1
|
Gao J, Sun L, Liao R, Lyu Y, Zhang S, Xu J, He M, Wu C, Zhang D, Lin Y, Dai J. Genomic Dissection of Chinese Yangtze River Delta White Goat Based on Whole Genome Sequencing. Animals (Basel) 2025; 15:979. [PMID: 40218372 PMCID: PMC11988170 DOI: 10.3390/ani15070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The conservation and utilization of livestock genetic resources is essential for the maintenance of biodiversity and breed innovation. Whole genome sequencing (WGS) was performed on 90 samples from Chinese Yangtze River Delta White goats (YRD), sourced from two populations of Chongming island white goats and Haimen white goats, aiming to dissect their genomic characteristics. In addition, 262 WGS data from nine other breeds of goats were downloaded from the NCBI database. These WGS data obtained were used to identify and analyze genetic variation with the goat reference genome, and the genetic structure of goat populations was analyzed. Through selective sweep analysis, the selection-signature genes and their polymorphic features were identified. It was found that the most significant genomic selection region in YRD goats was in the region of 62.9-64.6 Mb on chromosome 13, which contained genes related to the coat color and muscle growth of the goats. Nucleotide diversity of MYH7B, a gene related to the development of the goat's skeletal muscle, within the Yangtze River Delta white goat population was significantly lower than in other domestic and foreign goat breeds, suggesting that the gene was subject to selection. In addition, the IGF2BP2 gene, reported to be associated with litter size in goats, showed clear selection-signature characteristics in the Boer goats compared to the YRD goats.
Collapse
Affiliation(s)
- Jun Gao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Rongrong Liao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
| | - Yuhua Lyu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jiehuan Xu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Mengqian He
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Caifeng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Defu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yuexia Lin
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.G.); (L.S.); (R.L.); (Y.L.); (S.Z.); (J.X.); (M.H.); (C.W.); (D.Z.)
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
2
|
Bahari G, Taheri M, Mokhtari M, Moudi M, Majidpour M, Ghadimi HS. Association between Mir-499, Mir-27a, and Mir-146a polymorphisms and their susceptibility to recurrent spontaneous abortion; in silico analysis. Turk J Obstet Gynecol 2024; 21:158-165. [PMID: 39228203 PMCID: PMC11589323 DOI: 10.4274/tjod.galenos.2024.74419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Objective Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy losses before 24 gestational weeks, accounting for 1-3% of fertile couples. A vast majority of single-nucleotide polymorphisms (SNPs) in some microRNA (miRNA) genes can change the miRNA-mRNA interaction and are associated with the risk of RSA. This study was designed to better elucidate the association between miR-27a, miR-499, and miR-146a polymorphisms and RSA risk. Materials and Methods SNP genotyping of miR-27a (rs895819), miR-499 (rs3746444), and miR-146a (rs2910164) was performed using polymerase chain reaction (PCR)-restriction fragment length polymorphism and tetra amplification-refractory mutation system PCR in 98 patients with RSA and 105 healthy subjects. Results Our results showed that the miR-499 rs3746444 and miR-27a rs895819 polymorphisms were significantly associated with RSA risk, whereas no significant differences were observed between the rs2910164 polymorphism and RSA susceptibility. Conclusion We proposed that the miR-499 rs3746444 and miR-27a rs895819 polymorphisms were correlated with RSA in our population, but the miR-146a rs2910164 variant was not associated with the risk of RSA.
Collapse
Affiliation(s)
- Gholamreza Bahari
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, ahedan University of Medical Sciences, Zahedan, Iran
| | - Mojgan Mokhtari
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Moudi
- Department of Medical Biotechnology, School of Medicine, Neyshabour University of Medical Sciences, Neyshabour, Razavi Khorasan Province, Iran
| | - Mahdi Majidpour
- Clinical Immunology Research Center of Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki Ghadimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Sharlo KA, Lvova ID, Sidorenko DA, Tyganov SA, Sharlo DT, Shenkman BS. Β-GPA administration activates slow oxidative muscle signaling pathways and protects soleus muscle against the increased fatigue under 7-days of rat hindlimb suspension. Arch Biochem Biophys 2023; 743:109647. [PMID: 37230367 DOI: 10.1016/j.abb.2023.109647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Unloading of slow-twitch muscles results in increased muscle fatigue and the mechanisms of this effect are poorly studied. We aimed to analyze the role of high-energy phosphates accumulation during the first week of rat hindlimb suspension plays in a fiber-type phenotype shift towards fast-type fatigable muscle fibers. Male Wistar rats were divided into 3 groups (n = 8): C - vivarium control; 7HS - 7-day hindlimb suspension; 7HB - 7-day hindlimb suspension with intraperitoneal injection of beta-guanidine propionic acid (β-GPA, 400 mg/kg b w). β-GPA is a competitive inhibitor of creatine kinase and it reduces concentrations of ATP and phosphocreatine. In the 7HB group, β-GPA treatment protected a slow-type signaling network in an unloaded soleus muscle, including MOTS-C, AMPK, PGC1 α and micro-RNA-499. These signaling effects resulted in a preserved soleus muscle fatigue resistance, slow-type muscle fibers percentage and mitochondrial DNA copy number under muscle unloading.
Collapse
Affiliation(s)
- K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - I D Lvova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - D A Sidorenko
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - S A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - D T Sharlo
- Federal State Budgetary Educational Institution of Higher Education, Bauman Moscow State Technical University, Russia.
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| |
Collapse
|
4
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|
5
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
6
|
Hasan S, Asakawa S, Watabe S, Kinoshita S. Regulation of the Expression of the Myosin Heavy Chain (MYH) Gene myh14 in Zebrafish Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:821-835. [PMID: 34490548 DOI: 10.1007/s10126-021-10066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The human sarcomeric myosin heavy chain gene MYH14 contains an intronic microRNA, miR-499. Our previous studies demonstrated divergent genomic organization and expression patterns of myh14/miR-499 among teleosts; however, the regulatory mechanism is partly known. In this study, we report the regulation of myh14 expression in zebrafish, Danio rerio. Zebrafish myh14 has three paralogs, myh14-1, myh14-2, and myh14-3. Detailed promoter analysis suggested that a 5710-bp 5'-flanking region of myh14-1 and a 5641-bp region of myh14-3 contain a necessary regulatory region to recapitulate specific expression during embryonic development. The 5'-flanking region of zebrafish myh14-1 and its torafugu ortholog shared two distal and a single proximal conserved region. The two distal conserved regions had no effect on zebrafish myh14-1 expression, in contrast to torafugu expression, suggesting an alternative regulatory mechanism among the myh14 orthologs. Comparison among the 5'-flanking regions of the myh14 paralogs revealed two conserved regions. Deletion of these conserved regions significantly reduced the promoter activity of myh14-3 but had no effect on myh14-1, indicating different cis-regulatory mechanisms of myh14 paralogs. Loss of function of miR-499 resulted in a marked reduction in slow muscle fibers in embryonic development. Our study identified different cis-regulatory mechanisms controlling the expression of myh14/miR-499 and an indispensable role of miR-499 in muscle fiber-type specification in zebrafish.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd., Laredo, TX, 78041, USA.
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Bioscience, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
8
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
9
|
Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Cell Death Dis 2020; 11:148. [PMID: 32094347 PMCID: PMC7039994 DOI: 10.1038/s41419-020-2341-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
miRNAs reportedly participate in various biological processes, such as skeletal muscle proliferation and differentiation. However, the regulation of differentially expressed (DE) miRNAs and their function in myogenesis remain unclear. Herein, miRNA expression profiles and regulation during C2C12 differentiation were analyzed in relation to chromatin states by RNA-seq, ATAC-seq, and ChIP-seq. We identified 19 known and nine novel differentially expressed miRNAs at days 0, 1, 2, and 4. The expression of the differentially expressed miRNAs was related to the chromatin states of the 113 surrounding open chromatin regions defined by ATAC-seq peaks. Of these open chromatin regions, 44.25% were colocalized with MyoD/MyoG binding sites. The remainder of the above open chromatin regions were enriched with motifs of the myoblast-expressed AP-1 family, Ctcf, and Bach2 transcription factors (TFs). Additionally, the target genes of the above differentially expressed miRNAs were enriched primarily in muscle growth and development pathways, especially the Hippo signaling pathway. Moreover, via combining a loss-of-function assay with Q-PCR, western blotting, and immunofluorescence, we confirmed that the Hippo signaling pathway was responsible for C2C12 myoblast differentiation. Thus, our results showed that these differentially expressed miRNAs were regulated by chromatin states and affected muscle differentiation through the Hippo signaling pathway. Our findings provide new insights into the function of these differentially expressed miRNAs and the regulation of their expression during myoblast differentiation.
Collapse
|
10
|
Mazzurana L, Forkel M, Rao A, Van Acker A, Kokkinou E, Ichiya T, Almer S, Höög C, Friberg D, Mjösberg J. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3-ILC1/NK cell transdifferentiation. Eur J Immunol 2019; 49:1344-1355. [PMID: 31151137 DOI: 10.1002/eji.201848075] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/18/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
The Ikaros family of transcription factors (TFs) are important regulators of lymphocyte function. However, their roles in human innate lymphoid cell (ILC) function remain unclear. Here, we found that Ikaros (IKZF1) is expressed by all ILC subsets, including NK cells, in blood, tonsil, and gut, while Helios (IKZF2) is preferentially expressed by ILC3 in tonsil and gut. Aiolos (IKZF3) followed the expression pattern of T-bet and Eomes, being predominantly expressed by ILC1 and NK cells. Differentiation of IFN-γ-producing ILC1 and NK cells from ILC3 by IL-1β plus IL-12-stimulation was associated with upregulation of T-bet and Aiolos. Selective degradation of Aiolos and Ikaros by lenalidomide suppressed ILC1 and NK cell differentiation and expression of ILC1 and NK cell-related transcripts (LEF1, PRF1, GRZB, CD244, NCR3, and IRF8). In line with reduced ILC1/NK cell differentiation, we observed an increase in the expression of the ILC3-related TF Helios, as well as ILC3 transcripts (TNFSF13B, IL22, NRP1, and RORC) and in the frequency of IL-22 producing ILC3 in cultures with IL-1β and IL-23. These data suggest that suppression of Aiolos and Ikaros expression inhibits ILC1 and NK cell differentiation while ILC3 function is maintained. Hence, our results open up for new possibilities in targeting Ikaros family TFs for modulation of type 1/3 immunity in inflammation and cancer.
Collapse
Affiliation(s)
- Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Forkel
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tamaki Ichiya
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Almer
- Department of Medicine, Solna, Karolinska Institutet, and IBD-Center, Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Höög
- Department of Medicine Solna, Karolinska Institutet and GHP Stockholm Gastro Center, Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
11
|
Huang YM, Li WW, Wu J, Han M, Li BH. The diagnostic value of circulating microRNAs in heart failure. Exp Ther Med 2019; 17:1985-2003. [PMID: 30783473 PMCID: PMC6364251 DOI: 10.3892/etm.2019.7177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR-155, miR-22 and miR-133 appear to be promising for the diagnosis, prognosis and management of HF patients.
Collapse
Affiliation(s)
- Yao-Meng Huang
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wei-Wei Li
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun Wu
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bing-Hui Li
- Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
12
|
D'Souza RF, Zeng N, Markworth JF, Figueiredo VC, Roberts LA, Raastad T, Coombes JS, Peake JM, Cameron-Smith D, Mitchell CJ. Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men. Am J Physiol Regul Integr Comp Physiol 2018; 314:R824-R833. [PMID: 29466686 DOI: 10.1152/ajpregu.00421.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.
Collapse
Affiliation(s)
- Randall F D'Souza
- Liggins Institute, The University of Auckland , Auckland , New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland , Auckland , New Zealand
| | - James F Markworth
- Liggins Institute, The University of Auckland , Auckland , New Zealand
| | - Vandre C Figueiredo
- Liggins Institute, The University of Auckland , Auckland , New Zealand.,Center for Muscle Biology, University of Kentucky , Lexington, Kentucky
| | - Llion A Roberts
- School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane , Australia.,Sports Performance Innovation and Knowledge Excellence, Queensland Academy of Sport , Brisbane , Australia.,School of Allied Health Sciences & Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland , Brisbane , Australia
| | - Jonathan M Peake
- Sports Performance Innovation and Knowledge Excellence, Queensland Academy of Sport , Brisbane , Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane Australia
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland , Auckland , New Zealand.,Food & Bio-Based Products Group, AgResearch, Palmerston North , New Zealand.,Riddet Institute , Palmerston North , New Zealand
| | | |
Collapse
|
13
|
Zhang K, Sun W, Zhang L, Xu X, Wang J, Hong Y. miR-499 Ameliorates Podocyte Injury by Targeting Calcineurin in Minimal Change Disease. Am J Nephrol 2018; 47:94-102. [PMID: 29448244 DOI: 10.1159/000486967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Podocyte injury is a hallmark of minimal change disease (MCD). Calcineurin inhibitors have been widely used in the current treatment of MCD, and miR-499 may target calcineurin. We aimed to study the function of miR-499 in MCD and test whether miR-499 delivery can improve MCD. METHODS An MCD mouse model was generated using puromycin aminonucleoside (PAN). MiR-499 was delivered using lentiviruses. Biochemical indicators including serum albumin, triglyceride, cholesterol, and 24-h urine protein were determined. Targets of miR-499 were confirmed using reporter gene activity assays. The ultrastructure of podocytes was analyzed using transmission electron microscopy. RESULTS MiR-499 significantly improved MCD-related symptoms and signs. Foot-process effacement was caused by PAN and partially reversed by miR-499. We identified that both CnAα and CnAβ were targets of miR-499, and were overexpressed in the presence of PAN. However, miR-499 reduced the expression of CnAα and CnAβ, leading to a decreased activity of calcineurin signaling in mouse podocytes in vitro and in vivo. In addition, miR-499 recovered PAN-induced reduction of cell viability. CONCLUSIONS MiR-499 ameliorated podocyte injury by targeting CnAα and CnAβ in a PAN-induced MCD mouse model. Delivery of miR-499 can be a novel strategy for MCD treatment.
Collapse
|
14
|
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J Cachexia Sarcopenia Muscle 2018; 9:20-27. [PMID: 29193905 PMCID: PMC5803618 DOI: 10.1002/jcsm.12227] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that target mRNAs and are consequently involved in the post-transcriptional regulation of gene expression. Some miRNAs are ubiquitously expressed in tissue, while others are tissue-specific or tissue-enriched. miRNAs can be released by cells and are found in various biofluids, including serum and plasma. Thus, measuring miRNAs in the circulation may provide information on the originating tissue or cells. MyomiRs are described as striated muscle-specific or muscle-enriched miRNAs. Their circulating levels can be measured and have been proposed to be new biomarkers of physiological and pathological muscle processes. The aims of this review are to summarize the current knowledge of circulating myomiRs, to identify the types of information they can provide about skeletal muscle, and to determine how to apply that information in the fields of research and medicine.
Collapse
Affiliation(s)
- Julien Siracusa
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France.,Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France
| | - Sébastien Banzet
- Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France.,Institut de Recherche Biomédicale des Armées, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France.,INSERM UMRS1197, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France
| |
Collapse
|
15
|
Yousefzadeh N, Jeddi S, Ghiasi R, Alipour MR. Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Mol Cell Biochem 2017; 436:179-187. [PMID: 28660410 DOI: 10.1007/s11010-017-3089-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 02/08/2023]
Abstract
Thyroid hormone deficiency during fetal life (fetal hypothyroidism) causes intrauterine growth restriction (IUGR). Fetal hypothyroidism (FH) could attenuate normal cardiac functions in the later life of the offspring rats. The aim of this study was to evaluate the contribution of myomiR network and its target gene expression in cardiac dysfunction in fetal hypothyroid rats. Six Pregnant female rats were divided into two groups: Control consumed tap water, and the hypothyroid group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Hearts from male offspring rats in adulthood (month 3) were tested with Langendorff apparatus for measuring hemodynamic parameters. Expressions of miR-208a, -208b, and -499 and its target genes including thyroid hormone receptor 1 (Thrap1), sex-determining region Y-box 6 (Sox6), and purine-rich element-binding protein β (Purβ) were measured by qPCR. FH rats had lower LVDP (%20), +dp/dt (%26), -dp/dt (%20), and heart rate (%21) than controls. FH rats at month 3 had a higher expression of β-MHC (190%), Myh7b (298%), and lower expression of α-MHC (36%) genes in comparison with controls. FH rats at month 3 had a higher expression of miR-499 (520%) and miR-208b (439%) and had lower expression of miR-208a (74%), Thrap1 (47%), Sox6 (49%), and Purβ (45%) compared with controls. Our results showed that thyroid hormone deficiency during fetal life changes the pattern of gene expression of myomiR network and its target genes in fetal heart, which, in turn, resulted in increased β-MHC expression and associated cardiac dysfunction in adulthood.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
D'Souza RF, Bjørnsen T, Zeng N, Aasen KMM, Raastad T, Cameron-Smith D, Mitchell CJ. MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Front Physiol 2017. [PMID: 28638346 PMCID: PMC5461344 DOI: 10.3389/fphys.2017.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 μm2p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 μm2p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype.
Collapse
Affiliation(s)
| | - Thomas Bjørnsen
- Department of Public Health, Sport and Nutrition, Faculty of Health and Sport Sciences, University of AgderKristiansand, Norway
| | - Nina Zeng
- Liggins Institute, University of AucklandAuckland, New Zealand
| | | | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport SciencesOslo, Norway
| | | | | |
Collapse
|
17
|
Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, Zuo B. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep 2017; 7:2828. [PMID: 28588232 PMCID: PMC5460278 DOI: 10.1038/s41598-017-03071-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 02/04/2023] Open
Abstract
Myogenic differentiation factor (MyoD) is a master transcription factor in muscle development and differentiation. Although several long non-coding RNAs (lncRNAs) linked to MyoD have been found to influence muscle development, the functions of many lncRNAs have not been explored. Here we utilized lncRNA and mRNA microarray analysis to identify potential lncRNAs regulated by MyoD in muscle cells. A total of 997 differentially expressed lncRNAs (335 up-regulated and 662 down-regulated) and 1,817 differentially expressed mRNAs (148 up-regulated and 1,669 down-regulated) were identified after MyoD knockdown in C2C12 cells. Functional predictions suggested that most lncRNAs are involved in the biological pathways related to muscle differentiation and cell cycle with co-expressed genes. To gain further insight into the MyoD-mediated lncRNA expression in muscle differentiation, tissue expression profiles and MyoD overexpression were performed, and we found one of the candidate lncRNAs-AK143003 was significantly regulated by MyoD. Further analyses showed its noncoding ability and cytoplasmic localisation. Silencing of AK143003 stimulated the accumulation of myogenic marker genes, whereas AK143003 overexpression led to their decreased synthesis. This study identified a multitude of MyoD-mediated lncRNAs for further investigation and identified a novel lncRNA, lnc-AK143003, which plays a role in controlling muscle differentiation.
Collapse
Affiliation(s)
- Yiwen Guo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Jingnan Wang
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Mingfei Zhu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Rui Zeng
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Zaiyan Xu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Guoliang Li
- 0000 0004 1790 4137grid.35155.37National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Bo Zuo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China ,grid.35155.370000 0004 1790 4137The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
| |
Collapse
|
18
|
Downregulation of myogenic microRNAs in sub-chronic but not in sub-acute model of daunorubicin-induced cardiomyopathy. Mol Cell Biochem 2017; 432:79-89. [DOI: 10.1007/s11010-017-2999-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
|
19
|
Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B 2016; 6:513-521. [PMID: 27818917 PMCID: PMC5071621 DOI: 10.1016/j.apsb.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Ikaros represents a zinc-finger protein family important for lymphocyte development and certain other physiological processes. The number of family members is large, with alternative splicing producing various additional isoforms from each of the five homologous genes in the family. The functional forms of Ikaros proteins could be even more diverse due to protein–protein interactions readily established between family members. Emerging evidence suggests that targeting Ikaros proteins is feasible and effective in therapeutic applications, although the exact roles of Ikaros proteins remain elusive within the intricate regulatory networks in which they are involved. In this review we collect existing knowledge as to the functions, regulatory pathways, and molecular mechanisms of this family of proteins in an attempt to gain a better understanding through the comparison of activities and interactions among family members.
Collapse
|
20
|
Shim J, Nam JW. The expression and functional roles of microRNAs in stem cell differentiation. BMB Rep 2016; 49:3-10. [PMID: 26497582 PMCID: PMC4914210 DOI: 10.5483/bmbrep.2016.49.1.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 01/23/2023] Open
Abstract
microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages-such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells-and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools.
Collapse
Affiliation(s)
- Jiwon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
21
|
Electrical stimulation influences chronic intermittent hypoxia-hypercapnia induction of muscle fibre transformation by regulating the microRNA/Sox6 pathway. Sci Rep 2016; 6:26415. [PMID: 27199002 PMCID: PMC4873781 DOI: 10.1038/srep26415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease can cause muscle fibre transformation due to chronic intermittent hypoxia-hypercapnia (CIHH). Studies have shown that high expression of Sox6 in muscle could suppress type-I fibres through downregulating the PPARβ (peroxisome proliferator-activated receptor β)/ERRγ (oestrogen-related receptor γ)/microRNA pathway. However, whether this pathway is involved in CIHH-induced muscle fibre transformation is unknown. Electrical stimulation (ES) is an effective approach to ameliorate muscle dysfunction. Here, we explored the effects of ES on CIHH-induced muscle fibre transformation and the microRNA/Sox6 pathway. After CIHH exposure, both the soleus (SOL) and gastrocnemius (GC) muscles showed decreased type-I fibres. The PPARβ/ERRγ/mir-499&208b (PEM, for GC) and PPARβ/mir-499&208b (PM, for SOL) signalling cascades were suppressed, followed by elevated Sox6 expression. Low frequency electrical stimulation (LFES) activated the PEM/PM pathway and enhanced type-I fibre numbers through suppressing Sox6 in SOL and GC. High frequency electrical stimulation (HFES) promoted type-I fibre expression through activating the PEM pathway in GC. Although PPARβ expression and type-I fibres were suppressed in SOL after HFES, no significant change was found in mir-499&208b/Sox6 expression. These results suggest that the microRNA/Sox6 pathway is disturbed after CIHH. Both low and high frequency electrical stimulations induce muscle fibre transformation partly through regulating the microRNA/Sox6 pathway.
Collapse
|
22
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
23
|
Hanchard NA, Swaminathan S, Bucasas K, Furthner D, Fernbach S, Azamian MS, Wang X, Lewin M, Towbin JA, D'Alessandro LCA, Morris SA, Dreyer W, Denfield S, Ayres NA, Franklin WJ, Justino H, Lantin-Hermoso MR, Ocampo EC, Santos AB, Parekh D, Moodie D, Jeewa A, Lawrence E, Allen HD, Penny DJ, Fraser CD, Lupski JR, Popoola M, Wadhwa L, Brook JD, Bu'Lock FA, Bhattacharya S, Lalani SR, Zender GA, Fitzgerald-Butt SM, Bowman J, Corsmeier D, White P, Lecerf K, Zapata G, Hernandez P, Goodship JA, Garg V, Keavney BD, Leal SM, Cordell HJ, Belmont JW, McBride KL. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 2016; 25:2331-2341. [PMID: 26965164 DOI: 10.1093/hmg/ddw071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
Congenital heart defects involving left-sided lesions (LSLs) are relatively common birth defects with substantial morbidity and mortality. Previous studies have suggested a high heritability with a complex genetic architecture, such that only a few LSL loci have been identified. We performed a genome-wide case-control association study to address the role of common variants using a discovery cohort of 778 cases and 2756 controls. We identified a genome-wide significant association mapping to a 200 kb region on chromosome 20q11 [P= 1.72 × 10-8 for rs3746446; imputed Single Nucleotide Polymorphism (SNP) rs6088703 P= 3.01 × 10-9, odds ratio (OR)= 1.6 for both]. This result was supported by transmission disequilibrium analyses using a subset of 541 case families (lowest P in region= 4.51 × 10-5, OR= 1.5). Replication in a cohort of 367 LSL cases and 5159 controls showed nominal association (P= 0.03 for rs3746446) resulting in P= 9.49 × 10-9 for rs3746446 upon meta-analysis of the combined cohorts. In addition, a group of seven SNPs on chromosome 1q21.3 met threshold for suggestive association (lowest P= 9.35 × 10-7 for rs12045807). Both regions include genes involved in cardiac development-MYH7B/miR499A on chromosome 20 and CTSK, CTSS and ARNT on chromosome 1. Genome-wide heritability analysis using case-control genotyped SNPs suggested that the mean heritability of LSLs attributable to common variants is moderately high ([Formula: see text] range= 0.26-0.34) and consistent with previous assertions. These results provide evidence for the role of common variation in LSLs, proffer new genes as potential biological candidates, and give further insight to the complex genetic architecture of congenital heart disease.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Kristine Bucasas
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Linz, Austria
| | | | | | | | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | - Nancy A Ayres
- Division of Cardiology, Department of Pediatrics, and
| | | | - Henri Justino
- Division of Cardiology, Department of Pediatrics, and
| | | | | | | | - Dhaval Parekh
- Division of Cardiology, Department of Pediatrics, and
| | | | - Aamir Jeewa
- Division of Cardiology, Department of Pediatrics, and
| | | | - Hugh D Allen
- Division of Cardiology, Department of Pediatrics, and
| | | | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Lalita Wadhwa
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - J David Brook
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Frances A Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Shoumo Bhattacharya
- Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Sara M Fitzgerald-Butt
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | | | - Don Corsmeier
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelsey Lecerf
- College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - Vidu Garg
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | - Bernard D Keavney
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - John W Belmont
- Department of Molecular and Human Genetics, Department of Pediatrics,
| | - Kim L McBride
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research,
| |
Collapse
|
24
|
Sebastian S, Goulding L, Kuchipudi SV, Chang KC. Extended 2D myotube culture recapitulates postnatal fibre type plasticity. BMC Cell Biol 2015; 16:23. [PMID: 26382633 PMCID: PMC4574010 DOI: 10.1186/s12860-015-0069-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types. RESULTS Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo. CONCLUSIONS Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression.
Collapse
Affiliation(s)
- Sujith Sebastian
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Leah Goulding
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
25
|
Veeranki S, Winchester LJ, Tyagi SC. Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:732-41. [PMID: 25615794 PMCID: PMC4372482 DOI: 10.1016/j.bbadis.2015.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022]
Abstract
HHcy has been implicated in elderly frailty, but the underlying mechanisms are poorly understood. Using C57 and CBS+/- mice and C2C12 cell line, we investigated mechanisms behind HHcy induced skeletal muscle weakness and fatigability. Possible alterations in metabolic capacity (levels of LDH, CS, MM-CK and COX-IV), in structural proteins (levels of dystrophin) and in mitochondrial function (ATP production) were examined. An exercise regimen was employed to reverse HHcy induced changes. CBS+/- mice exhibited more fatigability, and generated less contraction force. No significant changes in muscle morphology were observed. However, there is a corresponding reduction in large muscle fiber number in CBS+/- mice. Excess fatigability was not due to changes in key enzymes involved in metabolism, but was due to reduced ATP levels. A marginal reduction in dystrophin levels along with a decrease in mitochondrial transcription factor A (mtTFA) were observed. There was also an increase in the mir-31, and mir-494 quantities that were implicated in dystrophin and mtTFA regulation respectively. The molecular changes elevated during HHcy, with the exception of dystrophin levels, were reversed after exercise. In addition, the amount of NRF-1, one of the transcriptional regulators of mtTFA, was significantly decreased. Furthermore, there was enhancement in mir-494 levels and a concomitant decline in mtTFA protein quantity in homocysteine treated cells. These changes in C2C12 cells were also accompanied by an increase in DNMT3a and DNMT3b proteins and global DNA methylation levels. Together, these results suggest that HHcy plays a causal role in enhanced fatigability through mitochondrial dysfunction which involves epigenetic changes.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| | - Lee J Winchester
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
26
|
Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 2014; 15:565-76. [PMID: 25118717 DOI: 10.1038/nrm3854] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are important modulators of development. Owing to their ability to simultaneously silence hundreds of target genes, they have key roles in large-scale transcriptomic changes that occur during cell fate transitions. In somatic stem and progenitor cells--such as those involved in myogenesis, haematopoiesis, skin and neural development--miRNA function is carefully regulated to promote and stabilize cell fate choice. miRNAs are integrated within networks that form both positive and negative feedback loops. Their function is regulated at multiple levels, including transcription, biogenesis, stability, availability and/or number of target sites, as well as their cooperation with other miRNAs and RNA-binding proteins. Together, these regulatory mechanisms result in a refined molecular response that enables proper cellular differentiation and function.
Collapse
Affiliation(s)
- Archana Shenoy
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, California CA 94143-0667, USA
| | - Robert H Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, California CA 94143-0667, USA
| |
Collapse
|
27
|
Kovanda A, Režen T, Rogelj B. MicroRNA in skeletal muscle development, growth, atrophy, and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:509-25. [DOI: 10.1002/wrna.1227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Anja Kovanda
- Department of Biotechnology; Jozef Stefan Institute; Ljubljana Slovenia
- Biomedical Research Institute BRIS; Ljubljana Slovenia
| | - Tadeja Režen
- Biomedical Research Institute BRIS; Ljubljana Slovenia
| | - Boris Rogelj
- Department of Biotechnology; Jozef Stefan Institute; Ljubljana Slovenia
- Biomedical Research Institute BRIS; Ljubljana Slovenia
| |
Collapse
|
28
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Patrick Manning
- Department of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Guess MG, Barthel KK, Pugach EK, Leinwand LA. Measuring microRNA reporter activity in skeletal muscle using hydrodynamic limb vein injection of plasmid DNA combined with in vivo imaging. Skelet Muscle 2013; 3:19. [PMID: 23915674 PMCID: PMC3750807 DOI: 10.1186/2044-5040-3-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/28/2013] [Indexed: 11/23/2022] Open
Abstract
Background microRNA regulation plays an important role in the remodeling that occurs in response to pathologic and physiologic stimuli in skeletal muscle. In response to stress, microRNAs are dynamically regulated, resulting in a widespread “fine-tuning” of gene expression. An understanding of this dynamic regulation is critical to targeting future therapeutic strategies. Experiments elucidating this dynamic regulation have typically relied on in vitro reporter assays, ex vivo sample analysis, and transgenic mouse studies. Surprisingly, no experimental method to date allows rapid in vivo analysis of microRNA activity in mammals. Methods To improve microRNA studies we have developed a novel reporter assay for the measurement of skeletal muscle microRNA activity in vivo. To minimize muscle damage, hydrodynamic limb vein injection was used for the introduction of plasmid DNA encoding bioluminescent and fluorescent reporters, including click-beetle luciferase and the far-red fluorescent protein mKATE. We then applied this technique to the measurement of miR-206 activity in dystrophic mdx4cv animals. Results We found that hydrodynamic limb vein injection is minimally damaging to myofibers, and as a result no induction of muscle-specific miR-206 (indicative of an injury response) was detected. Unlike intramuscular injection or electroporation, we found that hydrodynamic limb vein injection results in dispersed reporter expression across multiple hindlimb muscle groups. Additionally, by utilizing click-beetle luciferase from Pyrophorus plagiophthalamus as a reporter and the far-red fluorescent protein mKATE for normalization, we show as a proof of principle that we can detect elevated miR-206 activity in mdx4cv animals when compared to C57Bl/6 controls. Conclusion Hydrodynamic limb vein injection of plasmid DNA followed by in vivo bioluminescent imaging is a novel assay for the detection of reporter activity in skeletal muscle in vivo. We believe that this method will allow for the rapid and precise detection of both transcriptional and post-transcriptional regulation of gene expression in response to skeletal muscle stress. Additionally, given the post-mitotic status of myofibers and stable expression of plasmid DNA, we believe this method will reduce biological variability in animal studies by allowing longitudinal studies of the same animal cohort.
Collapse
Affiliation(s)
- Martin G Guess
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | | | | | | |
Collapse
|
30
|
Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman M, Asakawa S, Watabe S. Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene. BMC Evol Biol 2013; 13:142. [PMID: 24059862 PMCID: PMC3716903 DOI: 10.1186/1471-2148-13-142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/13/2013] [Indexed: 12/17/2022] Open
Abstract
Background A novel sarcomeric myosin heavy chain gene, MYH14, was identified following the completion of the human genome project. MYH14 contains an intronic microRNA, miR-499, which is expressed in a slow/cardiac muscle specific manner along with its host gene; it plays a key role in muscle fiber-type specification in mammals. Interestingly, teleost fish genomes contain multiple MYH14 and miR-499 paralogs. However, the evolutionary history of MYH14 and miR-499 has not been studied in detail. In the present study, we identified MYH14/miR-499 loci on various teleost fish genomes and examined their evolutionary history by sequence and expression analyses. Results Synteny and phylogenetic analyses depict the evolutionary history of MYH14/miR-499 loci where teleost specific duplication and several subsequent rounds of species-specific gene loss events took place. Interestingly, miR-499 was not located in the MYH14 introns of certain teleost fish. An MYH14 paralog, lacking miR-499, exhibited an accelerated rate of evolution compared with those containing miR-499, suggesting a putative functional relationship between MYH14 and miR-499. In medaka, Oryzias latipes, miR-499 is present where MYH14 is completely absent in the genome. Furthermore, by using in situ hybridization and small RNA sequencing, miR-499 was expressed in the notochord at the medaka embryonic stage and slow/cardiac muscle at the larval and adult stages. Comparing the flanking sequences of MYH14/miR-499 loci between torafugu Takifugu rubripes, zebrafish Danio rerio, and medaka revealed some highly conserved regions, suggesting that cis-regulatory elements have been functionally conserved in medaka miR-499 despite the loss of its host gene. Conclusions This study reveals the evolutionary history of the MYH14/miRNA-499 locus in teleost fish, indicating divergent distribution and expression of MYH14 and miR-499 genes in different teleost fish lineages. We also found that medaka miR-499 was even expressed in the absence of its host gene. To our knowledge, this is the first report that shows the conversion of intronic into non-intronic miRNA during the evolution of a teleost fish lineage.
Collapse
Affiliation(s)
- Sharmin Siddique Bhuiyan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Qin H, Chen GX, Liang MY, Rong J, Yao JP, Liu H, Wu ZK. The altered expression profile of microRNAs in cardiopulmonary bypass canine models and the effects of mir-499 on myocardial ischemic reperfusion injury. J Transl Med 2013; 11:154. [PMID: 23800236 PMCID: PMC3694448 DOI: 10.1186/1479-5876-11-154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/14/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs were enrolled in various cardiovascular disease especially ischemic heart diseases, but the microRNA changes during myocardial ischemia reperfusion injury underwent cardiopulmonary bypass are still unknown. This study screens the microRNA differences in CPB canines and evaluates the relationship of microRNAs with myocardial ischemia reperfusion injury. METHODS 13 healthy canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest, followed by 90 minutes reperfusion. Left ventricular myocardial samples, blood samples and hemodynamic data were taken at different time points. We performed microRNAs microarray experiments upon the left ventricle myocardium tissue of canines before CPB and after reperfusion for 90 minutes by pooling 3 tissue samples together and used qRT-PCR for confirmation. RESULTS Statistically significant difference was found in mir-499 level before CPB and after reperfusion (T1 vs. T4, p=0.041). We further examined the mir-499 levels by using qRT-PCR in all 13 canines at 4 different time points (T1 vs. T4, p=0.029). Mir-499 expression was negatively correlated with cardiac troponin T (cTnT) and creatine kinase- MB (CK-MB) levels of canines in all time points samples (r=0.469, p<0.001 and r=0.273, p=0.050 respectively). Moreover, higher mir-499 expression level was associated with higher dP/dtmax at 25 minutes and 90 minutes after reperfusion. CONCLUSION Myocardial ischemic reperfusion injury with cardiopulmonary bypass results in declining level of mir-499 expression in left ventricle myocardium of canines, suggesting mir-499 would be a potential therapeutic target in cardiac protection during open heart surgery.
Collapse
|
32
|
Abstract
Heart development involves the precise orchestration of gene expression during cardiac differentiation and morphogenesis by evolutionarily conserved regulatory networks. miRNAs (microRNAs) play important roles in the post-transcriptional regulation of gene expression, and recent studies have established critical functions for these tiny RNAs in almost every facet of cardiac development and disease. The realization that miRNAs are amenable to therapeutic manipulation has also generated considerable interest in the potential of miRNA-based drugs for the treatment of a number of human diseases, including cardiovascular disease. In the present review, I discuss well-established and emerging roles of miRNAs in cardiac development, their relevance to congenital heart disease and unresolved questions in the field for future investigation, as well as emerging therapeutic possibilities for cardiac regeneration.
Collapse
|