1
|
Miloshev G, Ivanov P, Vasileva B, Georgieva M. Linker Histones Maintain Genome Stability and Drive the Process of Cellular Ageing. FRONT BIOSCI-LANDMRK 2025; 30:26823. [PMID: 40302323 DOI: 10.31083/fbl26823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 05/02/2025]
Abstract
Ageing comprises a cascade of processes that are inherent in all living creatures. There are fourteen general hallmarks of cellular ageing, the majority of which occur at a molecular level. A significant disturbance in the regulation of genome activity is commonly observed during cellular ageing. Overall confusion and disruption in the proper functioning of the genome are also well-known prerogatives of cancerous cells, and it is believed that this genomic instability provides a direct link between aging and cancer. The spatial organization of nuclear DNA in chromatin is the foundation of the fine-tuning and refined regulation of gene activity, and it changes during ageing. Therefore, chromatin is the platform on which genes and the environment meet and interplay. Different protein factors, small molecules and metabolites affect this chromatin organization and, through it, drive cellular deterioration and, finally, ageing. Hence, studying chromatin structural organization and dynamics is crucial for understanding life, presumably the ageing process. The complex interplay among DNA and histone proteins folds, organizes, and adapts chromatin structure. Among histone proteins, the role of the family of linker histones comes to light. Recent data point out that linker histones play a unique role in higher-order chromatin organization, which, in turn, impacts ageing to a prominent degree. Here, we discuss emerging evidence that suggests linker histones have functions that extend beyond their traditional roles in chromatin architecture, highlighting their critical involvement in genome stability, cellular ageing, and cancer development, thereby establishing them as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Watson M, Sabirova D, Hardy MC, Pan Y, Carpentier DCJ, Yates H, Wright CJ, Chan WH, Destan E, Stott K. A DNA condensation code for linker histones. Proc Natl Acad Sci U S A 2024; 121:e2409167121. [PMID: 39116133 PMCID: PMC11331069 DOI: 10.1073/pnas.2409167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Linker histones play an essential role in chromatin packaging by facilitating compaction of the 11-nm fiber of nucleosomal "beads on a string." The result is a heterogeneous condensed state with local properties that range from dynamic, irregular, and liquid-like to stable and regular structures (the 30-nm fiber), which in turn impact chromatin-dependent activities at a fundamental level. The properties of the condensed state depend on the type of linker histone, particularly on the highly disordered C-terminal tail, which is the most variable region of the protein, both between species, and within the various subtypes and cell-type specific variants of a given organism. We have developed an in vitro model system comprising linker histone tail and linker DNA, which although very minimal, displays surprisingly complex behavior, and is sufficient to model the known states of linker histone-condensed chromatin: disordered "fuzzy" complexes ("open" chromatin), dense liquid-like assemblies (dynamic condensates), and higher-order structures (organized 30-nm fibers). A crucial advantage of such a simple model is that it allows the study of the various condensed states by NMR, circular dichroism, and scattering methods. Moreover, it allows capture of the thermodynamics underpinning the transitions between states through calorimetry. We have leveraged this to rationalize the distinct condensing properties of linker histone subtypes and variants across species that are encoded by the amino acid content of their C-terminal tails. Three properties emerge as key to defining the condensed state: charge density, lysine/arginine ratio, and proline-free regions, and we evaluate each separately using a strategic mutagenesis approach.
Collapse
Affiliation(s)
- Matthew Watson
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Dilyara Sabirova
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Megan C. Hardy
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Yuming Pan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | | | - Henry Yates
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Charlotte J. Wright
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - W. H. Chan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Ebru Destan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| |
Collapse
|
3
|
Abu Alhaija AA, Lone IN, Sekeroglu EO, Batur T, Angelov D, Dimitrov S, Hamiche A, Firat Karalar EN, Ercan ME, Yagci T, Alotaibi H, Diril MK. Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1-4. FEBS Open Bio 2024; 14:309-321. [PMID: 38098212 PMCID: PMC10839353 DOI: 10.1002/2211-5463.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth. To investigate the mechanisms and pathogenesis of Rahman syndrome, we developed a cellular model using murine embryonic stem cells (mESCs) and CRISPR/Cas9 genome engineering. Our engineered mES cells facilitate detailed investigations, such as H1-4 dynamics, immunoprecipitation, and nuclear localization; in addition, we tagged the mutant H1-4 with a photoactivatable GFP (PA-GFP) and an HA tag to facilitate pulldown assays. We anticipate that these engineered cells could also be used for the development of a mouse model to study the in vivo role of the H1-4 protein.
Collapse
Affiliation(s)
- Abed Alkarem Abu Alhaija
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
- Izmir Biomedicine and Genome CenterTurkey
| | | | - Esin Ozkuru Sekeroglu
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Dimitar Angelov
- Izmir Biomedicine and Genome CenterTurkey
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239Université de Lyon, Ecole Normale Supérieure de LyonFrance
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome CenterTurkey
- Roumen Tsanev Institute of Molecular BiologyBulgarian Academy of SciencesSofiaBulgaria
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309Université Grenoble AlpesFrance
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)UdS, CNRS, INSERMStrasbourgFrance
| | | | | | - Tamer Yagci
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | - Muhammed Kasim Diril
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
4
|
Ozden B, Boopathi R, Barlas AB, Lone IN, Bednar J, Petosa C, Kale S, Hamiche A, Angelov D, Dimitrov S, Karaca E. Molecular Mechanism of Nucleosome Recognition by the Pioneer Transcription Factor Sox. J Chem Inf Model 2023. [PMID: 37307148 DOI: 10.1021/acs.jcim.2c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.
Collapse
Affiliation(s)
- Burcu Ozden
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, Lyon 69007, France
| | - Ayşe Berçin Barlas
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Imtiaz N Lone
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, Illkirch Cedex 67404, France
| | - Dimitar Angelov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d'Italie, Lyon 69007, France
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble 38000, France
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| |
Collapse
|
5
|
Louro JA, Boopathi R, Beinsteiner B, Mohideen Patel AK, Cheng TC, Angelov D, Hamiche A, Bendar J, Kale S, Klaholz BP, Dimitrov S. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure 2023; 31:201-212.e5. [PMID: 36610392 DOI: 10.1016/j.str.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.
Collapse
Affiliation(s)
- Jaime Alegrio Louro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Abdul Kareem Mohideen Patel
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tat Cheung Cheng
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France; Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch, France
| | - Jan Bendar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France.
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| |
Collapse
|
6
|
Hao F, Mishra LN, Jaya P, Jones R, Hayes JJ. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure. Mol Cell Proteomics 2022; 21:100250. [PMID: 35618225 PMCID: PMC9243160 DOI: 10.1016/j.mcpro.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
As a key structural component of the chromatin of higher eukaryotes, linker histones (H1s) are involved in stabilizing the folding of extended nucleosome arrays into higher-order chromatin structures and function as a gene-specific regulator of transcription in vivo. The H1 C-terminal domain (CTD) is essential for high-affinity binding of linker histones to chromatin and stabilization of higher-order chromatin structure. Importantly, the H1 CTD is an intrinsically disordered domain that undergoes a drastic condensation upon binding to nucleosomes. Moreover, although phosphorylation is a prevalent post-translational modification within the H1 CTD, exactly where this modification is installed and how phosphorylation influences the structure of the H1 CTD remains unclear for many H1s. Using novel mass spectrometry techniques, we identified six phosphorylation sites within the CTD of the archetypal linker histone Xenopus H1.0. We then analyzed nucleosome-dependent CTD condensation and H1-dependent linker DNA organization for H1.0 in which the phosphorylated serine residues were replaced by glutamic acid residues (phosphomimics) in six independent mutants. We find that phosphomimetics at residues S117E, S155E, S181E, S188E, and S192E resulted in a significant reduction in nucleosome-bound H1.0 CTD condensation compared with unphosphorylated H1.0, whereas S130E did not alter CTD structure. Furthermore, we found distinct effects among the phosphomimetics on H1-dependent linker DNA trajectory, indicating unique mechanisms by which this modification can influence H1 CTD condensation. These results bring to light a novel role for linker histone phosphorylation in directly altering the structure of nucleosome-bound H1 and a potential novel mechanism for its effects on chromatin structure and function.
Collapse
Affiliation(s)
- Fanfan Hao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Laxmi N Mishra
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Prasoon Jaya
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
7
|
Shen CH, Allan J. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes. Cells 2021; 10:cells10092239. [PMID: 34571888 PMCID: PMC8469290 DOI: 10.3390/cells10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The compact nucleosomal structure limits DNA accessibility and regulates DNA-dependent cellular activities. Linker histones bind to nucleosomes and compact nucleosomal arrays into a higher-order chromatin structure. Recent developments in high throughput technologies and structural computational studies provide nucleosome positioning at a high resolution and contribute to the information of linker histone location within a chromatosome. However, the precise linker histone location within the chromatin fibre remains unclear. Using monomer extension, we mapped core particle and chromatosomal positions over a core histone-reconstituted, 1.5 kb stretch of DNA from the chicken adult β-globin gene, after titration with linker histones and linker histone globular domains. Our results show that, although linker histone globular domains and linker histones display a wide variation in their binding affinity for different positioned nucleosomes, they do not alter nucleosome positions or generate new nucleosome positions. Furthermore, the extra ~20 bp of DNA protected in a chromatosome is usually symmetrically distributed at each end of the core particle, suggesting linker histones or linker histone globular domains are located close to the nucleosomal dyad axis.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Biology Department, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA
- Biochemistry and Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-718-982-3998; Fax: +1-718-982-3852
| | - James Allan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK;
| |
Collapse
|
8
|
Unraveling linker histone interactions in nucleosomes. Curr Opin Struct Biol 2021; 71:87-93. [PMID: 34246862 DOI: 10.1016/j.sbi.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.
Collapse
|
9
|
Stützer A, Welp LM, Raabe M, Sachsenberg T, Kappert C, Wulf A, Lau AM, David SS, Chernev A, Kramer K, Politis A, Kohlbacher O, Fischle W, Urlaub H. Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Nat Commun 2020; 11:5250. [PMID: 33067435 PMCID: PMC7567871 DOI: 10.1038/s41467-020-19047-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Protein–DNA interactions are key to the functionality and stability of the genome. Identification and mapping of protein–DNA interaction interfaces and sites is crucial for understanding DNA-dependent processes. Here, we present a workflow that allows mass spectrometric (MS) identification of proteins in direct contact with DNA in reconstituted and native chromatin after cross-linking by ultraviolet (UV) light. Our approach enables the determination of contact interfaces at amino-acid level. With the example of chromatin-associated protein SCML2 we show that our technique allows differentiation of nucleosome-binding interfaces in distinct states. By UV cross-linking of isolated nuclei we determined the cross-linking sites of several factors including chromatin-modifying enzymes, demonstrating that our workflow is not restricted to reconstituted materials. As our approach can distinguish between protein–RNA and DNA interactions in one single experiment, we project that it will be possible to obtain insights into chromatin and its regulation in the future. Cross-linking mass spectrometry (XLMS) allows mapping of protein-protein and protein-RNA interactions, but the analysis of protein-DNA complexes remains challenging. Here, the authors develop a UV light-based XLMS workflow to determine protein-DNA interfaces in reconstituted chromatin and isolated nuclei.
Collapse
Affiliation(s)
- Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany.,Applied Bioinformatics, Department for Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Christin Kappert
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Somatosensory Signaling and Systems Biology Group, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Alexander Wulf
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Andy M Lau
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Stefan-Sebastian David
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, 23955, Thuwal, Saudi Arabia
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Argyris Politis
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany.,Applied Bioinformatics, Department for Computer Science, University of Tübingen, 72076, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, 72076, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Laboratory of Chromatin Biochemistry, 23955, Thuwal, Saudi Arabia
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany. .,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. [Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin]. Mol Biol (Mosk) 2020; 53:1038-1048. [PMID: 31876282 DOI: 10.1134/s0026898419060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.
Collapse
Affiliation(s)
- E V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - Y S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - O I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - N Clauvelin
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Y V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - W K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - V M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA.,Faculty of Biology, Moscow State University, Moscow, 119991 Russia.,
| |
Collapse
|
11
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin. Mol Biol 2019. [DOI: 10.1134/s002689331906013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wu C, Travers A. Modelling and DNA topology of compact 2-start and 1-start chromatin fibres. Nucleic Acids Res 2019; 47:9902-9924. [PMID: 31219588 PMCID: PMC6765122 DOI: 10.1093/nar/gkz495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
We have investigated the structure of the most compact 30-nm chromatin fibres by modelling those with 2-start or 1-start crossed-linker organisations. Using an iterative procedure we obtained possible structural solutions for fibres of the highest possible compaction permitted by physical constraints, including the helical repeat of linker DNA. We find that this procedure predicts a quantized nucleosome repeat length (NRL) and that only fibres with longer NRLs (≥197 bp) can more likely adopt the 1-start organisation. The transition from 2-start to 1-start fibres is consistent with reported differing binding modes of the linker histone. We also calculate that in 1-start fibres the DNA constrains more torsion (as writhe) than 2-start fibres with the same NRL and that the maximum constraint obtained is in accord with previous experimental results. We posit that the coiling of the fibre is driven by overtwisting of linker DNA which, in the most compact forms - for example, in echinoderm sperm and avian erythrocytes - could adopt a helical repeat of ∼10 bp/turn. We argue that in vivo the total twist of linker DNA could be modulated by interaction with other abundant chromatin-associated proteins and by epigenetic modifications of the C-terminal tail of linker histones.
Collapse
Affiliation(s)
- Chenyi Wu
- Molecular Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
13
|
Highly disordered histone H1-DNA model complexes and their condensates. Proc Natl Acad Sci U S A 2018; 115:11964-11969. [PMID: 30301810 DOI: 10.1073/pnas.1805943115] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Disordered proteins play an essential role in a wide variety of biological processes, and are often posttranslationally modified. One such protein is histone H1; its highly disordered C-terminal tail (CH1) condenses internucleosomal linker DNA in chromatin in a way that is still poorly understood. Moreover, CH1 is phosphorylated in a cell cycle-dependent manner that correlates with changes in the chromatin condensation level. Here we present a model system that recapitulates key aspects of the in vivo process, and also allows a detailed structural and biophysical analysis of the stages before and after condensation. CH1 remains disordered in the DNA-bound state, despite its nanomolar affinity. Phase-separated droplets (coacervates) form, containing higher-order assemblies of CH1/DNA complexes. Phosphorylation at three serine residues, spaced along the length of the tail, has little effect on the local properties of the condensate. However, it dramatically alters higher-order structure in the coacervate and reduces partitioning to the coacervate phase. These observations show that disordered proteins can bind tightly to DNA without a disorder-to-order transition. Importantly, they also provide mechanistic insights into how higher-order structures can be exquisitely sensitive to perturbation by posttranslational modifications, thus broadening the repertoire of mechanisms that might regulate chromatin and other macromolecular assemblies.
Collapse
|
14
|
Hu J, Gu L, Ye Y, Zheng M, Xu Z, Lin J, Du Y, Tian M, Luo L, Wang B, Zhang X, Weng Z, Jiang C. Dynamic placement of the linker histone H1 associated with nucleosome arrangement and gene transcription in early Drosophila embryonic development. Cell Death Dis 2018; 9:765. [PMID: 29988149 PMCID: PMC6037678 DOI: 10.1038/s41419-018-0819-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
The linker histone H1 is critical to maintenance of higher-order chromatin structures and to gene expression regulation. However, H1 dynamics and its functions in embryonic development remain unresolved. Here, we profiled gene expression, nucleosome positions, and H1 locations in early Drosophila embryos. The results show that H1 binding is positively correlated with the stability of beads-on-a-string nucleosome organization likely through stabilizing nucleosome positioning and maintaining nucleosome spacing. Strikingly, nucleosomes with H1 placement deviating to the left or the right relative to the dyad shift to the left or the right, respectively, during early Drosophila embryonic development. H1 occupancy on genic nucleosomes is inversely correlated with nucleosome distance to the transcription start sites. This inverse correlation reduces as gene transcription levels decrease. Additionally, H1 occupancy is lower at the 5′ border of genic nucleosomes than that at the 3′ border. This asymmetrical pattern of H1 occupancy on genic nucleosomes diminishes as gene transcription levels decrease. These findings shed new lights into how H1 placement dynamics correlates with nucleosome positioning and gene transcription during early Drosophila embryonic development.
Collapse
Affiliation(s)
- Jian Hu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Liang Gu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Youqiong Ye
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Meizhu Zheng
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhu Xu
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jing Lin
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Yanhua Du
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Mengxue Tian
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Lifang Luo
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Beibei Wang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.,Department of laboratory medicine, the first people's Hospital of Ninghai County, Ningbo city, 315600, China
| | - Xiaobai Zhang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Cizhong Jiang
- Institute of Translational Research, Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Histone Acetylation, Not Stoichiometry, Regulates Linker Histone Binding in Saccharomyces cerevisiae. Genetics 2017; 207:347-355. [PMID: 28739661 DOI: 10.1534/genetics.117.1132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Linker histones play a fundamental role in shaping chromatin structure, but how their interaction with chromatin is regulated is not well understood. In this study, we used a combination of genetic and genomic approaches to explore the regulation of linker histone binding in the yeast, Saccharomyces cerevisiae We found that increased expression of Hho1, the yeast linker histone, resulted in a severe growth defect, despite only subtle changes in chromatin structure. Further, this growth defect was rescued by mutations that increase histone acetylation. Consistent with this, genome-wide analysis of linker histone occupancy revealed an inverse correlation with histone tail acetylation in both yeast and mouse embryonic stem cells. Collectively, these results suggest that histone acetylation negatively regulates linker histone binding in S. cerevisiae and other organisms and provide important insight into how chromatin structure is regulated and maintained to both facilitate and repress transcription.
Collapse
|
16
|
Ye X, Feng C, Gao T, Mu G, Zhu W, Yang Y. Linker Histone in Diseases. Int J Biol Sci 2017; 13:1008-1018. [PMID: 28924382 PMCID: PMC5599906 DOI: 10.7150/ijbs.19891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 01/21/2023] Open
Abstract
The linker histone is a protein that binds with the nucleosome, which is generally considered to achieve chromatin condensation in the nucleus. Accumulating evidences suggest that the linker histone is essential in the pathogenesis of several diseases. In this review, we briefly introduce the current knowledge of the linker histone, including its structure, characteristics and functions. Also, we move forward to present the advances of the linker histone's association with certain diseases, such as cancer, Alzheimer's disease, infection, male infertility and aberrant immunity situations, focusing on the alteration of the linker histone under certain pathological conditions and its role in developing each disease.
Collapse
Affiliation(s)
- Xin Ye
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - ChuanLin Feng
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Tian Gao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Guanqun Mu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Weiguo Zhu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| | - Yang Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, #38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
17
|
Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radic Biol Med 2017; 107:159-169. [PMID: 28011149 DOI: 10.1016/j.freeradbiomed.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France.
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000 São Paulo, SP, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stefan Dimitrov
- Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| |
Collapse
|
18
|
Lyubitelev AV, Nikitin DV, Shaytan AK, Studitsky VM, Kirpichnikov MP. Structure and Functions of Linker Histones. BIOCHEMISTRY (MOSCOW) 2017; 81:213-23. [PMID: 27262190 DOI: 10.1134/s0006297916030032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.
Collapse
Affiliation(s)
- A V Lyubitelev
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
19
|
Lequieu J, Córdoba A, Schwartz DC, de Pablo JJ. Tension-Dependent Free Energies of Nucleosome Unwrapping. ACS CENTRAL SCIENCE 2016; 2:660-666. [PMID: 27725965 PMCID: PMC5043429 DOI: 10.1021/acscentsci.6b00201] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 05/20/2023]
Abstract
Nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently.
Collapse
Affiliation(s)
- Joshua Lequieu
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United
States
| | - Andrés Córdoba
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United
States
| | - David C. Schwartz
- Laboratory
for Molecular and Computational Genomics, Department of Chemistry,
Laboratory of Genetics, and UW-Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Juan J. de Pablo
- Institute
for Molecular Engineering, University of
Chicago, Chicago, Illinois 60637, United
States
- Materials
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- E-mail:
| |
Collapse
|
20
|
Ozboyaci M, Martinez M, Wade RC. An Efficient Low Storage and Memory Treatment of Gridded Interaction Fields for Simulations of Macromolecular Association. J Chem Theory Comput 2016; 12:4563-77. [DOI: 10.1021/acs.jctc.6b00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Musa Ozboyaci
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| | - Michael Martinez
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, INF 282, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Ye Z, Chen Z, Sunkel B, Frietze S, Huang THM, Wang Q, Jin VX. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1. Nucleic Acids Res 2016; 44:7540-54. [PMID: 27458208 PMCID: PMC5027512 DOI: 10.1093/nar/gkw659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022] Open
Abstract
The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis.
Collapse
Affiliation(s)
- Zhenqing Ye
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Zhong Chen
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, OH 43210, USA Comprehensive Cancer Center, The Ohio State University College of Medicine, OH 43210, USA
| | - Benjamin Sunkel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, OH 43210, USA Comprehensive Cancer Center, The Ohio State University College of Medicine, OH 43210, USA
| | - Seth Frietze
- MLRS Department, University of Vermont, VT 05405, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Qianben Wang
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, OH 43210, USA Comprehensive Cancer Center, The Ohio State University College of Medicine, OH 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX 78229, USA
| |
Collapse
|
22
|
Cutter AR, Hayes JJ. Linker histones: novel insights into structure-specific recognition of the nucleosome. Biochem Cell Biol 2016; 95:171-178. [PMID: 28177778 DOI: 10.1139/bcb-2016-0097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linker histones (H1s) are a primary component of metazoan chromatin, fulfilling numerous functions, both in vitro and in vivo, including stabilizing the wrapping of DNA around the nucleosome, promoting folding and assembly of higher order chromatin structures, influencing nucleosome spacing on DNA, and regulating specific gene expression. However, many molecular details of how H1 binds to nucleosomes and recognizes unique structural features on the nucleosome surface remain undefined. Numerous, confounding studies are complicated not only by experimental limitations, but the use of different linker histone isoforms and nucleosome constructions. This review summarizes the decades of research that has resulted in several models of H1 association with nucleosomes, with a focus on recent advances that suggest multiple modes of H1 interaction in chromatin, while highlighting the remaining questions.
Collapse
Affiliation(s)
- Amber R Cutter
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey J Hayes
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Luque A, Ozer G, Schlick T. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin. Biophys J 2016; 110:2309-2319. [PMID: 27276249 PMCID: PMC4906253 DOI: 10.1016/j.bpj.2016.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells condense their genetic material in the nucleus in the form of chromatin, a macromolecular complex made of DNA and multiple proteins. The structure of chromatin is intimately connected to the regulation of all eukaryotic organisms, from amoebas to humans, but its organization remains largely unknown. The nucleosome repeat length (NRL) and the concentration of linker histones (ρLH) are two structural parameters that vary among cell types and cell cycles; the NRL is the number of DNA basepairs wound around each nucleosome core plus the number of basepairs linking successive nucleosomes. Recent studies have found a linear empirical relationship between the variation of these two properties for different cells, but its underlying mechanism remains elusive. Here we apply our established mesoscale chromatin model to explore the mechanisms responsible for this relationship, by investigating chromatin fibers as a function of NRL and ρLH combinations. We find that a threshold of linker histone concentration triggers the compaction of chromatin into well-formed 30-nm fibers; this critical value increases linearly with NRL, except for long NRLs, where the fibers remain disorganized. Remarkably, the interaction patterns between core histone tails and chromatin elements are highly sensitive to the NRL and ρLH combination, suggesting a molecular mechanism that could have a key role in regulating the structural state of the fibers in the cell. An estimate of the minimized work and volume associated with storage of chromatin fibers in the nucleus further suggests factors that could spontaneously regulate the NRL as a function of linker histone concentration. Both the tail interaction map and DNA packing considerations support the empirical NRL/ρLH relationship and offer a framework to interpret experiments for different chromatin conditions in the cell.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Mathematics and Statistics, Viral Information Institute and Computational Science Research Center, San Diego State University, San Diego, California
| | - Gungor Ozer
- Department of Chemistry, New York University, New York, New York
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China.
| |
Collapse
|
24
|
Roque A, Ponte I, Suau P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 2016; 126:83-91. [DOI: 10.1007/s00412-016-0591-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/14/2023]
|
25
|
Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:455-61. [PMID: 26455956 PMCID: PMC4775371 DOI: 10.1016/j.bbagrm.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
Abstract
Linker histones H1 are ubiquitous chromatin proteins that play important roles in chromatin compaction, transcription regulation, nucleosome spacing and chromosome spacing. H1 function in DNA and chromatin structure stabilization is well studied and established. The current paradigm of linker histone mode of function considers all other cellular roles of linker histones to be a consequence from H1 chromatin compaction and repression. Here we review the multiple processes regulated by linker histones and the emerging importance of protein interactions in H1 functioning. We propose a new paradigm which explains the multi functionality of linker histones through linker histones protein interactions as a way to directly regulate recruitment of proteins to chromatin.
Collapse
Affiliation(s)
- Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan A Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
26
|
Stützer A, Liokatis S, Kiesel A, Schwarzer D, Sprangers R, Söding J, Selenko P, Fischle W. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails. Mol Cell 2016; 61:247-59. [PMID: 26778125 DOI: 10.1016/j.molcel.2015.12.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function.
Collapse
Affiliation(s)
- Alexandra Stützer
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Anja Kiesel
- Research Group of Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Johannes Söding
- Research Group of Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Gene Center and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany.
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
27
|
Bednar J, Hamiche A, Dimitrov S. H1-nucleosome interactions and their functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:436-43. [PMID: 26477489 DOI: 10.1016/j.bbagrm.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
Collapse
Affiliation(s)
- Jan Bednar
- Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
| | - Ali Hamiche
- Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | - Stefan Dimitrov
- INSERM/UJF, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| |
Collapse
|
28
|
Roque A, Ponte I, Suau P. Interplay between histone H1 structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:444-54. [PMID: 26415976 DOI: 10.1016/j.bbagrm.2015.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/10/2023]
Abstract
H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide.
Collapse
Affiliation(s)
- Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Spain.
| |
Collapse
|
29
|
Ozer G, Luque A, Schlick T. The chromatin fiber: multiscale problems and approaches. Curr Opin Struct Biol 2015; 31:124-39. [PMID: 26057099 DOI: 10.1016/j.sbi.2015.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails or linker histones to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modeling techniques at the atomic, mesoscopic, and chromosomal scales with a view toward developing multiscale computational strategies to integrate such findings. Innovative modeling methods that connect molecular to chromosomal scales are crucial for interpreting experiments and eventually deciphering the complex dynamic organization and function of chromatin in the cell.
Collapse
Affiliation(s)
- Gungor Ozer
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA
| | - Antoni Luque
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Current address: Department of Mathematics & Statistics and Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.
| |
Collapse
|
30
|
Affiliation(s)
- Robert K McGinty
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
32
|
Luque A, Collepardo-Guevara R, Grigoryev S, Schlick T. Dynamic condensation of linker histone C-terminal domain regulates chromatin structure. Nucleic Acids Res 2014; 42:7553-60. [PMID: 24906881 PMCID: PMC4081093 DOI: 10.1093/nar/gku491] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The basic and intrinsically disordered C-terminal domain (CTD) of the linker histone (LH) is essential for chromatin compaction. However, its conformation upon nucleosome binding and its impact on chromatin organization remain unknown. Our mesoscale chromatin model with a flexible LH CTD captures a dynamic, salt-dependent condensation mechanism driven by charge neutralization between the LH and linker DNA. Namely, at low salt concentration, CTD condenses, but LH only interacts with the nucleosome and one linker DNA, resulting in a semi-open nucleosome configuration; at higher salt, LH interacts with the nucleosome and two linker DNAs, promoting stem formation and chromatin compaction. CTD charge reduction unfolds the domain and decondenses chromatin, a mechanism in consonance with reduced counterion screening in vitro and phosphorylated LH in vivo. Divalent ions counteract this decondensation effect by maintaining nucleosome stems and expelling the CTDs to the fiber exterior. Additionally, we explain that the CTD folding depends on the chromatin fiber size, and we show that the asymmetric structure of the LH globular head is responsible for the uneven interaction observed between the LH and the linker DNAs. All these mechanisms may impact epigenetic regulation and higher levels of chromatin folding.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | - Sergei Grigoryev
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
33
|
Halverson JD, Smrek J, Kremer K, Grosberg AY. From a melt of rings to chromosome territories: the role of topological constraints in genome folding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:022601. [PMID: 24472896 DOI: 10.1088/0034-4885/77/2/022601] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We review pro and contra of the hypothesis that generic polymer properties of topological constraints are behind many aspects of chromatin folding in eukaryotic cells. For that purpose, we review, first, recent theoretical and computational findings in polymer physics related to concentrated, topologically simple (unknotted and unlinked) chains or a system of chains. Second, we review recent experimental discoveries related to genome folding. Understanding in these fields is far from complete, but we show how looking at them in parallel sheds new light on both.
Collapse
Affiliation(s)
- Jonathan D Halverson
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | |
Collapse
|
34
|
Roberts VA, Pique ME, Ten Eyck LF, Li S. Predicting protein-DNA interactions by full search computational docking. Proteins 2013; 81:2106-18. [PMID: 23966176 PMCID: PMC4045845 DOI: 10.1002/prot.24395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 11/06/2022]
Abstract
Protein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments. We used the program DOT, which performs an exhaustive, rigid-body search between two macromolecules, to investigate four diverse protein-DNA interactions. Here, we compare our computational results with subsequent experimental data on related systems. In all cases, the experimental data strongly supported our structural hypotheses from the docking calculations: a mechanism for weak, nonsequence-specific DNA binding by a transcription factor, a large DNA-binding footprint on the surface of the DNA-repair enzyme uracil-DNA glycosylase (UNG), viral and host DNA-binding sites on the catalytic domain of HIV integrase, and a three-DNA-contact model of the linker histone bound to the nucleosome. In the case of UNG, the experimental design was based on the DNA-binding surface found by docking, rather than the much smaller surface observed in the crystallographic structure. These comparisons demonstrate that the DOT electrostatic energy gives a good representation of the distinctive electrostatic properties of DNA and DNA-binding proteins. The large, favourably ranked clusters resulting from the dockings identify active sites, map out large DNA-binding sites, and reveal multiple DNA contacts with a protein. Thus, computational docking can not only help to identify protein-DNA interactions in the absence of a crystal structure, but also expand structural understanding beyond known crystallographic structures.
Collapse
Affiliation(s)
- Victoria A. Roberts
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
| | - Michael E. Pique
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynn F. Ten Eyck
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheng Li
- School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0602, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Structural insights into the histone H1-nucleosome complex. Proc Natl Acad Sci U S A 2013; 110:19390-5. [PMID: 24218562 DOI: 10.1073/pnas.1314905110] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1-nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo.
Collapse
|
36
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
37
|
Kosterin OE, Bogdanova VS, Kechin AA, Zaytseva OO, Yadrikhinskiy AK. Polymorphism in a histone H1 subtype with a short N-terminal domain in three legume species (Fabaceae, Fabaeae). Mol Biol Rep 2012; 39:10681-95. [PMID: 23053965 DOI: 10.1007/s11033-012-1959-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
A number of alleles of an orthologous gene His6 encoding histone H1 subtype f (H1-6 in pea) accumulated in chromatin of old tissues were sequenced in three legume species: seven alleles in Pisum sativum, four in Vicia unijuga and eight in Lathyrus gmelinii. In the total of 19 alleles sequenced in the three species, 29 non-synonymous substitutions and six indels were found in the coding region; most of amino acid substitutions (26 of 29) and all indels occurred in the C-terminal hydrophilic domain of the encoded protein. All species were polymorphic for some non-synonymous substitutions, V. unijuga was also polymorphic for one and P. sativum for two indels. Three near-isogenic lines of P. sativum bearing different alleles showed differences in many quantitative traits; that in the growth dynamic could be tentatively attributed to the allelic substitution of subtype H1-6. The frequencies of four electromorphs in a sampled locality of V. unijuga were found to be close to those observed 25 years ago, although their rapid change in the past was supposed in the previous study.
Collapse
Affiliation(s)
- Oleg E Kosterin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev Ave 10, Novosibirsk, Russia, 630090.
| | | | | | | | | |
Collapse
|
38
|
Schlick T, Hayes J, Grigoryev S. Toward convergence of experimental studies and theoretical modeling of the chromatin fiber. J Biol Chem 2011; 287:5183-91. [PMID: 22157002 DOI: 10.1074/jbc.r111.305763] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the structural organization of eukaryotic chromatin and its control of gene expression represents one of the most fundamental and open challenges in modern biology. Recent experimental advances have revealed important characteristics of chromatin in response to changes in external conditions and histone composition, such as the conformational complexity of linker DNA and histone tail domains upon compact folding of the fiber. In addition, modeling studies based on high-resolution nucleosome models have helped explain the conformational features of chromatin structural elements and their interactions in terms of chromatin fiber models. This minireview discusses recent progress and evidence supporting structural heterogeneity in chromatin fibers, reconciling apparently contradictory fiber models.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
39
|
Fang H, Clark DJ, Hayes JJ. DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain. Nucleic Acids Res 2011; 40:1475-84. [PMID: 22021384 PMCID: PMC3287190 DOI: 10.1093/nar/gkr866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously documented condensation of the H1 CTD consistent with adoption of a defined structure upon nucleosome binding using a bulk FRET assay, supporting proposals that the CTD behaves as an intrinsically disordered domain. In the present study, by determining the distances between two different pairs of sites in the C-terminal domain of full length H1 by FRET, we confirm that nucleosome binding directs folding of the disordered H1 C-terminal domain and provide additional distance constraints for the condensed state. In contrast to nucleosomes, FRET observed upon H1 binding to naked DNA fragments includes both intra- and inter-molecular resonance energy transfer. By eliminating inter-molecular transfer, we find that CTD condensation induced upon H1-binding naked DNA is distinct from that induced by nucleosomes. Moreover, analysis of fluorescence quenching indicates that H1 residues at either end of the CTD experience distinct environments when bound to nucleosomes, and suggest that the penultimate residue in the CTD (K195) is juxtaposed between the two linker DNA helices, proposed to form a stem structure in the H1-bound nucleosome.
Collapse
Affiliation(s)
- He Fang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14625, USA
| | | | | |
Collapse
|