1
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Xiao Y, Ni M, Zheng Z, Liu Y, Yin M, Mao S, Zhao Y, Tian B, Wang L, Xu H, Hua Y. POLM variant G312R promotes ovarian tumorigenesis through genomic instability and COL11A1-NF-κB axis. Am J Physiol Cell Physiol 2024; 327:C168-C183. [PMID: 38826139 DOI: 10.1152/ajpcell.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA polymerase mu (POLM), especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. In addition, our research reveals that POLMG312R perturbs collagen alpha-1 (XI) chain (COL11A1) expression-a gene that plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.NEW & NOTEWORTHY Our research reveals that POLM plays an important role in ovarian cancer development, especially the mutation G312R. We uncover the POLMG312R mutation as a driver of genomic instability in ovarian cancer via aberrant ribonucleotide incorporation. We reveal that POLMG312R upregulates COL11A1 and activates NF-κB signaling, contributing to tumor progression and chemoresistance. This study identifies the POLM-COL11A1-NF-κB axis as a novel oncogenic pathway.
Collapse
Affiliation(s)
- Yue Xiao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Yufeng Liu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Mingyu Yin
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Shuyu Mao
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Liangyan Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Xu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
4
|
Watanabe G, Lieber MR. The flexible and iterative steps within the NHEJ pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:105-119. [PMID: 37150451 PMCID: PMC10205690 DOI: 10.1016/j.pbiomolbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Cellular and biochemical studies of nonhomologous DNA end joining (NHEJ) have long established that nuclease and polymerase action are necessary for the repair of a very large fraction of naturally-arising double-strand breaks (DSBs). This conclusion is derived from NHEJ studies ranging from yeast to humans and all genetically-tractable model organisms. Biochemical models derived from recent real-time and structural studies have yet to incorporate physical space or timing for DNA end processing. In real-time single molecule FRET (smFRET) studies, we analyzed NHEJ synapsis of DNA ends in a defined biochemical system. We described a Flexible Synapsis (FS) state in which the DNA ends were in proximity via only Ku and XRCC4:DNA ligase 4 (X4L4), and in an orientation that would not yet permit ligation until base pairing between one or more nucleotides of microhomology (MH) occurred, thereby allowing an in-line Close Synapsis (CS) state. If no MH was achievable, then XLF was critical for ligation. Neither FS or CS required DNA-PKcs, unless Artemis activation was necessary to permit local resection and subsequent base pairing between the two DNA ends being joined. Here we conjecture on possible 3D configurations for this FS state, which would spatially accommodate the nuclease and polymerase processing steps in an iterative manner. The FS model permits repeated attempts at ligation of at least one strand at the DSB after each round of nuclease or polymerase action. In addition to activation of Artemis, other possible roles for DNA-PKcs are discussed.
Collapse
Affiliation(s)
- Go Watanabe
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, 90089-9176, USA.
| |
Collapse
|
5
|
Jung H, Rayala NK, Lee S. Effects of N7-Alkylguanine Conformation and Metal Cofactors on the Translesion Synthesis by Human DNA Polymerase η. Chem Res Toxicol 2022; 35:512-521. [PMID: 35239327 DOI: 10.1021/acs.chemrestox.1c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-enzymatic alkylation on DNA often generates N7-alkyl-2'-deoxyguanosine (N7alkylG) adducts as major lesions. N7alkylG adducts significantly block replicative DNA polymerases and can be bypassed by translesion synthesis (TLS) polymerases such as polymerase η (polη). To gain insights into the bypass of N7alkylG by TLS polymerases, we conducted kinetic and structural studies of polη catalyzing across N7BnG, a genotoxic lesion generated by the carcinogenic N-nitrosobenzylmethylamine. The presence of templating N7BnG in the polη catalytic site decreased the replication fidelity by ∼9-fold, highlighting the promutagenicity of N7BnG. The catalytic efficiency for dCTP incorporation opposite N7BnG decreased ∼22-fold and ∼7-fold compared to the incorporation opposite undamaged guanine in the presence of Mg2+ and Mn2+, respectively. A crystal structure of the complexes grown with polη, templating N7BnG, incoming dCTP, and Mg2+ ions showed the lack of the incoming nucleotide and metal cofactors in the polη catalytic site. Interestingly, the templating N7BnG adopted a syn conformation, which has not been observed in the published N7alkylG structures. The preferential formation of syn-N7BnG conformation at the templating site may deter the binding of an incoming dCTP, causing the inefficient bypass by polη. In contrast, the use of Mn2+ in place of Mg2+ in co-crystallization yielded a ternary complex displaying an anti-N7BnG:dCTP base pair and catalytic metal ions, which would be a close mimic of a catalytically competent state. We conclude that certain bulky N7-alkylG lesions can slow TLS polymerase-mediated bypass by adopting a catalytically unfavorable syn conformation in the replicating base pair site.
Collapse
Affiliation(s)
- Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Naveen Kumar Rayala
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
7
|
Balint E, Unk I. Manganese Is a Strong Specific Activator of the RNA Synthetic Activity of Human Polη. Int J Mol Sci 2021; 23:ijms23010230. [PMID: 35008656 PMCID: PMC8745064 DOI: 10.3390/ijms23010230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities.
Collapse
|
8
|
Vaisman A, McDonald JP, Smith MR, Aspelund SL, Evans TC, Woodgate R. Identification and Characterization of Thermostable Y-Family DNA Polymerases η, ι, κ and Rev1 From a Lower Eukaryote, Thermomyces lanuginosus. Front Mol Biosci 2021; 8:778400. [PMID: 34805283 PMCID: PMC8595933 DOI: 10.3389/fmolb.2021.778400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Y-family DNA polymerases (pols) consist of six phylogenetically separate subfamilies; two UmuC (polV) branches, DinB (pol IV, Dpo4, polκ), Rad30A/POLH (polη), and Rad30B/POLI (polι) and Rev1. Of these subfamilies, DinB orthologs are found in all three domains of life; eubacteria, archaea, and eukarya. UmuC orthologs are identified only in bacteria, whilst Rev1 and Rad30A/B orthologs are only detected in eukaryotes. Within eukaryotes, a wide array of evolutionary diversity exists. Humans possess all four Y-family pols (pols η, ι, κ, and Rev1), Schizosaccharomyces pombe has three Y-family pols (pols η, κ, and Rev1), and Saccharomyces cerevisiae only has polη and Rev1. Here, we report the cloning, expression, and biochemical characterization of the four Y-family pols from the lower eukaryotic thermophilic fungi, Thermomyces lanuginosus. Apart from the expected increased thermostability of the T. lanuginosus Y-family pols, their major biochemical properties are very similar to properties of their human counterparts. In particular, both Rad30B homologs (T. lanuginosus and human polɩ) exhibit remarkably low fidelity during DNA synthesis that is template sequence dependent. It was previously hypothesized that higher organisms had acquired this property during eukaryotic evolution, but these observations imply that polι originated earlier than previously known, suggesting a critical cellular function in both lower and higher eukaryotes.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mallory R Smith
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sender L Aspelund
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Thomas C Evans
- New England Biolabs Incorporated, Ipswich, MA, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Jamsen JA, Sassa A, Perera L, Shock DD, Beard WA, Wilson SH. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. Nat Commun 2021; 12:5055. [PMID: 34417448 PMCID: PMC8379156 DOI: 10.1038/s41467-021-24486-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol μ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol μ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol μ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Mechanism of genome instability mediated by human DNA polymerase mu misincorporation. Nat Commun 2021; 12:3759. [PMID: 34145298 PMCID: PMC8213813 DOI: 10.1038/s41467-021-24096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
Pol μ is capable of performing gap-filling repair synthesis in the nonhomologous end joining (NHEJ) pathway. Together with DNA ligase, misincorporation of dGTP opposite the templating T by Pol μ results in a promutagenic T:G mispair, leading to genomic instability. Here, crystal structures and kinetics of Pol μ substituting dGTP for dATP on gapped DNA substrates containing templating T were determined and compared. Pol μ is highly mutagenic on a 2-nt gapped DNA substrate, with T:dGTP base pairing at the 3' end of the gap. Two residues (Lys438 and Gln441) interact with T:dGTP and fine tune the active site microenvironments. The in-crystal misincorporation reaction of Pol μ revealed an unexpected second dGTP in the active site, suggesting its potential mutagenic role among human X family polymerases in NHEJ.
Collapse
|
11
|
Jamsen JA, Sassa A, Shock DD, Beard WA, Wilson SH. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. Nat Commun 2021; 12:2059. [PMID: 33824325 PMCID: PMC8024293 DOI: 10.1038/s41467-021-21354-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase μ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.
Collapse
Affiliation(s)
- Joonas A. Jamsen
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Akira Sassa
- grid.136304.30000 0004 0370 1101Laboratory of Chromatin Metabolism and Epigenetics, Graduate School of Science, Chiba University, Chiba, Japan
| | - David D. Shock
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - William A. Beard
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Samuel H. Wilson
- grid.280664.e0000 0001 2110 5790Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| |
Collapse
|
12
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
The PHP domain of PolX from Staphylococcus aureus aids high fidelity DNA synthesis through the removal of misincorporated deoxyribo-, ribo- and oxidized nucleotides. Sci Rep 2021; 11:4178. [PMID: 33603016 PMCID: PMC7893174 DOI: 10.1038/s41598-021-83498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.
Collapse
|
14
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
15
|
Selective Metal Ion Utilization Contributes to the Transformation of the Activity of Yeast Polymerase η from DNA Polymerization toward RNA Polymerization. Int J Mol Sci 2020; 21:ijms21218248. [PMID: 33158019 PMCID: PMC7672554 DOI: 10.3390/ijms21218248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Polymerase eta (Polη) is a translesion synthesis DNA polymerase directly linked to cancer development. It can bypass several DNA lesions thereby rescuing DNA damage-stalled replication complexes. We previously presented evidence implicating Saccharomyces cerevisiae Polη in transcription elongation, and identified its specific RNA extension and translesion RNA synthetic activities. However, RNA synthesis by Polη proved rather inefficient under conditions optimal for DNA synthesis. Searching for factors that could enhance its RNA synthetic activity, we have identified the divalent cation of manganese. Here, we show that manganese triggers drastic changes in the activity of Polη. Kinetics experiments indicate that manganese increases the efficiency of ribonucleoside incorporation into RNA by ~400–2000-fold opposite undamaged DNA, and ~3000 and ~6000-fold opposite TT dimer and 8oxoG, respectively. Importantly, preference for the correct base is maintained with manganese during RNA synthesis. In contrast, activity is strongly impaired, and base discrimination is almost lost during DNA synthesis by Polη with manganese. Moreover, Polη shows strong preference for manganese during RNA synthesis even at a 25-fold excess magnesium concentration. Based on this, we suggest that a new regulatory mechanism, selective metal cofactor utilization, modulates the specificity of Polη helping it to perform distinct activities needed for its separate functions during replication and transcription.
Collapse
|
16
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
17
|
Zhao B, Watanabe G, Lieber MR. Polymerase μ in non-homologous DNA end joining: importance of the order of arrival at a double-strand break in a purified system. Nucleic Acids Res 2020; 48:3605-3618. [PMID: 32052035 PMCID: PMC7144918 DOI: 10.1093/nar/gkaa094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
During non-homologous DNA end joining (NHEJ), bringing two broken dsDNA ends into proximity is an essential prerequisite for ligation by XRCC4:Ligase IV (X4L4). This physical juxtaposition of DNA ends is called NHEJ synapsis. In addition to the key NHEJ synapsis proteins, Ku, X4L4, and XLF, it has been suggested that DNA polymerase mu (pol μ) may also align two dsDNA ends into close proximity for synthesis. Here, we directly observe the NHEJ synapsis by pol μ using a single molecule FRET (smFRET) assay where we can measure the duration of the synapsis. The results show that pol μ alone can mediate efficient NHEJ synapsis of 3′ overhangs that have at least 1 nt microhomology. The abundant Ku protein in cells limits the accessibility of pol μ to DNA ends with overhangs. But X4L4 can largely reverse the Ku inhibition, perhaps by pushing the Ku inward to expose the overhang for NHEJ synapsis. Based on these studies, the mechanistic flexibility known to exist at other steps of NHEJ is now also apparent for the NHEJ synapsis step.
Collapse
Affiliation(s)
- Bailin Zhao
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Go Watanabe
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
19
|
Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci Rep 2020; 10:940. [PMID: 31969622 PMCID: PMC6976671 DOI: 10.1038/s41598-020-57886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase (pol) μ primarily inserts ribonucleotides into a single-nucleotide gapped DNA intermediate, and the ligation step plays a critical role in the joining of noncomplementary DNA ends during nonhomologous end joining (NHEJ) for the repair of double-strand breaks (DSBs) caused by reactive oxygen species. Here, we report that the pol μ insertion products of ribonucleotides (rATP or rCTP), instead of deoxyribonucleotides, opposite 8-oxo-2′-deoxyguanosine (8-oxodG) are efficiently ligated and the presence of Mn2+ stimulates this coupled reaction in vitro. Moreover, our results point to a role of pol μ in mediating ligation during the mutagenic bypass of 8-oxodG, while 3′-preinserted noncanonical base pairs (3′-rA or 3′-rC) on NHEJ repair intermediates compromise the end joining by DNA ligase I or the DNA ligase IV/XRCC4 complex.
Collapse
|
20
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
Chang YK, Huang YP, Liu XX, Ko TP, Bessho Y, Kawano Y, Maestre-Reyna M, Wu WJ, Tsai MD. Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn 2+-Mediated Functions. J Am Chem Soc 2019; 141:8489-8502. [PMID: 31067051 DOI: 10.1021/jacs.9b01741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent research on the structure and mechanism of DNA polymerases has continued to generate fundamentally important features, including a noncanonical pathway involving "prebinding" of metal-bound dNTP (MdNTP) in the absence of DNA. While this noncanonical mechanism was shown to be a possible subset for African swine fever DNA polymerase X (Pol X) and human Pol λ, it remains unknown whether it could be the primary pathway for a DNA polymerase. Pol μ is a unique member of the X-family with multiple functions and with unusual Mn2+ preference. Here we report that Pol μ not only prebinds MdNTP in a catalytically active conformation but also exerts a Mn2+ over Mg2+ preference at this early stage of catalysis, for various functions: incorporation of dNTP into a single nucleotide gapped DNA, incorporation of rNTP in the nonhomologous end joining (NHEJ) repair, incorporation of dNTP to an ssDNA, and incorporation of an 8-oxo-dGTP opposite template dA (mismatched) or dC (matched). The structural basis of this noncanonical mechanism and Mn2+ over Mg2+ preference in these functions was analyzed by solving 19 structures of prebinding binary complexes, precatalytic ternary complexes, and product complexes. The results suggest that the noncanonical pathway is functionally relevant for the multiple functions of Pol μ. Overall, this work provides the structural and mechanistic basis for the long-standing puzzle in the Mn2+ preference of Pol μ and expands the landscape of the possible mechanisms of DNA polymerases to include both mechanistic pathways.
Collapse
Affiliation(s)
- Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| | - Ya-Ping Huang
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Xiao-Xia Liu
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
22
|
Díaz-Talavera A, Calvo PA, González-Acosta D, Díaz M, Sastre-Moreno G, Blanco-Franco L, Guerra S, Martínez-Jiménez MI, Méndez J, Blanco L. A cancer-associated point mutation disables the steric gate of human PrimPol. Sci Rep 2019; 9:1121. [PMID: 30718533 PMCID: PMC6362072 DOI: 10.1038/s41598-018-37439-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022] Open
Abstract
PrimPol is a human primase/polymerase specialized in re-starting stalled forks by repriming beyond lesions such as pyrimidine dimers, and replication-perturbing structures including G-quadruplexes and R-loops. Unlike most conventional primases, PrimPol proficiently discriminates against ribonucleotides (NTPs), being able to start synthesis using deoxynucleotides (dNTPs), yet the structural basis and physiological implications for this discrimination are not understood. In silico analyses based on the three-dimensional structure of human PrimPol and related enzymes enabled us to predict a single residue, Tyr100, as the main effector of sugar discrimination in human PrimPol and a change of Tyr100 to histidine to boost the efficiency of NTP incorporation. We show here that the Y100H mutation profoundly stimulates NTP incorporation by human PrimPol, with an efficiency similar to that for dNTP incorporation during both primase and polymerase reactions in vitro. As expected from the higher cellular concentration of NTPs relative to dNTPs, Y100H expression in mouse embryonic fibroblasts and U2OS osteosarcoma cells caused enhanced resistance to hydroxyurea, which decreases the dNTP pool levels in S-phase. Remarkably, the Y100H PrimPol mutation has been identified in cancer, suggesting that this mutation could be selected to promote survival at early stages of tumorigenesis, which is characterized by depleted dNTP pools.
Collapse
Affiliation(s)
- Alberto Díaz-Talavera
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Patricia A Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Daniel González-Acosta
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Marcos Díaz
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Guillermo Sastre-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Luis Blanco-Franco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Susana Guerra
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Maria I Martínez-Jiménez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Juan Méndez
- Centro Nacional de Investigaciones Oncológicas (CNIO), c/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) c/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
23
|
Sassa A, Yasui M, Honma M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ 2019; 41:3. [PMID: 30700998 PMCID: PMC6346524 DOI: 10.1186/s41021-019-0118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Manabu Yasui
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| | - Masamitsu Honma
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| |
Collapse
|
24
|
In vitro lesion bypass by human PrimPol. DNA Repair (Amst) 2018; 70:18-24. [DOI: 10.1016/j.dnarep.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/20/2022]
|
25
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
26
|
Loc'h J, Delarue M. Terminal deoxynucleotidyltransferase: the story of an untemplated DNA polymerase capable of DNA bridging and templated synthesis across strands. Curr Opin Struct Biol 2018; 53:22-31. [PMID: 29656238 DOI: 10.1016/j.sbi.2018.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023]
Abstract
Terminal deoxynucleotidyltransferase (TdT) is a member of the polX family which is involved in DNA repair. It has been known for years as an untemplated DNA polymerase used during V(D)J recombination to generate diversity at the CDR3 region of immunoglobulins and T-cell receptors. Recently, however, TdT was crystallized in the presence of a complete DNA synapsis made of two double-stranded DNA (dsDNA), each with a 3' protruding end, and overlapping with only one micro-homology base-pair, thus giving structural insight for the first time into DNA synthesis across strands. It was subsequently shown that TdT indeed has an in trans template-dependent activity in the presence of an excess of the downstream DNA duplex. A possible biological role of this dual activity is discussed.
Collapse
Affiliation(s)
- Jérôme Loc'h
- Unit of Structural Dynamics of Biological Macromolecules and UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France
| | - Marc Delarue
- Unit of Structural Dynamics of Biological Macromolecules and UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
27
|
Moon AF, Pryor JM, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu. Nucleic Acids Res 2017; 45:9138-9148. [PMID: 28911097 PMCID: PMC5587726 DOI: 10.1093/nar/gkx527] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/23/2017] [Indexed: 02/02/2023] Open
Abstract
While most DNA polymerases discriminate against ribonucleotide triphosphate (rNTP) incorporation very effectively, the Family X member DNA polymerase μ (Pol μ) incorporates rNTPs almost as efficiently as deoxyribonucleotides. To gain insight into how this occurs, here we have used X-ray crystallography to describe the structures of pre- and post-catalytic complexes of Pol μ with a ribonucleotide bound at the active site. These structures reveal that Pol μ binds and incorporates a rNTP with normal active site geometry and no distortion of the DNA substrate or nucleotide. Moreover, a comparison of rNTP incorporation kinetics by wildtype and mutant Pol μ indicates that rNTP accommodation involves synergistic interactions with multiple active site residues not found in polymerases with greater discrimination. Together, the results are consistent with the hypothesis that rNTP incorporation by Pol μ is advantageous in gap-filling synthesis during DNA double strand break repair by nonhomologous end joining, particularly in nonreplicating cells containing very low deoxyribonucleotide concentrations.
Collapse
Affiliation(s)
- Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - John M Pryor
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katarzyna Bebenek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
28
|
Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L. Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Nucleic Acids Res 2017; 45:10018-10031. [PMID: 28973441 PMCID: PMC5622330 DOI: 10.1093/nar/gkx625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/14/2022] Open
Abstract
The non homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair often requires DNA synthesis to fill the gaps generated upon alignment of the broken ends, a complex task performed in human cells by two specialized DNA polymerases, Polλ and Polμ. It is now well established that Polμ is the one adapted to repair DSBs with non-complementary ends, the most challenging scenario, although the structural basis and physiological implications of this adaptation are not fully understood. Here, we demonstrate that two human Polμ point mutations, G174S and R175H, previously identified in two different tumor samples and affecting two adjacent residues, limit the efficiency of accurate NHEJ by Polμ in vitro and in vivo. Moreover, we show that this limitation is the consequence of a decreased template dependency during NHEJ, which renders the error-rate of the mutants higher due to the ability of Polμ to randomly incorporate nucleotides at DSBs. These results highlight the relevance of the 8 kDa domain of Polμ for accurate and efficient NHEJ, but also its contribution to the error-prone behavior of Polμ at 2-nt gaps. This work provides the first demonstration that mutations affecting Polμ identified in tumors can alter the efficiency and fidelity of NHEJ.
Collapse
Affiliation(s)
- Guillermo Sastre-Moreno
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - John M. Pryor
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alberto Díaz-Talavera
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| | - José F. Ruiz
- Departamento Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla, Spain
| | - Dale A. Ramsden
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid/CSIC, Madrid, Spain
| |
Collapse
|
29
|
Jamsen JA, Beard WA, Pedersen LC, Shock DD, Moon AF, Krahn JM, Bebenek K, Kunkel TA, Wilson SH. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat Commun 2017; 8:253. [PMID: 28811466 PMCID: PMC5557891 DOI: 10.1038/s41467-017-00271-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/15/2017] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PPi. The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Katarzyna Bebenek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
30
|
Mentegari E, Crespan E, Bavagnoli L, Kissova M, Bertoletti F, Sabbioneda S, Imhof R, Sturla SJ, Nilforoushan A, Hübscher U, van Loon B, Maga G. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity. Nucleic Acids Res 2017; 45:2600-2614. [PMID: 27994034 PMCID: PMC5389505 DOI: 10.1093/nar/gkw1275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines.
Collapse
Affiliation(s)
- Elisa Mentegari
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Laura Bavagnoli
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Miroslava Kissova
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Federica Bertoletti
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zürich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, CH-8092 Zürich, Switzerland
| | - Ulrich Hübscher
- Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Barbara van Loon
- Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Giovanni Maga
- DNA Enzymology & Molecular Virology and Cell Nucleus & DNA replication Units, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
31
|
Boldinova EO, Wanrooij PH, Shilkin ES, Wanrooij S, Makarova AV. DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol. Int J Mol Sci 2017; 18:E1584. [PMID: 28754021 PMCID: PMC5536071 DOI: 10.3390/ijms18071584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance. In this review, we focus on recent advances in biochemical and crystallographic studies of PrimPol, as well as in identification of new protein-protein interaction partners. Furthermore, we discuss the possible functions of PrimPol in both the nucleus and the mitochondria.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Evgeniy S Shilkin
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Alena V Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
32
|
Mentegari E, Kissova M, Bavagnoli L, Maga G, Crespan E. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes (Basel) 2016; 7:genes7090057. [PMID: 27589807 PMCID: PMC5042388 DOI: 10.3390/genes7090057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.
Collapse
Affiliation(s)
- Elisa Mentegari
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Miroslava Kissova
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Laura Bavagnoli
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Emmanuele Crespan
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
33
|
Crespan E, Furrer A, Rösinger M, Bertoletti F, Mentegari E, Chiapparini G, Imhof R, Ziegler N, Sturla SJ, Hübscher U, van Loon B, Maga G. Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair. Nat Commun 2016; 7:10805. [PMID: 26917111 PMCID: PMC4773436 DOI: 10.1038/ncomms10805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols β and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol β, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol β- and λ-deficient cell extracts suggest that Pol β levels can greatly affect rNMP incorporation opposite oxidative DNA lesions. Oxidative stress is a common source of DNA damage and is repaired by the base excision repair machinery, including polymerase beta. Here the authors find that polymerase beta, and to a lesser extent lambda, can mistakenly incorporate ribonucleotides during synthesis.
Collapse
Affiliation(s)
- Emmanuele Crespan
- DNA Enzymology &Molecular Virology Unit, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Antonia Furrer
- Department of Molecular Mechanisms of Disease, University of Zürich, CH-8057 Zürich, Switzerland
| | - Marcel Rösinger
- Department of Molecular Mechanisms of Disease, University of Zürich, CH-8057 Zürich, Switzerland
| | - Federica Bertoletti
- DNA Enzymology &Molecular Virology Unit, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Elisa Mentegari
- DNA Enzymology &Molecular Virology Unit, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giulia Chiapparini
- DNA Enzymology &Molecular Virology Unit, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zürich, CH-8057 Zürich, Switzerland
| | - Nathalie Ziegler
- Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Ulrich Hübscher
- Department of Molecular Mechanisms of Disease, University of Zürich, CH-8057 Zürich, Switzerland
| | - Barbara van Loon
- Department of Molecular Mechanisms of Disease, University of Zürich, CH-8057 Zürich, Switzerland
| | - Giovanni Maga
- DNA Enzymology &Molecular Virology Unit, Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
34
|
Ding J, Taylor MS, Jackson AP, Reijns MAM. Genome-wide mapping of embedded ribonucleotides and other noncanonical nucleotides using emRiboSeq and EndoSeq. Nat Protoc 2015; 10:1433-44. [PMID: 26313479 DOI: 10.1038/nprot.2015.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ribonucleotides are the most common noncanonical nucleotides incorporated into the genome of replicating cells. They are efficiently removed by ribonucleotide excision repair initiated by RNase H2 cleavage. In the absence of RNase H2, such embedded ribonucleotides can be used to track DNA polymerase activity in vivo. To determine their precise location in Saccharomyces cerevisiae, we developed embedded ribonucleotide sequencing (emRiboSeq), which uses recombinant RNase H2 to selectively create ligatable 3'-hydroxyl groups, in contrast to alternative methods that use alkaline hydrolysis. EmRiboSeq allows reproducible, strand-specific and potentially quantitative detection of embedded ribonucleotides at single-nucleotide resolution. For the genome-wide mapping of other noncanonical bases, RNase H2 can be replaced with specific nicking endonucleases in this protocol; we term this method endonuclease sequencing (EndoSeq). With the protocol taking <5 d to complete, these methods allow the in vivo study of DNA replication and repair, including the identification of replication origins and termination regions.
Collapse
Affiliation(s)
- James Ding
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin S Taylor
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Xu L, Wang W, Zhang L, Chong J, Huang X, Wang D. Impact of template backbone heterogeneity on RNA polymerase II transcription. Nucleic Acids Res 2015; 43:2232-41. [PMID: 25662224 PMCID: PMC4344504 DOI: 10.1093/nar/gkv059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 02/03/2023] Open
Abstract
Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3'-5' or 2'-5' orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary 'imperfect' DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Wei Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Lu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, CA 92093-0625, USA
| |
Collapse
|
36
|
Abstract
In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsay A. Matthews
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Potenski CJ, Klein HL. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res 2014; 42:10226-34. [PMID: 25159610 PMCID: PMC4176331 DOI: 10.1093/nar/gku773] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotides are misincorporated into replicating DNA due to the similarity of deoxyribonucleotides and ribonucleotides, the high concentration of ribonucleotides in the nucleus and the imperfect accuracy of replicative DNA polymerases in choosing the base with the correct sugar. Embedded ribonucleotides change certain properties of the DNA and can interfere with normal DNA transactions. Therefore, misincorporated ribonucleotides are targeted by the cell for removal. Failure to remove ribonucleotides from DNA results in an increase in genome instability, a phenomenon that has been characterized in various systems using multiple assays. Recently, however, another side to ribonucleotide misincorporation has emerged, where there is evidence for a functional role of misinserted ribonucleotides in DNA, leading to beneficial consequences for the cell. This review examines examples of both positive and negative effects of genomic ribonucleotide misincorporation in various organisms, aiming to highlight the diversity and the utility of this common replication variation.
Collapse
Affiliation(s)
- Catherine J Potenski
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Makarova AV, Ignatov A, Miropolskaya N, Kulbachinskiy A. Roles of the active site residues and metal cofactors in noncanonical base-pairing during catalysis by human DNA polymerase iota. DNA Repair (Amst) 2014; 22:67-76. [PMID: 25108837 DOI: 10.1016/j.dnarep.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Human DNA polymerase iota (Pol ι) is a Y-family polymerase that can bypass various DNA lesions but possesses very low fidelity of DNA synthesis in vitro. Structural analysis of Pol ι revealed a narrow active site that promotes noncanonical base-pairing during catalysis. To better understand the structure-function relationships in the active site of Pol ι we investigated substitutions of individual amino acid residues in its fingers domain that contact either the templating or the incoming nucleotide. Two of the substitutions, Y39A and Q59A, significantly decreased the catalytic activity but improved the fidelity of Pol ι. Surprisingly, in the presence of Mn(2+) ions, the wild-type and mutant Pol ι variants efficiently incorporated nucleotides opposite template purines containing modifications that disrupted either Hoogsteen or Watson-Crick base-pairing, suggesting that Pol ι may use various types of interactions during nucleotide addition. In contrast, in Mg(2+) reactions, wild-type Pol ι was dependent on Hoogsteen base-pairing, the Y39A mutant was essentially inactive, and the Q59A mutant promoted Watson-Crick interactions with template purines. The results suggest that Pol ι utilizes distinct mechanisms of nucleotide incorporation depending on the metal cofactor and reveal important roles of specific residues from the fingers domain in base-pairing and catalysis.
Collapse
Affiliation(s)
- Alena V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | - Artem Ignatov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
39
|
Sastre-Moreno G, Sánchez A, Esteban V, Blanco L. ATP insertion opposite 8-oxo-deoxyguanosine by Pol4 mediates error-free tolerance in Schizosaccharomyces pombe. Nucleic Acids Res 2014; 42:9821-37. [PMID: 25106870 PMCID: PMC4150805 DOI: 10.1093/nar/gku711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
7,8-Dihydro-8-oxo-deoxyguanosine (8oxodG) is a highly premutagenic DNA lesion due to its ability to mispair with adenine. Schizosaccharomyces pombe lacks homologs for relevant enzymes that repair 8oxodG, which suggests that this lesion could be persistent and must be tolerated. Here we show that SpPol4, the unique PolX in fission yeast, incorporates ATP opposite 8oxodG almost exclusively when all nucleotides (ribos and deoxys) are provided at physiological concentrations. Remarkably, this SpPol4-specific reaction could also occur during the NHEJ of DSBs. In cell extracts, misincorporation of ATP opposite 8oxodG was shown to be SpPol4-specific, although RNase H2 efficiently recognized the 8oxodG:AMP mispair to remove AMP and trigger error-free incorporation of dCTP. These data are the first evidence that ribonucleotides can be used safely for 8oxodG tolerance, suggesting that insertion of the highly abundant ATP substrate could be beneficial to promote efficient and error-free repair of 8oxodG-associated DSBs. Moreover, we demonstrate that purified SpPol4 uses 8oxo-dGTP and 8oxo-GTP as substrates for DNA polymerization, although with poor efficiency compared to the incorporation of undamaged nucleotides opposite either 8oxodG or undamaged templates. This suggests that SpPol4 is specialized in tolerating 8oxodG as a DNA template, without contributing significantly to the accumulation of this lesion in the DNA.
Collapse
Affiliation(s)
- Guillermo Sastre-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Arancha Sánchez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Verónica Esteban
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
40
|
Martin MJ, Blanco L. Decision-making during NHEJ: a network of interactions in human Polμ implicated in substrate recognition and end-bridging. Nucleic Acids Res 2014; 42:7923-34. [PMID: 24878922 PMCID: PMC4081086 DOI: 10.1093/nar/gku475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human Polμ is a DNA polymerase belonging to the X family that has been implicated in the non-homologous end-joining (NHEJ) pathway during repair of double-strand breaks in DNA. Loop1 is a flexible piece of Polμ which has a critical role during terminal transferase and end-joining activities: it acts as a pseudo-template when the template strand is discontinuous or unavailable, whilst diffusing away if present to avoid steric clashes. Mutational analysis and inspection of the 3D structures available allowed us to identify a network of residues in charge of sensing the presence or absence of discontinuities in the template strand, which will in turn determine the final position adopted by Loop1. This network is formed by the previously uncharacterized thumb mini-loop (NSH motif) and the positively charged helix N, which contribute to the correct positioning of Loop1 and to juxtapose the discontinuous template strand during NHEJ of incompatible ends. Accordingly, single mutation of specific conserved residues in these motifs, whilst irrelevant in most of the cases for gap filling, largely affected terminal transferase and end-joining activities. Other point mutations in the ‘hinges’ of Loop1, such as residues Phe385 or Phe389, corroborated the flexibility requirements of this motif.
Collapse
Affiliation(s)
- Maria Jose Martin
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Luis Blanco
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
41
|
Bebenek K, Pedersen LC, Kunkel TA. Structure-function studies of DNA polymerase λ. Biochemistry 2014; 53:2781-92. [PMID: 24716527 PMCID: PMC4018081 DOI: 10.1021/bi4017236] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
DNA polymerase λ
(pol λ) functions in DNA repair with
its main roles considered to be filling short gaps during repair of
double-strand breaks by nonhomologous end joining and during base
excision repair. As indicated by structural and biochemical studies
over the past 10 years, pol λ shares many common properties
with other family X siblings (pol β, pol μ, and terminal
deoxynucleotidyl transferase) but also has unique structural features
that determine its specific functions. In this review, we consider
how structural studies over the past decade furthered our understanding
of the behavior and biological roles of pol λ.
Collapse
Affiliation(s)
- Katarzyna Bebenek
- Laboratory of Structural Biology and ‡Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina 27709, United States
| | | | | |
Collapse
|
42
|
Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase. J Bacteriol 2014; 196:1704-12. [PMID: 24532777 DOI: 10.1128/jb.00020-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deinococcus radiodurans RNA ligase (DraRnl) is the founding member of a family of end-joining enzymes encoded by diverse microbes and viruses. DraRnl ligates 3'-OH, 5'-PO4 nicks in double-stranded nucleic acids in which the nick 3'-OH end is RNA. Here we gauge the effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the rate of nick sealing. DraRnl is indifferent to the identity of the 3'-OH nucleobase, provided that it is correctly paired. With 3'-OH mispairs, the DraRnl sealing rate varies widely, with G-T and A-C mispairs being the best substrates and G-G, G-A, and A-A mispairs being the worst. DraRnl accepts 3' A-8-oxoguanine (oxoG) to be correctly paired, while it discriminates against U-oxoG and G-oxoG mispairs. DraRnl displays high activity and low fidelity in sealing 3'-OH ends opposite an 8-oxoadenine lesion. It prefers 3'-OH adenosine when sealing opposite an abasic template site. With 5'-PO4 mispairs, DraRnl seals a 5' T-G mispair as well as it does a 5' C-G pair; in most other respects, the ligation fidelity at 5' mispairs is similar to that at 3' mispairs. DraRnl accepts a 5' A-oxoG end to be correctly paired, yet it is more tolerant of 5' T-oxoG and 5' G-oxoG mispairs than the equivalent configurations on the 3' side of the nick. At 5' nucleobase-abasic site nicks, DraRnl prefers to ligate when the nucleobase is a purine. The biochemical properties of DraRnl are compatible with its participation in the templated repair of RNA damage or in the sealing of filled DNA gaps that have a 3' ribopatch.
Collapse
|
43
|
Vaithiyalingam S, Arnett DR, Aggarwal A, Eichman BF, Fanning E, Chazin WJ. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J Mol Biol 2013; 426:558-69. [PMID: 24239947 DOI: 10.1016/j.jmb.2013.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8-10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal that eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique subdomain not found in the archaeal and bacterial primases. Calorimetry experiments reveal that Mn(2+) but not Mg(2+) significantly enhances the binding of nucleotide to primase, which correlates with higher catalytic efficiency in vitro. The structure of p48 with bound UTP and Mn(2+) provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding alter nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions are not viable. Our results reveal that two residues (S160 and H166) in direct contact with the nucleotide were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis.
Collapse
Affiliation(s)
- Sivaraja Vaithiyalingam
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Diana R Arnett
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| | - Amit Aggarwal
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
44
|
Martin MJ, Garcia-Ortiz MV, Gomez-Bedoya A, Esteban V, Guerra S, Blanco L. A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polμ and Polλ. Nucleic Acids Res 2013; 41:9105-16. [PMID: 23935073 PMCID: PMC3799444 DOI: 10.1093/nar/gkt681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human DNA polymerases mu (Polµ) and lambda (Polλ) are X family members involved in the repair of double-strand breaks in DNA during non-homologous end joining. Crucial abilities of these enzymes include bridging of the two 3′ single-stranded overhangs and trans-polymerization using one 3′ end as primer and the other as template, to minimize sequence loss. In this context, we have studied the importance of a previously uncharacterised sequence (‘brooch’), located at the N-terminal boundary of the Polß-like polymerase core, and formed by Tyr141, Ala142, Cys143, Gln144 and Arg145 in Polµ, and by Trp239, Val240, Cys241, Ala242 and Gln243 in Polλ. The brooch is potentially implicated in the maintenance of a closed conformation throughout the catalytic cycle, and our studies indicate that it could be a target of Cdk phosphorylation in Polµ. The brooch is irrelevant for 1 nt gap filling, but of specific importance during end joining: single mutations in the conserved residues reduced the formation of two ended synapses and strongly diminished the ability of Polµ and polymerase lambda to perform non-homologous end joining reactions in vitro.
Collapse
Affiliation(s)
- Maria Jose Martin
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Ribonucleolytic resection is required for repair of strand displaced nonhomologous end-joining intermediates. Proc Natl Acad Sci U S A 2013; 110:E1984-91. [PMID: 23671117 DOI: 10.1073/pnas.1302616110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) pathways repair DNA double-strand breaks (DSBs) in eukaryotes and many prokaryotes, although it is not reported to operate in the third domain of life, archaea. Here, we describe a complete NHEJ complex, consisting of DNA ligase (Lig), polymerase (Pol), phosphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa). Mpa Lig has limited DNA nick-sealing activity but is efficient in ligating nicks containing a 3' ribonucleotide. Mpa Pol preferentially incorporates nucleoside triphosphates onto a DNA primer strand, filling DNA gaps in annealed breaks. Mpa PE sequentially removes 3' phosphates and ribonucleotides from primer strands, leaving a ligatable terminal 3' monoribonucleotide. These proteins, together with the DNA end-binding protein Ku, form a functional NHEJ break-repair apparatus that is highly homologous to the bacterial complex. Although the major roles of Pol and Lig in break repair have been reported, PE's function in NHEJ has remained obscure. We establish that PE is required for ribonucleolytic resection of RNA intermediates at annealed DSBs. Polymerase-catalyzed strand-displacement synthesis on DNA gaps can result in the formation of nonligatable NHEJ intermediates. The function of PE in NHEJ repair is to detect and remove inappropriately incorporated ribonucleotides or phosphates from 3' ends of annealed DSBs to configure the termini for ligation. Thus, PE prevents the accumulation of abortive genotoxic DNA intermediates arising from strand displacement synthesis that otherwise would be refractory to repair.
Collapse
|