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - David Vallenet
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Jean Armengaud
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Arjan de Groot
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
33
|
Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 2016; 1:mSphere00163-16. [PMID: 27536734 PMCID: PMC4980697 DOI: 10.1128/msphere.00163-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment. The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.
Collapse
|
34
|
Fornelos N, Browning DF, Butala M. The Use and Abuse of LexA by Mobile Genetic Elements. Trends Microbiol 2016; 24:391-401. [PMID: 26970840 DOI: 10.1016/j.tim.2016.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 11/15/2022]
Abstract
The SOS response is an essential process for responding to DNA damage in bacteria. The expression of SOS genes is under the control of LexA, a global transcription factor that undergoes self-cleavage during stress to allow the expression of DNA repair functions and delay cell division until the damage is rectified. LexA also regulates genes that are not part of this cell rescue program, and the induction of bacteriophages, the movement of pathogenicity islands, and the expression of virulence factors and bacteriocins are all controlled by this important transcription factor. Recently it has emerged that when regulating the expression of genes from mobile genetic elements (MGEs), LexA often does so in concert with a corepressor. This accessory regulator can either be a host-encoded global transcription factor, which responds to various metabolic changes, or a factor that is encoded for by the MGE itself. Thus, the coupling of LexA-mediated regulation to a secondary transcription factor not only detaches LexA from its primary SOS role, but also fine-tunes gene expression from the MGE, enabling it to respond to multiple stresses. Here we discuss the mechanisms of such coordinated regulation and its implications for cells carrying such MGEs.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, PO Box 35, F-40014 Jyvaskyla, Finland.
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
35
|
Schons-Fonseca L, da Silva JB, Milanez JS, Domingos RH, Smith JL, Nakaya HI, Grossman AD, Ho PL, da Costa RMA. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans. Nucleic Acids Res 2016; 44:1179-91. [PMID: 26762976 PMCID: PMC4756842 DOI: 10.1093/nar/gkv1536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 11/13/2022] Open
Abstract
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.
Collapse
Affiliation(s)
- Luciane Schons-Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Josefa B da Silva
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Juliana S Milanez
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Renan H Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Helder I Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Paulo L Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Renata M A da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210580, Brazil
| |
Collapse
|
36
|
Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae. J Bacteriol 2015; 198:268-75. [PMID: 26503849 DOI: 10.1128/jb.00674-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The genesis of toxigenic Vibrio cholerae involves acquisition of CTXϕ, a single-stranded DNA (ssDNA) filamentous phage that encodes cholera toxin (CT). The phage exploits host-encoded tyrosine recombinases (XerC and XerD) for chromosomal integration and lysogenic conversion. The replicative genome of CTXϕ produces ssDNA by rolling-circle replication, which may be used either for virion production or for integration into host chromosome. Fine-tuning of different ssDNA binding protein (Ssb) levels in the host cell is crucial for cellular functioning and important for CTXϕ integration. In this study, we mutated the master regulator gene of SOS induction, lexA, of V. cholerae because of its known role in controlling levels of Ssb proteins in other bacteria. CTXϕ integration decreased in cells with a ΔlexA mutation and increased in cells with an SOS-noninducing mutation, lexA (Ind(-)). We also observed that overexpression of host-encoded Ssb (VC0397) decreased integration of CTXϕ. We propose that LexA helps CTXϕ integration, possibly by fine-tuning levels of host- and phage-encoded Ssbs. IMPORTANCE Cholera toxin is the principal virulence factor responsible for the acute diarrheal disease cholera. CT is encoded in the genome of a lysogenic filamentous phage, CTXϕ. Vibrio cholerae has a bipartite genome and harbors single or multiple copies of CTXϕ prophage in one or both chromosomes. Two host-encoded tyrosine recombinases (XerC and XerD) recognize the folded ssDNA genome of CTXϕ and catalyze its integration at the dimer resolution site of either one or both chromosomes. Fine-tuning of ssDNA binding proteins in host cells is crucial for CTXϕ integration. We engineered the V. cholerae genome and created several reporter strains carrying ΔlexA or lexA (Ind(-)) alleles. Using the reporter strains, the importance of LexA control of Ssb expression in the integration efficiency of CTXϕ was demonstrated.
Collapse
|
37
|
Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res 2015; 43:7315-29. [PMID: 26138485 PMCID: PMC4551915 DOI: 10.1093/nar/gkv634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023] Open
Abstract
The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jaana K Bamford
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Kamenšek S, Browning DF, Podlesek Z, Busby SJW, Žgur-Bertok D, Butala M. Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction. PLoS Genet 2015; 11:e1005354. [PMID: 26114960 PMCID: PMC4482635 DOI: 10.1371/journal.pgen.1005354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.
Collapse
Affiliation(s)
- Simona Kamenšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Douglas F. Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: (DFB); (MB)
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Stephen J. W. Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Darja Žgur-Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (DFB); (MB)
| |
Collapse
|
39
|
Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J Bacteriol 2014; 197:983-91. [PMID: 25535275 DOI: 10.1128/jb.02325-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hybrid sensor kinase BarA and its cognate response regulator UvrY, members of the two-component signal transduction family, activate transcription of CsrB and CsrC noncoding RNAs. These two small RNAs act by sequestering the RNA binding protein CsrA, which posttranscriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that CsrA positively affects, although indirectly, uvrY expression, at both the transcriptional and translational levels. We also demonstrate that CsrA is required for properly switching BarA from its phosphatase to its kinase activity. Thus, the existence of a feedback loop mechanism that involves the Csr and BarA/UvrY global regulatory systems is exposed.
Collapse
|
40
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
41
|
The LexA regulated genes of the Clostridium difficile. BMC Microbiol 2014; 14:88. [PMID: 24713082 PMCID: PMC4234289 DOI: 10.1186/1471-2180-14-88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 01/05/2023] Open
Abstract
Background The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the in silico LexA regulon in Clostridium difficile, an important human pathogen. Results We grouped thirty C. difficile strains from different ribotypes and toxinotypes into three clusters according to lexA gene/protein variability. We applied in silico analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in C. difficile. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: lexA, recA, ruvCA and uvrBA, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance. Conclusions Results presented here suggest that in C. difficile LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our in vitro results indicate that in C. difficile inactivation of LexA repressor depends on repressor`s dissociation from the operators. We report that the repressor`s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in C. difficile.
Collapse
|
42
|
Carvalhais V, França A, Cerca F, Vitorino R, Pier GB, Vilanova M, Cerca N. Dormancy within Staphylococcus epidermidis biofilms: a transcriptomic analysis by RNA-seq. Appl Microbiol Biotechnol 2014; 98:2585-96. [DOI: 10.1007/s00253-014-5548-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
|
43
|
Bano S, Vankemmelbeke M, Penfold CN, James R. Pattern of induction of colicin E9 synthesis by sub MIC of Norfloxacin antibiotic. Microbiol Res 2013; 168:661-6. [DOI: 10.1016/j.micres.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 11/28/2022]
|
44
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
45
|
Fonseca LS, da Silva JB, Milanez JS, Monteiro-Vitorello CB, Momo L, de Morais ZM, Vasconcellos SA, Marques MV, Ho PL, da Costa RMA. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response. PLoS One 2013; 8:e76419. [PMID: 24098496 PMCID: PMC3789691 DOI: 10.1371/journal.pone.0076419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.
Collapse
Affiliation(s)
- Luciane S Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil ; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics 2013; 195:1265-76. [PMID: 24077306 DOI: 10.1534/genetics.113.152306] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.
Collapse
|
47
|
Kovačič L, Paulič N, Leonardi A, Hodnik V, Anderluh G, Podlesek Z, Žgur-Bertok D, Križaj I, Butala M. Structural insight into LexA-RecA* interaction. Nucleic Acids Res 2013; 41:9901-10. [PMID: 23965307 PMCID: PMC3834820 DOI: 10.1093/nar/gkt744] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RecA protein is a hallmark for the bacterial response to insults inflicted on DNA. It catalyzes the strand exchange step of homologous recombination and stimulates self-inactivation of the LexA transcriptional repressor. Importantly, by these activities, RecA contributes to the antibiotic resistance of bacteria. An original way to decrease the acquisition of antibiotic resistance would be to block RecA association with LexA. To engineer inhibitors of LexA–RecA complex formation, we have mapped the interaction area between LexA and active RecA–ssDNA filament (RecA*) and generated a three-dimensional model of the complex. The model revealed that one subunit of the LexA dimer wedges into a deep helical groove of RecA*, forming multiple interaction sites along seven consecutive RecA protomers. Based on the model, we predicted that LexA in its DNA-binding conformation also forms a complex with RecA* and that the operator DNA sterically precludes interaction with RecA*, which guides the induction of SOS gene expression. Moreover, the model shows that besides the catalytic C-terminal domain of LexA, its N-terminal DNA-binding domain also interacts with RecA*. Because all the model-based predictions have been confirmed experimentally, the presented model offers a validated insight into the critical step of the bacterial DNA damage response.
Collapse
Affiliation(s)
- Lidija Kovačič
- Department of Molecular and Biomedical Sciences, JoŽef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia, Department of Biology, University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia, National Institute of Chemistry, 1000 Ljubljana, Slovenia, Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia and Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Borbat PP, Georgieva ER, Freed JH. Improved Sensitivity for Long-Distance Measurements in Biomolecules: Five-Pulse Double Electron-Electron Resonance. J Phys Chem Lett 2013; 4:170-175. [PMID: 23301118 PMCID: PMC3538160 DOI: 10.1021/jz301788n] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/19/2012] [Indexed: 05/15/2023]
Abstract
We describe significantly improved long-distance measurements in biomolecules by use of the new multipulse double electron-electron spin resonance (DEER) illustrated with the example of a five-pulse DEER sequence. In this sequence, an extra pulse at the pump frequency is used compared with standard four-pulse DEER. The position of the extra pulse is fixed relative to the three pulses of the detection sequence. This significantly reduces the effect of nuclear spin-diffusion on the electron-spin phase relaxation, thereby enabling longer dipolar evolution times that are required to measure longer distances. Using spin-labeled T4 lysozyme at a concentration less than 50 μM, as an example, we show that the evolution time increases by a factor of 1.8 in protonated solution and 1.4 in deuterated solution to 8 and 12 μs, respectively, with the potential to increase them further. This enables a significant increase in the measurable distances, improved distance resolution, or both.
Collapse
Affiliation(s)
- Peter P. Borbat
- E-mail: ; Tel: (607) 255-6132;
Fax: (607) 255-6969 (P.P.B.). E-mail: ; Tel: (607)
255-3647; Fax: (607) 255-6969 (J.H.F.)
| | | | - Jack H. Freed
- E-mail: ; Tel: (607) 255-6132;
Fax: (607) 255-6969 (P.P.B.). E-mail: ; Tel: (607)
255-3647; Fax: (607) 255-6969 (J.H.F.)
| |
Collapse
|
49
|
Butala M, Sonjak S, Kamenšek S, Hodošček M, Browning DF, Žgur-Bertok D, Busby SJW. Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol Microbiol 2012; 86:129-39. [PMID: 22812562 DOI: 10.1111/j.1365-2958.2012.08179.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The synthesis of Eschericha coli colicins is lethal to the producing cell and is repressed during normal growth by the LexA transcription factor, which is the master repressor of the SOS system for repair of DNA damage. Following DNA damage, LexA is inactivated and SOS repair genes are induced immediately, but colicin production is delayed and induced only in terminally damaged cells. The cause of this delay is unknown. Here we identify the global transcription repressor, IscR, as being directly responsible for the delay in colicin K expression during the SOS response, and identify the DNA target for IscR at the colicin K operon promoter. Our results suggest that, IscR stabilizes LexA at the cka promoter after DNA damage thus, preventing its cleavage and inactivation, and this cooperation ensures that suicidal colicin K production is switched on only as a last resort. A similar mechanism operates at the regulatory region of other colicins and, hence, we suggest that many promoters that control the expression of 'lethal' genes are double locked.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|