1
|
Woodgate J, Sumang FA, Salliss ME, Belousoff M, Ward AC, Challis GL, Zenkin N, Errington J, Dashti Y. Mode of Action and Mechanisms of Resistance to the Unusual Polyglycosylated Thiopeptide Antibiotic Persiathiacin A. ACS Infect Dis 2025; 11:155-163. [PMID: 39651842 PMCID: PMC11731312 DOI: 10.1021/acsinfecdis.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Persiathiacin A is a novel thiopeptide antibiotic produced by Actinokineospora species UTMC 2448. It has potent activity against methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium tuberculosis. Thiopeptides, including persiathiacin A, exhibit antibacterial activity by inhibiting protein synthesis. In this study, we characterize the mechanism of action of persiathiacin A and investigate how resistance to this antibiotic can emerge. In vitro assays revealed that persiathiacin A inhibits translation elongation, leading to ribosome stalling. Genetic analysis of resistant Bacillus subtilis mutants identified mutations primarily in the rplK gene encoding ribosomal protein L11, which is the binding site for other 26-membered macrocycle-containing thiopeptides. The resistant mutants showed growth impairment and an increased lag time, even in the absence of persiathiacin. Comparative proteomic analysis of a resistant mutant versus the parental strain revealed multiple changes, indicative of negative effects on protein synthesis. Thus, although persiathiacin-resistant mutants can arise readily by the loss of L11 function, it is likely that such mutants would be severely compromised in pathogenesis. Furthermore, bioinformatics analysis identified differences in the key amino acids within the thiopeptide-binding region of L11 in the persiathiacin producer. These probably prevent the antibiotic from associating with its target, providing a mechanism for self-resistance.
Collapse
Affiliation(s)
- Jason Woodgate
- Centre
for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical
Sciences, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Felaine A. Sumang
- Faculty
of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia
| | - Mary E. Salliss
- Faculty
of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia
| | - Matthew Belousoff
- Centre
for Cryo Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Alan C. Ward
- School
of Biology, Newcastle University, Newcastle upon Tyne NE2
4AX, U.K.
| | - Gregory L. Challis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biochemistry and Molecular Biology, Monash
University, Clayton, VIC 3800, Australia
- ARC
Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Nikolay Zenkin
- Centre
for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical
Sciences, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Jeff Errington
- Faculty
of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia
- Sydney
Infectious Diseases Institute, University
of Sydney, Sydney, NSW 2015, Australia
| | - Yousef Dashti
- Faculty
of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia
- Sydney
Infectious Diseases Institute, University
of Sydney, Sydney, NSW 2015, Australia
| |
Collapse
|
2
|
Asikaer A, Sun C, Shen Y. Thiostrepton: multifaceted biological activities and its applications in treatment of inflammatory diseases. Inflammopharmacology 2025; 33:183-194. [PMID: 39487942 DOI: 10.1007/s10787-024-01587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Thiostrepton (TST) is a naturally occurring oligopeptide antibiotic with a demonstrated capacity to antagonize a broad spectrum of Gram-positive bacteria. It has been utilized as a safe antimicrobial agent in veterinary medicine. Despite its therapeutic potential, the clinical application of TST has been constrained by its poor solubility and bioavailability. However, an increasing number of studies indicate that TST possesses diverse pharmacological activities, including its significant role in microbe resistance and cancer countering. Notably, recent studies have pointed out that TST also possesses anti-inflammatory potential. It has exhibited promising therapeutic efficacy across various in vivo and in vitro disease models, including non-alcoholic fatty liver disease, inflammatory bowel disease, sepsis, psoriasis-like inflammation, and periodontitis. In this review, we describe the various pharmacological activities of TST, particularly its anti-inflammatory activity demonstrated in a variety of inflammatory diseases and the underlying mechanisms. These effects highlight the potential of TST as an anti-inflammatory agent for the treatment of inflammation diseases and for enhancing cellular therapies.
Collapse
Affiliation(s)
- Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China.
| |
Collapse
|
3
|
Dashti Y, Mohammadipanah F, Zhang Y, Cerqueira Diaz PM, Vocat A, Zabala D, Fage CD, Romero-Canelon I, Bunk B, Spröer C, Alkhalaf LM, Overmann J, Cole ST, Challis GL. Discovery and Biosynthesis of Persiathiacins: Unusual Polyglycosylated Thiopeptides Active Against Multidrug Resistant Tuberculosis. ACS Infect Dis 2024; 10:3378-3391. [PMID: 39189814 PMCID: PMC11406533 DOI: 10.1021/acsinfecdis.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thiopeptides are ribosomally biosynthesized and post-translationally modified peptides (RiPPs) that potently inhibit the growth of Gram-positive bacteria by targeting multiple steps in protein biosynthesis. The poor pharmacological properties of thiopeptides, particularly their low aqueous solubility, has hindered their development into clinically useful antibiotics. Antimicrobial activity screens of a library of Actinomycetota extracts led to discovery of the novel polyglycosylated thiopeptides persiathiacins A and B from Actinokineospora sp. UTMC 2448. Persiathiacin A is active against methicillin-resistant Staphylococcus aureus and several Mycobacterium tuberculosis strains, including drug-resistant and multidrug-resistant clinical isolates, and does not significantly affect the growth of ovarian cancer cells at concentrations up to 400 μM. Polyglycosylated thiopeptides are extremely rare and nothing is known about their biosynthesis. Sequencing and analysis of the Actinokineospora sp. UTMC 2448 genome enabled identification of the putative persiathiacin biosynthetic gene cluster (BGC). A cytochrome P450 encoded by this gene cluster catalyzes the hydroxylation of nosiheptide in vitro and in vivo, consistent with the proposal that the cluster directs persiathiacin biosynthesis. Several genes in the cluster encode homologues of enzymes known to catalyze the assembly and attachment of deoxysugars during the biosynthesis of other classes of glycosylated natural products. One of these encodes a glycosyl transferase that was shown to catalyze attachment of a D-glucose residue to nosiheptide in vitro. The discovery of the persiathiacins and their BGC thus provides the basis for the development of biosynthetic engineering approaches to the creation of novel (poly)glycosylated thiopeptide derivatives with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney NSW 2015, Australia
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Daniel Zabala
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Isolda Romero-Canelon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3168, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton VIC 3168, Australia
| |
Collapse
|
4
|
Ekemezie CL, Melnikov SV. Hibernating ribosomes as drug targets? Front Microbiol 2024; 15:1436579. [PMID: 39135874 PMCID: PMC11317432 DOI: 10.3389/fmicb.2024.1436579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
When ribosome-targeting antibiotics attack actively growing bacteria, they occupy ribosomal active centers, causing the ribosomes to stall or make errors that either halt cellular growth or cause bacterial death. However, emerging research indicates that bacterial ribosomes spend a considerable amount of time in an inactive state known as ribosome hibernation, in which they dissociate from their substrates and bind to specialized proteins called ribosome hibernation factors. Since 60% of microbial biomass exists in a dormant state at any given time, these hibernation factors are likely the most common partners of ribosomes in bacterial cells. Furthermore, some hibernation factors occupy ribosomal drug-binding sites - leading to the question of how ribosome hibernation influences antibiotic efficacy, and vice versa. In this review, we summarize the current state of knowledge on physical and functional interactions between hibernation factors and ribosome-targeting antibiotics and explore the possibility of using antibiotics to target not only active but also hibernating ribosomes. Because ribosome hibernation empowers bacteria to withstand harsh conditions such as starvation, stress, and host immunity, this line of research holds promise for medicine, agriculture, and biotechnology: by learning to regulate ribosome hibernation, we could enhance our capacity to manage the survival of microorganisms in dormancy.
Collapse
Affiliation(s)
- Chinenye L. Ekemezie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Medical School of Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Marina VI, Bidzhieva M, Tereshchenkov AG, Orekhov D, Sagitova VE, Sumbatyan NV, Tashlitsky VN, Ferberg AS, Maviza TP, Kasatsky P, Tolicheva O, Paleskava A, Polshakov VI, Osterman IA, Dontsova OA, Konevega AL, Sergiev PV. An easy tool to monitor the elemental steps of in vitro translation via gel electrophoresis of fluorescently labeled small peptides. RNA (NEW YORK, N.Y.) 2024; 30:298-307. [PMID: 38164606 PMCID: PMC10870375 DOI: 10.1261/rna.079766.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.
Collapse
Affiliation(s)
- Valeriya I Marina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Medina Bidzhieva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Andrey G Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry Orekhov
- R&D Department, VIC Animal Health, Severny, Belgorod Region 308519, Russia
| | | | - Nataliya V Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Artem S Ferberg
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tinashe P Maviza
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Olga Tolicheva
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
| | - Alena Paleskava
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Moscow 119991, Russia
| | - Ilya A Osterman
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
| | - Olga A Dontsova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute," Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Petr V Sergiev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Luo Y, Liu C, Luo Y, Zhang X, Li J, Hu C, Yang S. Thiostrepton alleviates experimental colitis by promoting RORγt ubiquitination and modulating dysbiosis. Cell Mol Immunol 2023; 20:1352-1366. [PMID: 37752225 PMCID: PMC10616104 DOI: 10.1038/s41423-023-01085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Thiostrepton (TST) is a natural antibiotic with pleiotropic properties. This study aimed to elucidate the therapeutic effect of TST on experimental colitis and identify its targets. The effect of TST on colon inflammation was evaluated in a dextran sulfate sodium (DSS)-induced colitis model and a T-cell transfer colitis model. The therapeutic targets of TST were investigated by cytokine profiling, immunophenotyping and biochemical approaches. The effect of TST on the gut microbiota and its contribution to colitis were evaluated in mice with DSS-induced colitis that were subjected to gut microbiota depletion and fecal microbiota transplantation (FMT). Alterations in the gut microbiota caused by TST were determined by 16S rDNA and metagenomic sequencing. Here, we showed that TST treatment significantly ameliorated colitis in the DSS-induced and T-cell transfer models. Specifically, TST targeted the retinoic acid-related orphan nuclear receptor RORγt to reduce the production of IL-17A by γδ T cells, type 3 innate lymphoid cells (ILC3s) and Th17 cells in mice with DSS-induced colitis. Similarly, TST selectively prevented the development of Th17 cells in the T-cell transfer colitis model and the differentiation of naïve CD4+ T cells into Th17 cells in vitro. Mechanistically, TST induced the ubiquitination and degradation of RORγt by promoting the binding of Itch to RORγt. Moreover, TST also reversed dysbiosis to control colonic inflammation. Taken together, these results from our study describe the previously unexplored role of TST in alleviating colonic inflammation by reducing IL-17A production and modulating dysbiosis, suggesting that TST is a promising candidate drug for the treatment of IBD.
Collapse
Affiliation(s)
- Ya Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, 563006, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuan Luo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglian Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jing Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
8
|
Das A, Adiletta N, Ermolenko DN. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Int J Mol Sci 2023; 24:ijms24086878. [PMID: 37108045 PMCID: PMC10138997 DOI: 10.3390/ijms24086878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Collapse
Affiliation(s)
- Ananya Das
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Nichole Adiletta
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry & Biophysics, School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Shanbhag C, Saraogi I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg Med Chem Lett 2023; 87:129276. [PMID: 37030567 DOI: 10.1016/j.bmcl.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Small molecules as antibacterial agents have contributed immensely to the growth of modern medicine over the last several decades. However, the emergence of drug resistance among bacterial pathogens has undermined the effectiveness of the existing antibiotics. Thus, there is an exigency to address the antibiotic crisis by developing new antibacterial agents and identifying novel drug targets in bacteria. In this review, we summarize the importance of guanosine triphosphate hydrolyzing proteins (GTPases) as key agents for bacterial survival. We also discuss representative examples of small molecules that target bacterial GTPases as novel antibacterial agents, and highlight areas that are ripe for exploration. Given their vital roles in cell viability, virulence, and antibiotic resistance, bacterial GTPases are highly attractive antibacterial targets that will likely play a vital role in the fight against antimicrobial resistance.
Collapse
|
10
|
Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis 2022; 13:630. [PMID: 35859150 PMCID: PMC9300693 DOI: 10.1038/s41419-022-05082-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a new form of regulated cell death that is mediated by intracellular iron and ester oxygenase, and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into nontoxic lipid alcohols. Although thiostrepton (TST) has been reported to exert antitumor effects, its role in pancreatic cancer and the underlying mechanisms remain unclear. In this study, we found that TST reduced the viability and clonogenesis of pancreatic cancer cell lines, along with intracellular iron overload, increasing reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) overexpression, and glutathione peroxidase (GSH-PX) depletion. Mechanistically, chromatin immunoprecipitation (ChIP) and dual luciferase reporter gene assays were used to confirm that signal transducer and activator of transcription 3 (STAT3) binds to the GPX4 promoter region and promotes its transcription, whereas TST blocked GPX4 expression by regulating STAT3. Finally, in vivo experiments revealed that TST inhibited the growth of subcutaneously transplanted tumours and had considerable biosafety. In conclusion, our study identified the mechanism by which TST-induced ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling.
Collapse
|
11
|
Ellefsen JD, Miller SJ. Photocatalytic Reductive Olefin Hydrodifluoroalkylation Enabled by Tertiary Amine Reductants Compatible with Complex Systems. J Org Chem 2022; 87:10250-10255. [PMID: 35829693 PMCID: PMC9357216 DOI: 10.1021/acs.joc.2c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncanonical amino acids (NCAAs) are imperative to many facets of chemistry and biology. Herein, we report a method for the reductive hydrodifluoroalkylation of olefins that utilizes triethylamine base as the terminal reductant. The alkene acceptors include a range of electronically diverse alkenes, chief among them, dehydroalanine in variously protected forms, which provides access to synthetically relevant NCAA scaffolds under mild and general reaction conditions. We have demonstrated that a chiral auxiliary may be incorporated to provide diastereocontrol for pro-stereogenic substrates. Mechanistically motivated experiments provide some insight into the reaction mechanism, which supports a terminal step involving proton transfer for electron-poor olefins, while H atom transfer assisted by a thiol cocatalyst may complete the catalytic cycle for electron-rich olefins. The protocol is found to be compatible with additions to complex molecules, including the natural product thiostrepton.
Collapse
Affiliation(s)
- Jonathan D Ellefsen
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
12
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
13
|
Williams MS, Basma NJ, Amaral FMR, Wiseman DH, Somervaille TCP. Blast cells surviving acute myeloid leukemia induction therapy are in cycle with a signature of FOXM1 activity. BMC Cancer 2021; 21:1153. [PMID: 34711181 PMCID: PMC8554867 DOI: 10.1186/s12885-021-08839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Disease relapse remains common following treatment of acute myeloid leukemia (AML) and is due to chemoresistance of leukemia cells with disease repopulating potential. To date, attempts to define the characteristics of in vivo resistant blasts have focused on comparisons between leukemic cells at presentation and relapse. However, further treatment responses are often seen following relapse, suggesting that most blasts remain chemosensitive. We sought to characterise in vivo chemoresistant blasts by studying the transcriptional and genetic features of blasts from before and shortly after induction chemotherapy using paired samples from six patients with primary refractory AML. METHODS Leukemic blasts were isolated by fluorescence-activated cell sorting. Fluorescence in situ hybridization (FISH), targeted genetic sequencing and detailed immunophenotypic analysis were used to confirm that sorted cells were leukemic. Sorted blasts were subjected to RNA sequencing. Lentiviral vectors expressing short hairpin RNAs were used to assess the effect of FOXM1 knockdown on colony forming capacity, proliferative capacity and apoptosis in cell lines, primary AML cells and CD34+ cells from healthy donors. RESULTS Molecular genetic analysis revealed early clonal selection occurring after induction chemotherapy. Immunophenotypic characterisation found leukemia-associated immunophenotypes in all cases that persisted following treatment. Despite the genetic heterogeneity of the leukemias studied, transcriptional analysis found concerted changes in gene expression in resistant blasts. Remarkably, the gene expression signature suggested that post-chemotherapy blasts were more proliferative than those at presentation. Resistant blasts also appeared less differentiated and expressed leukemia stem cell (LSC) maintenance genes. However, the proportion of immunophenotypically defined LSCs appeared to decrease following treatment, with implications for the targeting of these cells on the basis of cell surface antigen expression. The refractory gene signature was highly enriched with targets of the transcription factor FOXM1. shRNA knockdown experiments demonstrated that the viability of primary AML cells, but not normal CD34+ cells, depended on FOXM1 expression. CONCLUSIONS We found that chemorefractory blasts from leukemias with varied genetic backgrounds expressed a common transcriptional program. In contrast to the notion that LSC quiescence confers resistance to chemotherapy we find that refractory blasts are both actively proliferating and enriched with LSC maintenance genes. Using primary patient material from a relevant clinical context we also provide further support for the role of FOXM1 in chemotherapy resistance, proliferation and stem cell function in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Apoptosis/genetics
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Cell Differentiation
- Cell Proliferation/genetics
- Cell Survival
- Drug Resistance, Neoplasm/genetics
- Female
- Flow Cytometry
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Gene Silencing
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Neoplastic Stem Cells/pathology
- RNA, Small Interfering/metabolism
- Recurrence
- Tumor Stem Cell Assay
- Young Adult
Collapse
Affiliation(s)
- Mark S Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
14
|
Chan DCK, Burrows LL. Thiocillin and micrococcin exploit the ferrioxamine receptor of Pseudomonas aeruginosa for uptake. J Antimicrob Chemother 2021; 76:2029-2039. [PMID: 33907816 DOI: 10.1093/jac/dkab124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Thiopeptides are a class of antibiotics that are active against Gram-positive bacteria and inhibit translation. They were considered inactive against Gram-negative bacteria due to their inability to cross the outer membrane. However, we discovered previously that a member of this class, thiostrepton (TS), has activity against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. TS hijacks the pyoverdine siderophore receptors of P. aeruginosa to cross the outer membrane and synergizes with iron chelators. OBJECTIVES To test other thiopeptides for antimicrobial activity against P. aeruginosa and determine their mechanism of uptake, action and spectrum of activity. METHODS Eight thiopeptides were screened in chequerboard assays against a mutant of P. aeruginosa PA14 lacking both pyoverdine receptors. Thiopeptides that retain activity against a pyoverdine receptor-null mutant may use alternative siderophore receptors for entry. Susceptibility testing against siderophore receptor mutants was used to determine thiopeptide mechanism of uptake. RESULTS The thiopeptides thiocillin (TC) and micrococcin (MC) use the ferrioxamine siderophore receptor (FoxA) for uptake and inhibit the growth of P. aeruginosa at low micromolar concentrations. The activity of TC required the TonB-ExbBD system used to energize siderophore uptake. TC acted through its canonical mechanism of action of translation inhibition. CONCLUSIONS Multiple thiopeptides have antimicrobial activity against P. aeruginosa, countering the historical assumption that they cannot cross the outer membrane. These results demonstrate the potential for thiopeptides to act as antipseudomonal antibiotics.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster Children's Hospital, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
15
|
Torres Salazar BO, Heilbronner S, Peschel A, Krismer B. Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microb Physiol 2021; 31:198-216. [PMID: 34325424 DOI: 10.1159/000517082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Various Staphylococcus species colonize skin and upper airways of warm-blooded animals. They compete successfully with many other microorganisms under the hostile and nutrient-poor conditions of these habitats using mechanisms that we are only beginning to appreciate. Small-molecule mediators, whose biosynthesis requires complex enzymatic cascades, so-called secondary metabolites, have emerged as crucial components of staphylococcal microbiome interactions. Such mediators belong to a large variety of compound classes and several of them have attractive properties for future drug development. They include, for instance, bacteriocins such as lanthipeptides, thiopeptides, and fibupeptides that inhibit bacterial competitor species; signaling molecules such as thiolactone peptides that induce or inhibit sensory cascades in other bacteria; or metallophores such as staphyloferrins and staphylopine that scavenge scant transition metal ions. For some secondary metabolites such as the aureusimines, the exact function remains to be elucidated. How secondary metabolites shape the fitness of Staphylococcus species in the complex context of other microbial and host defense factors remains a challenging field of future research. A detailed understanding will help to harness staphylococcal secondary metabolites for excluding the pathogenic species Staphylococcus aureus from the nasal microbiomes of at-risk patients, and it will be instrumental for the development of advanced anti-infective interventions.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Chan DCK, Burrows LL. Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. J Antibiot (Tokyo) 2020; 74:161-175. [PMID: 33349675 DOI: 10.1038/s41429-020-00387-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Thiopeptides are a class of natural product antibiotics with diverse structures and functions. Their complex structures and biosynthesis have intrigued researchers since their discovery in 1948, but not a single thiopeptide has been approved for human use. This is mainly due to their poor solubility, challenging synthesis, and low bioavailability. This review summarizes the current research on the biosynthesis and biological activity of thiopeptide antibiotics since 2015. The focus of research since 2015 has been on uncovering biosynthetic routes, developing methods for total synthesis, and understanding the biological activity of thiopeptides. Overall, there is still much to learn about this family of molecules.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
18
|
Sheridan CM, Garcia VE, Ahyong V, DeRisi JL. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar J 2018; 17:465. [PMID: 30541569 PMCID: PMC6292128 DOI: 10.1186/s12936-018-2616-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continued spectre of resistance to existing anti-malarials necessitates the pursuit of novel targets and mechanisms of action for drug development. One class of promising targets consists of the 80S ribosome and its associated components comprising the parasite translational apparatus. Development of translation-targeting therapeutics requires a greater understanding of protein synthesis and its regulation in the malaria parasite. Research in this area has been limited by the lack of appropriate experimental methods, particularly a direct measure of parasite translation. METHODS An in vitro method directly measuring translation in whole-cell extracts from the malaria parasite Plasmodium falciparum, the PfIVT assay, and a historically-utilized indirect measure of translation, S35-radiolabel incorporation, were compared utilizing a large panel of known translation inhibitors as well as anti-malarial drugs. RESULTS Here, an extensive pharmacologic assessment of the PfIVT assay is presented, using a wide range of known inhibitors demonstrating its utility for studying activity of both ribosomal and non-ribosomal elements directly involved in translation. Further, the superiority of this assay over a historically utilized indirect measure of translation, S35-radiolabel incorporation, is demonstrated. Additionally, the PfIVT assay is utilized to investigate a panel of clinically approved anti-malarial drugs, many with unknown or unclear mechanisms of action, and show that none inhibit translation, reaffirming Plasmodium translation to be a viable alternative drug target. Within this set, mefloquine is unambiguously found to lack translation inhibition activity, despite having been recently mischaracterized as a ribosomal inhibitor. CONCLUSIONS This work exploits a direct and reproducible assay for measuring P. falciparum translation, demonstrating its value in the continued study of protein synthesis in malaria and its inhibition as a drug target.
Collapse
Affiliation(s)
- Christine Moore Sheridan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Valentina E Garcia
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Vida Ahyong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
19
|
Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Front Mol Biosci 2018; 5:48. [PMID: 29868608 PMCID: PMC5960728 DOI: 10.3389/fmolb.2018.00048] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The ribosome is one of the major targets in the cell for clinically used antibiotics. However, the increase in multidrug resistant bacteria is rapidly reducing the effectiveness of our current arsenal of ribosome-targeting antibiotics, highlighting the need for the discovery of compounds with new scaffolds that bind to novel sites on the ribosome. One possible avenue for the development of new antimicrobial agents is by characterization and optimization of ribosome-targeting peptide antibiotics. Biochemical and structural data on ribosome-targeting peptide antibiotics illustrates the large diversity of scaffolds, binding interactions with the ribosome as well as mechanism of action to inhibit translation. The availability of high-resolution structures of ribosomes in complex with peptide antibiotics opens the way to structure-based design of these compounds as novel antimicrobial agents.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Abstract
AbstractRibosome assembly is critical for translation and regulating the response to cellular events and requires a complex interplay of ribosomal RNA and proteins with assembly factors. We investigated putative participants in the biogenesis of the reduced organellar ribosomes of Plasmodium falciparum and identified homologues of two assembly GTPases – EngA and Obg that were found in mitochondria. Both are indispensable in bacteria and P. berghei EngA is among the ‘essential’ parasite blood stage proteins identified recently. PfEngA and PfObg1 interacted with parasite mitoribosomes in vivo. GTP stimulated PfEngA interaction with the 50S subunit of Escherichia coli surrogate ribosomes. Although PfObg1–ribosome interaction was independent of nucleotide binding, GTP hydrolysis by PfObg1 was enhanced upon ribosomal association. An additional function for PfObg1 in mitochondrial DNA transactions was suggested by its specific interaction with the parasite mitochondrial genome in vivo. Deletion analysis revealed that the positively-charged OBG (spoOB-associated GTP-binding protein) domain mediates DNA-binding. A role for PfEngA in mitochondrial genotoxic stress response was indicated by its over-expression upon methyl methanesulfonate-induced DNA damage. PfEngA had lower sensitivity to an E. coli EngA inhibitor suggesting differences with bacterial counterparts. Our results show the involvement of two important GTPases in P. falciparum mitochondrial function, with the first confirmed localization of an EngA homologue in eukaryotic mitochondria.
Collapse
|
21
|
Niu H, Yee R, Cui P, Tian L, Zhang S, Shi W, Sullivan D, Zhu B, Zhang W, Zhang Y. Identification of Agents Active against Methicillin-Resistant Staphylococcus aureus USA300 from a Clinical Compound Library. Pathogens 2017; 6:pathogens6030044. [PMID: 28930155 PMCID: PMC5618001 DOI: 10.3390/pathogens6030044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant threat for effective treatment of several difficult-to-treat infections in humans. To identify potential new treatment options for MRSA infections, we screened a clinical compound library consisting of 1524 compounds using a growth inhibition assay in 96-well plates. We identified 34 agents which are either bacteriostatic or bactericidal against log-phase clinical MRSA strain USA300. Among them, 9 candidates (thonzonium, cetylpyridinium, trilocarban, benzododecinium, bithionol, brilliant green, chlorquinaldol, methylbenzethonium and green violet) are known antiseptics, 11 candidates are known antibiotics currently recommended for the treatment of MRSA. We identified 9 new drug candidates, 5 of which (thiostrepton, carbomycin, spiramycin, clofazimine and chloroxine) are antibiotics used for treating other infections than S. aureus infections; 4 of which (quinaldine blue, closantel, dithiazanine iodide and pyrvinium pamoate) are drugs used for treating parasitic diseases or cancer. We ranked these new drug candidates according to their MICs against the MRSA strain USA300. Our findings may have implications for more effective treatment of MRSA infections.
Collapse
Affiliation(s)
- Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Peng Cui
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Lili Tian
- Beijing Research Institute for Tuberculosis Control, Beijing 100035, China.
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Wenhong Zhang
- Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo) 2017; 71:153-184. [DOI: 10.1038/ja.2017.62] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022]
|
23
|
Carlson MA, Haddad BG, Weis AJ, Blackwood CS, Shelton CD, Wuerth ME, Walter JD, Spiegel PC. Ribosomal protein L7/L12 is required for GTPase translation factors EF-G, RF3, and IF2 to bind in their GTP state to 70S ribosomes. FEBS J 2017; 284:1631-1643. [PMID: 28342293 DOI: 10.1111/febs.14067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/01/2022]
Abstract
Ribosomal protein L7/L12 is associated with translation initiation, elongation, and termination by the 70S ribosome. The guanosine 5' triphosphate hydrolase (GTPase) activity of elongation factor G (EF-G) requires the presence of L7/L12, which is critical for ribosomal translocation. Here, we have developed new methods for the complete depletion of L7/L12 from Escherichia coli 70S ribosomes to analyze the effect of L7/L12 on the activities of the GTPase factors EF-G, RF3, IF2, and LepA. Upon removal of L7/L12 from ribosomes, the GTPase activities of EF-G, RF3, and IF2 decreased to basal levels, while the activity of LepA decreased marginally. Upon reconstitution of ribosomes with recombinant L12, the GTPase activities of all GTPases returned to full activity. Moreover, ribosome binding assays indicated that EF-G, RF3, and IF2 require L7/L12 for stable binding in the GTP state, and LepA retained > 50% binding. Lastly, an EF-G∆G' truncation mutant possessed ribosome-dependent GTPase activity, which was insensitive to L7/L12. Our results indicate that L7/L12 is required for stable binding of ribosome-dependent GTPases that harbor direct interactions to the L7/L12 C-terminal domains, either through a G' domain (EF-G, RF3) or a unique N-terminal domain (IF2). Furthermore, we hypothesize this interaction is concomitant with counterclockwise ribosomal intersubunit rotation, which is required for translocation, initiation, and post-termination.
Collapse
Affiliation(s)
- Markus A Carlson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Bassam G Haddad
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Amanda J Weis
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Colby S Blackwood
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | | | - Michelle E Wuerth
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Justin D Walter
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Paul Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
24
|
Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to β-Lactams. Antimicrob Agents Chemother 2017; 61:AAC.02173-16. [PMID: 28115345 PMCID: PMC5365698 DOI: 10.1128/aac.02173-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/15/2017] [Indexed: 01/29/2023] Open
Abstract
The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to β-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
Collapse
|
25
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
26
|
da Silva PB, Campos DL, Ribeiro CM, da Silva IC, Pavan FR. New antimycobacterial agents in the pre-clinical phase or beyond: recent advances in patent literature (2001-2016). Expert Opin Ther Pat 2016; 27:269-282. [PMID: 27796146 DOI: 10.1080/13543776.2017.1253681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Tuberculosis, an infectious disease, has caused more deaths worldwide than any other single infectious disease, killing more than 1.5 million people each year; equating to 4,100 deaths a day. In the past 60 years, no new drugs have been added to the first line regimen, in spite of the fact that thousands of papers have been published on drugs against tuberculosis and hundreds of drugs have received patents as new potential products. Thus, there is undoubtedly an urgent need for the deployment of new effective drugs against tuberculosis. Areas covered: This review brings to the reader the opportunity to understand the chemical and biological characteristics of all patented anti-tuberculosis drugs in North America, Europe, Japan, and Russia. The 116 patents discussed here concern new molecules in the early or advanced phase of development in the last 16 years. Expert opinion: Of all 116 patents, only one developed drug, bedaquiline, is used, and then, only in specific cases. Another three drugs are in clinical studies. However, many other compounds, for which there are in vitro and in vivo studies, seem to fulfil the requisite criteria to be a new anti-tuberculosis agent. However, why are they not in use? Why were so many studies interrupted? Why is there no more news for many of these drugs?
Collapse
Affiliation(s)
- Patricia Bento da Silva
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Débora Leite Campos
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Camila Maríngolo Ribeiro
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Isabel Cristiane da Silva
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| | - Fernando Rogério Pavan
- a Faculdade de Ciências Farmacêuticas , UNESP - Univ. Estadual Paulista, Campus Araraquara , Araraquara , São Paulo , Brazil
| |
Collapse
|
27
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Abstract
During translation, a plethora of protein factors bind to the ribosome and regulate protein synthesis. Many of those factors are guanosine triphosphatases (GTPases), proteins that catalyze the hydrolysis of guanosine 5'-triphosphate (GTP) to promote conformational changes. Despite numerous studies, the function of elongation factor 4 (EF-4/LepA), a highly conserved translational GTPase, has remained elusive. Here, we present the crystal structure at 2.6-Å resolution of the Thermus thermophilus 70S ribosome bound to EF-4 with a nonhydrolyzable GTP analog and A-, P-, and E-site tRNAs. The structure reveals the interactions of EF-4 with the A-site tRNA, including contacts between the C-terminal domain (CTD) of EF-4 and the acceptor helical stem of the tRNA. Remarkably, EF-4 induces a distortion of the A-site tRNA, allowing it to interact simultaneously with EF-4 and the decoding center of the ribosome. The structure provides insights into the tRNA-remodeling function of EF-4 on the ribosome and suggests that the displacement of the CCA-end of the A-site tRNA away from the peptidyl transferase center (PTC) is functionally significant.
Collapse
|
29
|
Myers CL, Kuiper EG, Grant PC, Hernandez J, Conn GL, Honek JF. Functional roles in S-adenosyl-L-methionine binding and catalysis for active site residues of the thiostrepton resistance methyltransferase. FEBS Lett 2015; 589:3263-70. [PMID: 26450779 DOI: 10.1016/j.febslet.2015.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022]
Abstract
Resistance to the antibiotic thiostrepton, in producing Streptomycetes, is conferred by the S-adenosyl-L-methionine (SAM)-dependent SPOUT methyltransferase Tsr. For this and related enzymes, the roles of active site amino acids have been inadequately described. Herein, we have probed SAM interactions in the Tsr active site by investigating the catalytic activity and the thermodynamics of SAM binding by site-directed Tsr mutants. Two arginine residues were demonstrated to be critical for binding, one of which appears to participate in the catalytic reaction. Additionally, evidence consistent with the involvement of an asparagine in the structural organization of the SAM binding site is presented.
Collapse
Affiliation(s)
- Cullen L Myers
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pei C Grant
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jennifer Hernandez
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
30
|
Lin J, Gagnon MG, Bulkley D, Steitz TA. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 2015; 160:219-27. [PMID: 25594181 DOI: 10.1016/j.cell.2014.11.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
The universally conserved GTPase elongation factor G (EF-G) catalyzes the translocation of tRNA and mRNA on the ribosome after peptide bond formation. Despite numerous studies suggesting that EF-G undergoes extensive conformational rearrangements during translocation, high-resolution structures exist for essentially only one conformation of EF-G in complex with the ribosome. Here, we report four atomic-resolution crystal structures of EF-G bound to the ribosome programmed in the pre- and posttranslocational states and to the ribosome trapped by the antibiotic dityromycin. We observe a previously unseen conformation of EF-G in the pretranslocation complex, which is independently captured by dityromycin on the ribosome. Our structures provide insights into the conformational space that EF-G samples on the ribosome and reveal that tRNA translocation on the ribosome is facilitated by a structural transition of EF-G from a compact to an elongated conformation, which can be prevented by the antibiotic dityromycin.
Collapse
Affiliation(s)
- Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
31
|
Identification of two structural elements important for ribosome-dependent GTPase activity of elongation factor 4 (EF4/LepA). Sci Rep 2015; 5:8573. [PMID: 25712150 PMCID: PMC4339808 DOI: 10.1038/srep08573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 02/01/2023] Open
Abstract
The bacterial translational GTPase EF4/LepA is structurally similar to the canonical elongation factor EF-G. While sharing core structural features with other translational GTPases, the function of EF4 remains unknown. Recent structural data locates the unique C-terminal domain (CTD) of EF4 in proximity to the ribosomal peptidyl transferase center (PTC). To investigate the functional role of EF4's CTD we have constructed three C-terminal truncation variants. These variants are fully functional with respect to binding mant-GTP and mant-GDP as determined by rapid kinetics, as well as their intrinsic multiple turnover GTPase activity. Furthermore, they are able to form stable complexes with the 70S ribosome and 50S/30S ribosomal subunits. However, successive removal of the C-terminus impairs ribosome-dependent multiple turnover GTPase activity of EF4, which for the full-length protein is very similar to EF-G. Our findings suggest that the last 44 C-terminal amino acids of EF4 form a sub-domain within the C-terminal domain that is important for GTP-dependent function on the ribosome. Additionally, we show that efficient nucleotide hydrolysis by EF4 on the ribosome depends on a conserved histidine (His 81), similar to EF-G and EF-Tu.
Collapse
|
32
|
Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system. Proc Natl Acad Sci U S A 2014; 111:E5498-507. [PMID: 25489067 DOI: 10.1073/pnas.1412070111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TipA is a transcriptional regulator found in diverse bacteria. It constitutes a minimal autoregulated multidrug resistance system against numerous thiopeptide antibiotics. Here we report the structures of its drug-binding domain TipAS in complexes with promothiocin A and nosiheptide, and a model of the thiostrepton complex. Drug binding induces a large transition from a partially unfolded to a globin-like structure. The structures rationalize the mechanism of promiscuous, yet specific, drug recognition: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipAS amino acids; and (ii) the variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified four-ring motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. The observed identity of chemical motifs responsible for antibiotic function and resistance may be a general principle and could help to better define new leads for antibiotics.
Collapse
|
33
|
Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem 2014; 97:911-27. [PMID: 25455640 DOI: 10.1016/j.ejmech.2014.10.058] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 01/13/2023]
Abstract
The heterocycles are the versatile compounds existing in almost all natural products and synthetic organic compounds, usually associated with one or the other biological activity. Among the heterocycles the thiazoles and benzothiazoles occupy a prominent position. They possess a broad range of biological activities and are found in many potent biologically active molecules and drugs such as vitamin thiamine, sulfathiazol (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug) and tiazofurin (antineoplastic drug). The thiazole moiety is abundantly found in natural products while benzothiazole moiety is rare. In this review we disclose the literature reports of thiazoles and benzothiazoles possessing different biological activities.
Collapse
Affiliation(s)
- Abdul Rouf
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Cihangir Tanyeli
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey.
| |
Collapse
|
34
|
Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. J Bacteriol 2014; 196:4344-50. [PMID: 25313391 DOI: 10.1128/jb.02243-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiopeptides are small (12- to 17-amino-acid), heavily modified peptides of bacterial origin. This antibiotic family, with more than 100 known members, is characterized by the presence of sulfur-containing heterocyclic rings and dehydrated residues within a macrocyclic peptide structure. Thiopeptides, including micrococcin P1, have garnered significant attention in recent years for their potent antimicrobial activity against bacteria, fungi, and even protozoa. Micrococcin P1 is known to target the ribosome; however, like those of other thiopeptides, its biosynthesis and mechanisms of self-immunity are poorly characterized. We have discovered an isolate of Staphylococcus epidermidis harboring the genes for thiopeptide production and self-protection on a 24-kb plasmid. Here we report the characterization of this plasmid, identify the antimicrobial peptide that it encodes, and provide evidence of a target replacement-mediated mechanism of self-immunity.
Collapse
|
35
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
36
|
Gagnon MG, Lin J, Bulkley D, Steitz TA. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Science 2014; 345:684-7. [PMID: 25104389 PMCID: PMC9153294 DOI: 10.1126/science.1253525] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4-guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA. Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA.
| |
Collapse
|
37
|
The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 2014; 58:2038-44. [PMID: 24449778 DOI: 10.1128/aac.02394-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.
Collapse
|
38
|
Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 2014; 12:317-51. [PMID: 24445304 PMCID: PMC3917276 DOI: 10.3390/md12010317] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023] Open
Abstract
Thiopeptides, or thiazolyl peptides, are a relatively new family of antibiotics that already counts with more than one hundred different entities. Although they are mainly isolated from soil bacteria, during the last decade, new members have been isolated from marine samples. Far from being limited to their innate antibacterial activity, thiopeptides have been found to possess a wide range of biological properties, including anticancer, antiplasmodial, immunosuppressive, etc. In spite of their ribosomal origin, these highly posttranslationally processed peptides have posed a fascinating synthetic challenge, prompting the development of various methodologies and strategies. Regardless of their limited solubility, intensive investigations are bringing thiopeptide derivatives closer to the clinic, where they are likely to show their veritable therapeutic potential.
Collapse
|
39
|
Bulkley D, Brandi L, Polikanov YS, Fabbretti A, O'Connor M, Gualerzi CO, Steitz TA. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Cell Rep 2014; 6:357-65. [PMID: 24412368 PMCID: PMC5331365 DOI: 10.1016/j.celrep.2013.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/23/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
The translocation of mRNA and tRNA through the ribosome is catalyzed by elongation factor G (EF-G), a universally conserved guanosine triphosphate hydrolase (GTPase). The mechanism by which the closely related decapeptide antibiotics dityromycin and GE82832 inhibit EF-G-catalyzed translocation is elucidated in this study. Using crystallographic and biochemical experiments, we demonstrate that these antibiotics bind to ribosomal protein S12 in solution alone as well as within the small ribosomal subunit, inducing long-range effects on the ribosomal head. The crystal structure of the antibiotic in complex with the 70S ribosome reveals that the binding involves conserved amino acid residues of S12 whose mutations result in in vitro and in vivo antibiotic resistance and loss of antibiotic binding. The data also suggest that GE82832/dityromycin inhibits EF-G-catalyzed translocation by disrupting a critical contact between EF-G and S12 that is required to stabilize the posttranslocational conformation of EF-G, thereby preventing the ribosome-EF-G complex from entering a conformation productive for translocation.
Collapse
Affiliation(s)
- David Bulkley
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Letizia Brandi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy
| | - Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, New Haven, CT 06511, USA
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy
| | - Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | - Thomas A Steitz
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, New Haven, CT 06511, USA.
| |
Collapse
|
40
|
Gupta A, Mir SS, Saqib U, Biswas S, Vaishya S, Srivastava K, Siddiqi MI, Habib S. The effect of fusidic acid on Plasmodium falciparum elongation factor G (EF-G). Mol Biochem Parasitol 2013; 192:39-48. [PMID: 24211494 DOI: 10.1016/j.molbiopara.2013.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022]
Abstract
Inhibition of growth of the malaria parasite Plasmodium falciparum by known translation-inhibitory antibiotics has generated interest in understanding their action on the translation apparatus of the two genome containing organelles of the malaria parasite: the mitochondrion and the relic plastid (apicoplast). We report GTPase activity of recombinant EF-G proteins that are targeted to the organelles and further use these to test the effect of the EF-G inhibitor fusidic acid (FA) on the factor-ribosome interface. Our results monitoring locking of EF-G·GDP onto surrogate Escherichia coli ribosomes as well as multi-turnover GTP hydrolysis by the factor indicate that FA has a greater effect on apicoplast EF-G compared to the mitochondrial counterpart. Deletion of a three amino acid (GVG) sequence in the switch I loop that is conserved in proteins of the mitochondrial EF-G1 family and the Plasmodium mitochondrial factor, but is absent in apicoplast EF-G, demonstrated that this motif contributes to differential inhibition of the two EF-Gs by FA. Additionally, the drug thiostrepton, that is known to target the apicoplast and proteasome, enhanced retention of only mitochondrial EF-G on ribosomes providing support for the reported effect of the drug on parasite mitochondrial translation.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Snober S Mir
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uzma Saqib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Subir Biswas
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Suniti Vaishya
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kumkum Srivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
41
|
Peske F, Wintermeyer W. Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Pröpper K, Holstein JJ, Hübschle CB, Bond CS, Dittrich B. Invariom refinement of a new monoclinic solvate of thiostrepton at 0.64 Å resolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1530-9. [DOI: 10.1107/s0907444913010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/18/2013] [Indexed: 11/10/2022]
|
43
|
The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J 2013; 452:173-81. [DOI: 10.1042/bj20121792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LepA [EF4 (elongation factor 4)] is a highly conserved protein found in nearly all known genomes. EF4 triggers back-translocation of the elongating ribosome, causing the translation machinery to move one codon backwards along the mRNA. Knockout of the corresponding gene in various bacteria results in different phenotypes; however, the physiological function of the factor in vivo is unclear. Although functional research on Guf1 (GTPase of unknown function 1), the eukaryotic homologue of EF4, showed that it plays a critical role under suboptimal translation conditions in vivo, its detailed mechanism has yet to be identified. In the present review we briefly cover recent advances in our understanding of EF4, including in vitro structural and biochemical studies, and research on its physiological role in vivo. Lastly, we present a hypothesis for back-translocation and discuss the directions future EF4 research should focus on.
Collapse
|
44
|
Identification of antituberculosis agents that target ribosomal protein interactions using a yeast two-hybrid system. Proc Natl Acad Sci U S A 2012; 109:17412-7. [PMID: 23045703 DOI: 10.1073/pnas.1110271109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis kills about 2 million people annually and antibiotic resistance is a cause of increased mortality. Therefore, development of new antituberculosis drugs is urgent for the control of widespread tuberculosis infections. For this purpose, we performed an innovative screen to identify new agents that disrupt the function of ribosomes in M. tuberculosis. Two bacterial ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors (EFs) during translation. Therefore, the L12-L10 interaction should be essential for ribosomal function and protein synthesis. We established a yeast two-hybrid system to identify small molecules that block the interaction between L12 and L10 proteins from M. tuberculosis. Using this system, we identified two compounds T766 and T054 that show strong bactericidal activity against tuberculosis but with low toxicity to mice and other bacterial strains. Moreover, using surface plasmon resonance (SPR) assay, we have demonstrated that these compounds bind specifically to L12 to disrupt L12-L10 interaction. Overproduction of L12 protein, but not L10, lowers the antibacterial activity of T766 and T054, indicating that the ribosome is likely the cellular target. Therefore, our data demonstrate that this yeast two-hybrid system is a useful tool to identify unique antituberculosis agents targeting the ribosomal protein L12-L10 interaction.
Collapse
|
45
|
Wolf A, Baumann S, Arndt HD, Kirschner KN. Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation. Bioorg Med Chem 2012; 20:7194-205. [PMID: 23107668 DOI: 10.1016/j.bmc.2012.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
The thiostrepton antibiotic inhibits bacterial protein synthesis by binding to a cleft formed by the ribosomal protein L11 and 23S's rRNA helices 43-44 on the 70S ribosome. It was proposed from crystal structures that the ligand restricts L11's N-terminal movement and thus prevents proper translation factor binding. An exact understanding of thiostrepton's impact on the binding site's dynamics at atomistic resolution is still missing. Here we report an all-atom molecular dynamics simulations of the binary L11·rRNA and the ternary L11·rRNA·thiostrepton complex (rRNA = helices 43-44). We demonstrate that thiostrepton directly impacts the binding site's atomic and biomacromolecular dynamics.
Collapse
Affiliation(s)
- Antje Wolf
- Department of Bioinformatics, Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | | | | | | |
Collapse
|
46
|
Zhang D, Liu G, Xue J, Lou J, Nierhaus KH, Gong W, Qin Y. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Nucleic Acids Res 2012; 40:10851-65. [PMID: 22965132 PMCID: PMC3505967 DOI: 10.1093/nar/gks833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.
Collapse
Affiliation(s)
- Dandan Zhang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J Mol Model 2012; 19:539-49. [PMID: 22961589 PMCID: PMC3592554 DOI: 10.1007/s00894-012-1563-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/06/2012] [Indexed: 11/04/2022]
Abstract
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria’s L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
Collapse
|