1
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
2
|
Thomsen I, Kunowska N, de Souza R, Moody AM, Crawford G, Wang YF, Khadayate S, Whilding C, Strid J, Karimi MM, Barr AR, Dillon N, Sabbattini P. RUNX1 Regulates a Transcription Program That Affects the Dynamics of Cell Cycle Entry of Naive Resting B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2976-2991. [PMID: 34810221 PMCID: PMC8675107 DOI: 10.4049/jimmunol.2001367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.
Collapse
Affiliation(s)
- Inesa Thomsen
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Roshni de Souza
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Anne-Marie Moody
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Sanjay Khadayate
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexis R Barr
- Cell Cycle Control Group, MRC London Institute of Medical Sciences, London, United Kingdom; and
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
| |
Collapse
|
3
|
Accurate germline RUNX1 variant interpretation and its clinical significance. Blood Adv 2021; 4:6199-6203. [PMID: 33351114 DOI: 10.1182/bloodadvances.2020003304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
|
4
|
ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv 2020; 3:2962-2979. [PMID: 31648317 DOI: 10.1182/bloodadvances.2019000644] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies. The MM-VCEP began optimizing ACMG/AMP rules for RUNX1 because many germline variants have been described in patients with familial platelet disorder with a predisposition to acute myeloid leukemia, characterized by thrombocytopenia, platelet functional/ultrastructural defects, and a predisposition to hematologic malignancies. The 28 ACMG/AMP codes were tailored for RUNX1 variants by modifying gene/disease specifications, incorporating strength adjustments of existing rules, or both. Key specifications included calculation of minor allele frequency thresholds, formulating a semi-quantitative approach to counting multiple independent variant occurrences, identifying functional domains and mutational hotspots, establishing functional assay thresholds, and characterizing phenotype-specific guidelines. Preliminary rules were tested by using a pilot set of 52 variants; among these, 50 were previously classified as benign/likely benign, pathogenic/likely pathogenic, variant of unknown significance (VUS), or conflicting interpretations (CONF) in ClinVar. The application of RUNX1-specific criteria resulted in a reduction in CONF and VUS variants by 33%, emphasizing the benefit of gene-specific criteria and sharing internal laboratory data.
Collapse
|
5
|
Sun W, Zeng J, Chang J, Xue Y, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. RUNX1-205, a novel splice variant of the human RUNX1 gene, has blockage effect on mesoderm-hemogenesis transition and promotion effect during the late stage of hematopoiesis. J Mol Cell Biol 2020; 12:386-396. [PMID: 32313936 PMCID: PMC7288743 DOI: 10.1093/jmcb/mjaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is required for definitive hematopoiesis; however, the functions of most human RUNX1 isoforms are unclear. In particular, the effects of RUNX1-205 (a novel splice variant that lacks exon 6 in comparison with RUNX1b) on human hematopoiesis are not clear. In this study, a human embryonic stem cell (hESC) line with inducible RUNX1-205 overexpression was established. Analyses of these cells revealed that induction of RUNX1-205 overexpression at early stage did not influence the induction of mesoderm but blocked the emergence of CD34+ cells, and the production of hematopoietic stem/progenitor cells was significantly reduced. In addition, the expression of hematopoiesis-related factors was downregulated. However, these effects were abolished when RUNX1-205 overexpression was induced after Day 6 in co-cultures of hESCs and AGM-S3 cells, indicating that the inhibitory effect occurred prior to generation of hemogenic endothelial cells, while the promotive effect could be observed during the late stage of hematopoiesis. This is very similar to that of RUNX1b. Interestingly, the mRNA expression profile of RUNX1-205 during hematopoiesis was distinct from that of RUNX1b, and the protein stability of RUNX1-205 was much higher than that of RUNX1b. Thus, the function of RUNX1-205 in normal and diseased models should be further explored.
Collapse
Affiliation(s)
- Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiahui Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jing Chang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu 61006, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
6
|
Wu D, Luo X, Feurstein S, Kesserwan C, Mohan S, Pineda-Alvarez DE, Godley LA. How I curate: applying American Society of Hematology-Clinical Genome Resource Myeloid Malignancy Variant Curation Expert Panel rules for RUNX1 variant curation for germline predisposition to myeloid malignancies. Haematologica 2020; 105:870-887. [PMID: 32165484 PMCID: PMC7109758 DOI: 10.3324/haematol.2018.214221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 01/30/2023] Open
Abstract
The broad use of next-generation sequencing and microarray platforms in research and clinical laboratories has led to an increasing appreciation of the role of germline mutations in genes involved in hematopoiesis and lineage differentiation that contribute to myeloid neoplasms. Despite implementation of the American College of Medical Genetics and Genomics and Association for Molecular Pathology 2015 guidelines for sequence variant interpretation, the number of variants deposited in ClinVar, a genomic repository of genotype and phenotype data, and classified as having uncertain significance or being discordantly classified among clinical laboratories remains elevated and contributes to indeterminate or inconsistent patient care. In 2018, the American Society of Hematology and the Clinical Genome Resource co-sponsored the Myeloid Malignancy Variant Curation Expert Panel to develop rules for classifying gene variants associated with germline predisposition to myeloid neoplasia. Herein, we demonstrate application of our rules developed for the RUNX1 gene to variants in six examples to show how we would classify them within the proposed framework.
Collapse
Affiliation(s)
- David Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Xi Luo
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Chimene Kesserwan
- Albert Einstein College of Medicine, Department of Pathology, New York, NY
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and The University of Chicago Comprehensive Cancer Center, Chicago, IL .,Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
7
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
8
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
Chen B, Teng J, Liu H, Pan X, Zhou Y, Huang S, Lai M, Bian G, Mao B, Sun W, Zhou Q, Yang S, Nakahata T, Ma F. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J Mol Cell Biol 2018; 9:262-273. [PMID: 28992293 DOI: 10.1093/jmcb/mjx032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models.
Collapse
Affiliation(s)
- B Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiawen Teng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Hongwei Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - X Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Y Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
10
|
Lie-A-Ling M, Marinopoulou E, Lilly AJ, Challinor M, Patel R, Lancrin C, Kouskoff V, Lacaud G. Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development 2018; 145:dev149419. [PMID: 29530939 PMCID: PMC5868988 DOI: 10.1242/dev.149419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
During ontogeny, hematopoietic stem and progenitor cells arise from hemogenic endothelium through an endothelial-to-hematopoietic transition that is strictly dependent on the transcription factor RUNX1. Although it is well established that RUNX1 is essential for the onset of hematopoiesis, little is known about the role of RUNX1 dosage specifically in hemogenic endothelium and during the endothelial-to-hematopoietic transition. Here, we used the mouse embryonic stem cell differentiation system to determine if and how RUNX1 dosage affects hemogenic endothelium differentiation. The use of inducible Runx1 expression combined with alterations in the expression of the RUNX1 co-factor CBFβ allowed us to evaluate a wide range of RUNX1 levels. We demonstrate that low RUNX1 levels are sufficient and necessary to initiate an effective endothelial-to-hematopoietic transition. Subsequently, RUNX1 is also required to complete the endothelial-to-hematopoietic transition and to generate functional hematopoietic precursors. In contrast, elevated levels of RUNX1 are able to drive an accelerated endothelial-to-hematopoietic transition, but the resulting cells are unable to generate mature hematopoietic cells. Together, our results suggest that RUNX1 dosage plays a pivotal role in hemogenic endothelium maturation and the establishment of the hematopoietic system.
Collapse
Affiliation(s)
- Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Mairi Challinor
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Rahima Patel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Christophe Lancrin
- EMBL Rome, Epigenetics and Neurobiology Unit, Campus Adriano Buzzati-Traverso Via Ramarini 32, 00015 Monterotondo, Italy
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
11
|
Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 2017; 129:2061-2069. [PMID: 28179276 DOI: 10.1182/blood-2016-12-689109] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/01/2023] Open
Abstract
The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.
Collapse
|
12
|
West MJ, Farrell PJ. Roles of RUNX in B Cell Immortalisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:283-298. [PMID: 28299664 DOI: 10.1007/978-981-10-3233-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RUNX1 and RUNX3 are the main RUNX genes expressed in B lymphocytes. Both are expressed throughout B-cell development and play key roles at certain key developmental transitions. The tumour-associated Epstein-Barr virus (EBV) has potent B-cell transforming ability and manipulates RUNX3 and RUNX1 transcription through novel mechanisms to control B cell growth. In contrast to resting mature B cells where RUNX1 expression is high, in EBV-infected cells RUNX1 levels are low and RUNX3 levels are high. Downregulation of RUNX1 in these cells results from cross-regulation by RUNX3 and serves to relieve RUNX1-mediated growth repression. RUNX3 is upregulated by the EBV transcription factor (TF) EBNA2 and represses RUNX1 transcription through RUNX sites in the RUNX1 P1 promoter. Recent analysis revealed that EBNA2 activates RUNX3 transcription through an 18 kb upstream super-enhancer in a manner dependent on the EBNA2 and Notch DNA-binding partner RBP-J. This super-enhancer also directs RUNX3 activation by two further RBP-J-associated EBV TFs, EBNA3B and 3C. Counter-intuitively, EBNA2 also hijacks RBP-J to target a super-enhancer region upstream of RUNX1 to maintain some RUNX1 expression in certain cell backgrounds, although the dual functioning EBNA3B and 3C proteins limit this activation. Interestingly, the B-cell genome binding sites of EBV TFs overlap extensively with RUNX3 binding sites and show enrichment for RUNX motifs. Therefore in addition to B-cell growth manipulation through the long-range control of RUNX transcription, EBV may also use RUNX proteins as co-factors to deregulate the transcription of many B cell genes during immortalisation.
Collapse
Affiliation(s)
- Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Paul J Farrell
- Section of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
13
|
VanOudenhove JJ, Medina R, Ghule PN, Lian JB, Stein JL, Zaidi SK, Stein GS. Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports 2016; 7:884-896. [PMID: 27720906 PMCID: PMC5106514 DOI: 10.1016/j.stemcr.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment. RUNX1 is transiently upregulated during early mesendoderm differentiation of hESCs RUNX1 promotes motility and the EMT process during mesendodermal differentiation RUNX1 knockdown specifically inhibits TGFB2 signaling Reintroduction of TGFB2, but not TGFB1, rescues the phenotype of RUNX1 depletion
Collapse
Affiliation(s)
- Jennifer J VanOudenhove
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA; Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ricardo Medina
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
14
|
Voon DCC, Hor YT, Ito Y. The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology 2015; 146:523-36. [PMID: 26399680 DOI: 10.1111/imm.12535] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/24/2022] Open
Abstract
Among their diverse roles as transcriptional regulators during development and cell fate specification, the RUNX transcription factors are best known for the parts they play in haematopoiesis. RUNX proteins are expressed throughout all haematopoietic lineages, being necessary for the emergence of the first haematopoietic stem cells to their terminal differentiation. Although much progress has been made since their discoveries almost two decades ago, current appreciation of RUNX in haematopoiesis is largely grounded in their lineage-specifying roles. In contrast, the importance of RUNX to immunity has been mostly obscured for historic, technical and conceptual reasons. However, this paradigm is likely to shift over time, as a primary purpose of haematopoiesis is to resource the immune system. Furthermore, recent evidence suggests a role for RUNX in the innate immunity of non-haematopoietic cells. This review takes a haematopoiesis-centric approach to collate what is known of RUNX's contribution to the overall mammalian immune system and discuss their growing prominence in areas such as autoimmunity, inflammatory diseases and mucosal immunity.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Yoshiaki Ito
- Cancer Biology Programme, Cancer Science Institute of Singapore, Singapore
| |
Collapse
|
15
|
Runx1 exon 6-related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood 2014; 123:3760-9. [PMID: 24771859 DOI: 10.1182/blood-2013-08-521252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RUNX1 is an important transcription factor for hematopoiesis. There are multiple alternatively spliced isoforms of RUNX1. The best known isoforms are RUNX1a from use of exon 7A and RUNX1b and c from use of exon 7B. RUNX1a has unique functions due to its lack of C-terminal regions common to RUNX1b and c. Here, we report that the ortholog of human RUNX1a was only found in primates. Furthermore, we characterized 3 Runx1 isoforms generated by exon 6 alternative splicing. Runx1bEx6(-) (Runx1b without exon 6) and a unique mouse Runx1bEx6e showed higher colony-forming activity than the full-length Runx1b (Runx1bEx6(+)). They also facilitated the transactivation of Runx1bEx6(+). To gain insight into in vivo functions, we analyzed a knock-in (KI) mouse model that lacks isoforms Runx1b/cEx6(-) and Runx1bEx6e. KI mice had significantly fewer lineage-Sca1(+)c-Kit(+) cells, short-term hematopoietic stem cells (HSCs) and multipotent progenitors than controls. In vivo competitive repopulation assays demonstrated a sevenfold difference of functional HSCs between wild-type and KI mice. Together, our results show that Runx1 isoforms involving exon 6 support high self-renewal capacity in vitro, and their loss results in reduction of the HSC pool in vivo, which underscore the importance of fine-tuning RNA splicing in hematopoiesis.
Collapse
|
16
|
Wong WF, Looi CY, Kon S, Movahed E, Funaki T, Chang LY, Satake M, Kohu K. T-cell receptor signaling inducesproximal Runx1transactivation via a calcineurin-NFAT pathway. Eur J Immunol 2014; 44:894-904. [DOI: 10.1002/eji.201343496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 10/11/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Won Fen Wong
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Chung Yeng Looi
- Faculty of Medicine; Department of Pharmacology; University of Malaya; Kuala Lumpur Malaysia
| | - Shunsuke Kon
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Elaheh Movahed
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Tomo Funaki
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
| | - Li Yen Chang
- Faculty of Medicine; Department of Medical Microbiology; University of Malaya; Kuala Lumpur Malaysia
| | - Masanobu Satake
- Department of Molecular Immunology; Institute for Development; Aging and Cancer; Tohoku University; Sendai Japan
- Network Medicine; Global COE Program; Tohoku University; Sendai Japan
| | - Kazuyoshi Kohu
- Cancer Science Institute; National University of Singapore; Singapore
| |
Collapse
|
17
|
Powers JM, Trobridge GD. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies. ACTA ACUST UNITED AC 2011; 2013. [PMID: 24383045 PMCID: PMC3875223 DOI: 10.4172/2157-7633.s3-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.
Collapse
Affiliation(s)
- John M Powers
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington, USA ; School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|