1
|
Malhan D, Hesse J, Nelson N, Stankov K, Nguyen J, Aboumanify O, Garmshausen J, Rogmans G, Czogalla B, Gerber J, Koch M, Kupec T, Tomé O, Witteler R, Deryal M, Eichbaum M, Sehouli J, Braicu EI, Relógio A. Circadian rhythm disruption by PARP inhibitors correlates with treatment toxicity in patients with ovarian cancer and is a predictor of side effects. EBioMedicine 2025:105764. [PMID: 40382284 DOI: 10.1016/j.ebiom.2025.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Ovarian cancer is among the most lethal malignancies in women. The advent of PARP inhibitors (PARPi) has improved outcomes. However, treatment-related toxicity remains a critical challenge, impacting patient quality of life and treatment adherence. METHODS In a circadian sub-study of the MAMOC trial-a double-blind, phase III study-42 patients (FIGO stage IIIA-IV) were randomised in a 2:1 ratio to receive rucaparib or placebo. In a subset of these patients, we performed differential gene expression and rhythmicity analysis on up to 800 genes, including clock and clock-controlled genes. Machine learning algorithms and mathematical modelling were employed to simulate patient-specific toxicity profiles and to explore correlations between gene expression patterns and treatment-related side effects. FINDINGS Our analysis revealed significant disruptions in circadian rhythms, specifically in the expression of the core clock genes BMAL1 and PER2, following treatment. These disruptions strongly correlated with the severity and frequency of side effects, including nausea and fatigue, displaying opposite trends between the placebo and rucaparib-treated groups. K-means clustering successfully distinguished rucaparib-treated patients from those receiving placebo based on BMAL1 phase and gene expression profiles. In addition, rucaparib therapy also altered the expression of several clock-controlled genes, including SIRT1, BRCA1, BRCA2, and TP53. Notably, our data suggest that individual differences in circadian rhythms may lead to distinct 24-h toxicity profiles among patients. INTERPRETATION These findings suggest that circadian rhythm dysregulation may contribute to the toxicity of PARPi therapy. Aligning treatment timing with circadian rhythms could mitigate these adverse effects, and improve patient outcomes. FUNDING This study was funded by the Dr. Rolf Schwiete Stiftung and the MSH Medical School Hamburg, Germany. The MAMOC trial (ClinicalTrials.gov: NCT04227522) was funded by Clovis Oncology, United States.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Janina Hesse
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany; Leibniz-Institute for Resilience Research (LIR), Mainz, Germany; Johannes Gutenberg University Medical Center Mainz, Mainz, Germany; Institute for Quantitative and Computational Biosciences (IQCB), Johannes-Gutenberg University, Mainz, Germany
| | - Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kay Stankov
- Stat4med (Ainovate GmbH), Frankfurt, Germany
| | - Jessica Nguyen
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany
| | - Ouda Aboumanify
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josefin Garmshausen
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany; Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gunther Rogmans
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; ZAGO- Zentrum für ambulante gynäkologische Onkologie, Krefeld, Germany
| | - Bastian Czogalla
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Department of Obstetrics and Gynecology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jens Gerber
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Städtisches Klinikum Dessau, Frauenheilkunde und Geburtshilfe, Dessau, Germany
| | - Martin Koch
- Department of Gynecology and Obstetrics, Hospital Anregiomed Ansbach, Ansbach, Germany
| | - Tomáš Kupec
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Department of Obstetrics and Gynecology, University Hospital Aachen, Aachen, Germany
| | - Oliver Tomé
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; ViDia Christliche Kliniken Karlsruhe, Department of Gynecology and Obstetrics, Karlsruhe, Germany
| | - Ralf Witteler
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Universitätsklinikum Münster, Klinik für Frauenheilkunde und Geburtshilfe, Münster, Germany
| | - Mustafa Deryal
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Center for Gynecology, Caritas Klinikum St. Theresia-Saarbruecken, Saarbruecken, Germany
| | - Michael Eichbaum
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Helios Dr. Horst Schmidt Kliniken Wiesbaden, Department of Gynecology and Obstetrics, Wiesbaden, Germany
| | - Jalid Sehouli
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Department of Gynecology with Center for Oncological Surgery, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Elena Ioana Braicu
- North-Eastern German Society of Gynecological Oncology (NOGGO e.V.), Berlin, Germany; Department of Gynecology with Center for Oncological Surgery, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany; Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; TimeTeller GmbH, Hamburg, Germany.
| |
Collapse
|
2
|
Zamudio-Beltrán LE, Bossu CM, Bueno-Hernández AA, Dunn PO, Sly ND, Rayne C, Anderson EC, Hernández-Baños BE, Ruegg KC. Parallel and convergent evolution in genes underlying seasonal migration. Evol Lett 2025; 9:189-208. [PMID: 40191407 PMCID: PMC11968193 DOI: 10.1093/evlett/qrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 04/09/2025] Open
Abstract
Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration.
Collapse
Affiliation(s)
- Luz E Zamudio-Beltrán
- Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
- Facultad de Ciencias, UNAM, Mexico City, Mexico
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Christine Rayne
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Luo Y, Niu M, Liu Y, Zhang M, Deng Y, Mu D, Xu J, Hong S. Oncoproteins E6 and E7 upregulate topoisomerase I to activate the cGAS-PD-L1 pathway in cervical cancer development. Front Pharmacol 2024; 15:1450875. [PMID: 39156107 PMCID: PMC11327024 DOI: 10.3389/fphar.2024.1450875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Cervical cancer (CC) stands as a significant health threat to women globally, with high-risk human papillomaviruses as major etiologic agents. The DNA damage repair (DDR) protein topoisomerase I (TOP1) has been linked to various cancers, yet its distinct roles and mechanisms in CC are not fully elucidated. Methods: We investigated TOP1 expression in cervical intraepithelial neoplasia (CIN) and CC tissues utilizing qRT-PCR and IHC, correlating findings with patient prognosis. Subsequent knockdown studies were performed in vitro and in vivo to evaluate the influence of TOP1 on tumor growth, DNA repair, and inflammatory responses. Results: TOP1 was highly expressed in CIN and CC, negatively correlating with patient prognosis. Inhibition of TOP1 impeded CC cell growth and disrupted DNA repair. TOP1 was shown to regulate tumor-promoting inflammation and programmed death-ligand 1 (PD-L1) production in a cGAS-dependent manner. HPV oncoproteins E6 and E7 upregulated TOP1 and activated the cGAS-PD-L1 pathway. Conclusions: TOP1 acts as a DNA repair mediator, promoting CC development and immune evasion. Targeting the TOP1-cGAS-PD-L1 axis could be a potential therapeutic strategy for CC.
Collapse
Affiliation(s)
- Ying Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yanfei Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Miaochang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Mu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiyuan Hong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Helm B, Liedvogel M. Avian migration clocks in a changing world. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:691-716. [PMID: 38305877 PMCID: PMC11226503 DOI: 10.1007/s00359-023-01688-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Avian long-distance migration requires refined programming to orchestrate the birds' movements on annual temporal and continental spatial scales. Programming is particularly important as long-distance movements typically anticipate future environmental conditions. Hence, migration has long been of particular interest in chronobiology. Captivity studies using a proxy, the shift to nocturnality during migration seasons (i.e., migratory restlessness), have revealed circannual and circadian regulation, as well as an innate sense of direction. Thanks to rapid development of tracking technology, detailed information from free-flying birds, including annual-cycle data and actograms, now allows relating this mechanistic background to behaviour in the wild. Likewise, genomic approaches begin to unravel the many physiological pathways that contribute to migration. Despite these advances, it is still unclear how migration programmes are integrated with specific environmental conditions experienced during the journey. Such knowledge is imminently important as temporal environments undergo rapid anthropogenic modification. Migratory birds as a group are not dealing well with the changes, yet some species show remarkable adjustments at behavioural and genetic levels. Integrated research programmes and interdisciplinary collaborations are needed to understand the range of responses of migratory birds to environmental change, and more broadly, the functioning of timing programmes under natural conditions.
Collapse
Affiliation(s)
- Barbara Helm
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, CH-6204, Sempach, Schweiz.
| | - Miriam Liedvogel
- Institute of Avian Research, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
5
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
6
|
Bossu CM, Heath JA, Kaltenecker GS, Helm B, Ruegg KC. Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proc Biol Sci 2022; 289:20212507. [PMID: 35506230 PMCID: PMC9069262 DOI: 10.1098/rspb.2021.2507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
Seasonal migration is a dynamic natural phenomenon that allows organisms to exploit favourable habitats across the annual cycle. While the morphological, physiological and behavioural changes associated with migratory behaviour are well characterized, the genetic basis of migration and its link to endogenous biological time-keeping pathways are poorly understood. Historically, genome-wide research has focused on genes of large effect, whereas many genes of small effect may work together to regulate complex traits like migratory behaviour. Here, we explicitly relax stringent outlier detection thresholds and, as a result, discover how multiple biological time-keeping genes are important to migratory timing in an iconic raptor species, the American kestrel (Falco sparverius). To validate the role of candidate loci in migratory timing, we genotyped kestrels captured across autumn migration and found significant associations between migratory timing and genetic variation in metabolic and light-input pathway genes that modulate biological clocks (top1, phlpp1, cpne4 and peak1). Further, we demonstrate that migrating individuals originated from a single panmictic source population, suggesting the existence of distinct early and late migratory genotypes (i.e. chronotypes). Overall, our results provide empirical support for the existence of a within-population-level polymorphism in genes underlying migratory timing in a diurnally migrating raptor.
Collapse
Affiliation(s)
- Christen M. Bossu
- Biology Department, Colorado State University, Fort Collins, CO 80521, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Julie A. Heath
- Raptor Research Center and Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Gregory S. Kaltenecker
- Intermountain Bird Observatory, Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Barbara Helm
- Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland
| | - Kristen C. Ruegg
- Biology Department, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
7
|
Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer 2021; 20:132. [PMID: 34649567 PMCID: PMC8515748 DOI: 10.1186/s12943-021-01435-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. Liver cancer initiating cells also called cancer stem cells (CSCs) play a critical role in resistance against typical therapy and high tumor-initiating potential. However, the role of the novel circular RNA (circRNA) circIPO11 in the maintenance of liver cancer initiating cells remains elusive. METHODS CircRNAs highly conserved in humans and mice were identified from 3 primary HCC samples by circRNA array. The expression and function of circIPO11 were further evaluated by Northern blot, limiting dilution xenograft analysis, chromatin isolation by RNA purification-PCR assay (ChIRP) and HCC patient-derived tumor cells (PDC) models. CircIpo11 knockout (KO) mice were generated by a CRISPR/Cas9 technology. RESULTS CircIPO11 is highly expressed in HCC tumor tissues and liver CSCs. CircIPO11 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, circIPO11 recruits TOP1 to GLI1 promoter to trigger its transcription, leading to the activation of Hedgehog signaling. Moreover, GLI1 is also highly expressed in HCC tumor tissues and liver CSCs, and TOP1 expression levels positively correlate with the metastasis, recurrence and survival of HCC patients. Additionally, circIPO11 knockout in mice suppresses the progression of chemically induced liver cancer development. CONCLUSION Our findings reveal that circIPO11 drives the self-renewal of liver CSCs and promotes the propagation of HCC via activating Hedgehog signaling pathway. Antisense oligonucleotides (ASOs) against circIPO11 combined with TOP1 inhibitor camptothecin (CPT) exert synergistic antitumor effect. Therefore, circIPO11 and the Hedgehog signaling pathway may provide new potential targets for the treatment of HCC patients.
Collapse
|
8
|
Hesse J, Martinelli J, Aboumanify O, Ballesta A, Relógio A. A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer. Comput Struct Biotechnol J 2021; 19:5170-5183. [PMID: 34630937 PMCID: PMC8477139 DOI: 10.1016/j.csbj.2021.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Scheduling anticancer drug administration over 24 h may critically impact treatment success in a patient-specific manner. Here, we address personalization of treatment timing using a novel mathematical model of irinotecan cellular pharmacokinetics and -dynamics linked to a representation of the core clock and predict treatment toxicity in a colorectal cancer (CRC) cellular model. The mathematical model is fitted to three different scenarios: mouse liver, where the drug metabolism mainly occurs, and two human colorectal cancer cell lines representing an in vitro experimental system for human colorectal cancer progression. Our model successfully recapitulates quantitative circadian datasets of mRNA and protein expression together with timing-dependent irinotecan cytotoxicity data. The model also discriminates time-dependent toxicity between the different cells, suggesting that treatment can be optimized according to their cellular clock. Our results show that the time-dependent degradation of the protein mediating irinotecan activation, as well as an oscillation in the death rate may play an important role in the circadian variations of drug toxicity. In the future, this model can be used to support personalized treatment scheduling by predicting optimal drug timing based on the patient's gene expression profile.
Collapse
Affiliation(s)
- Janina Hesse
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg 20457, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Julien Martinelli
- INSERM U900, Saint-Cloud, France, Institut Curie, Saint Cloud, France, Paris Saclay University, France, MINES ParisTech, CBIO - Centre for Computational Biology, PSL Research University, Paris, France.,UPR 'Chronotherapy, Cancers and Transplantation', Faculty of Medicine, Paris Saclay University, Campus CNRS, 7 rue Guy Moquet, 94800 Villejuif, France.,Lifeware Group, Inria Saclay Ile-de-France, Palaiseau 91120, France
| | - Ouda Aboumanify
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin
| | - Annabelle Ballesta
- INSERM U900, Saint-Cloud, France, Institut Curie, Saint Cloud, France, Paris Saclay University, France, MINES ParisTech, CBIO - Centre for Computational Biology, PSL Research University, Paris, France.,UPR 'Chronotherapy, Cancers and Transplantation', Faculty of Medicine, Paris Saclay University, Campus CNRS, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Angela Relógio
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg 20457, Germany.,Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin
| |
Collapse
|
9
|
Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov Today 2021; 26:1620-1641. [PMID: 33781946 DOI: 10.1016/j.drudis.2021.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022]
Abstract
Disruption of circadian oscillations has a wide-ranging impact on health, with the potential to induce the development of clock-related diseases. Small-molecule modulators of the circadian clock (SMMCC) target core or noncore clock proteins, modulating physiological effects as a consequence of agonist, inverse agonist, or antagonist interference. These pharmacological modulators are usually identified using chemical screening of large libraries of active compounds. However, target-based screens, chemical optimization, and circadian crystallography have recently assisted in the identification of these compounds. In this review, we focus on established and novel SMMCCs targeting both core and noncore clock proteins, identifying their circadian targets, detailed circadian effects, and specific physiological effects. In addition, we discuss their therapeutic potential for the treatment of diverse clock-related disorders (such as metabolic-associated disorders, autoimmune diseases, mood disorders, and cancer) and as chronotherapeutics. Future perspectives are also considered, such as clinical trials, and potential safety hazards, including those in the absence of clinical trials.
Collapse
Affiliation(s)
- Rodrigo F N Ribeiro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Maria Manuel C Silva
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
11
|
Riedlinger T, Bartkuhn M, Zimmermann T, Hake SB, Nist A, Stiewe T, Kracht M, Schmitz ML. Chemotherapeutic Drugs Inhibiting Topoisomerase 1 Activity Impede Cytokine-Induced and NF-κB p65-Regulated Gene Expression. Cancers (Basel) 2019; 11:cancers11060883. [PMID: 31242600 PMCID: PMC6627772 DOI: 10.3390/cancers11060883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/03/2023] Open
Abstract
Inhibitors of DNA topoisomerase I (TOP1), an enzyme relieving torsional stress of DNA by generating transient single-strand breaks, are clinically used to treat ovarian, small cell lung and cervical cancer. As torsional stress is generated during transcription by progression of RNA polymerase II through the transcribed gene, we tested the effects of camptothecin and of the approved TOP1 inhibitors Topotecan and SN-38 on TNFα-induced gene expression. RNA-seq experiments showed that inhibition of TOP1 but not of TOP2 activity suppressed the vast majority of TNFα-triggered genes. The TOP1 effects were fully reversible and preferentially affected long genes. TNFα stimulation led to inducible recruitment of TOP1 to the gene body of IL8, where its inhibition by camptothecin reduced transcription elongation and also led to altered histone H3 acetylation. Together, these data show that TOP1 inhibitors potently suppress expression of proinflammatory cytokines, a feature that may contribute to the increased infection risk occurring in tumor patients treated with these agents. On the other hand, TOP1 inhibitors could also be considered as a therapeutic option in order to interfere with exaggerated cytokine expression seen in several inflammatory diseases.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Andrea Nist
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Thorsten Stiewe
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
12
|
Tomita T, Kurita R, Onishi Y. Epigenetic regulation of the circadian clock: role of 5-aza-2'-deoxycytidine. Biosci Rep 2017; 37:BSR20170053. [PMID: 28487473 PMCID: PMC5437938 DOI: 10.1042/bsr20170053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
We have been investigating transcriptional regulation of the BMAL1 gene, a critical component of the mammalian clock system including DNA methylation. Here, a more detailed analysis of the regulation of DNA methylation of BMAL1 proceeded in RPMI8402 lymphoma cells. We found that CpG islands in the BMAL1 and the PER2 promoters were hyper- and hypomethylated, respectively and that 5-aza-2'-deoxycytidine (aza-dC) not only enhanced PER2 gene expression but also PER2 oscillation within 24 h in RPMI8402 cells. That is, such hypermethylation of CpG islands in the BMAL1 promoter restricted PER2 expression which was recovered by aza-dC within 1 day in these cells. These results suggest that the circadian clock system can be recovered through BMAL1 expression induced by aza-dC within a day. The RPIB9 promoter of RPMI8402 cells, which is a methylation hotspot in lymphoblastic leukemia, was also hypermethylated and aza-dC gradually recovered RPIB9 expression in 3 days. In addition, methylation-specific PCR revealed a different degree of aza-dC-induced methylation release between BMAL1 and RPIB9 These results suggest that the aza-dC-induced recovery of gene expression from DNA methylation is dependent on a gene, for example the rapid response to demethylation by the circadian system, and thus, is of importance to clinical strategies for treating cancer.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Higashi 1-1-1, Tsukuba 305-8566, Japan
| |
Collapse
|
13
|
He B, Chen Z. Molecular Targets for Small-Molecule Modulators of Circadian Clocks. Curr Drug Metab 2016; 17:503-12. [PMID: 26750111 DOI: 10.2174/1389200217666160111124439] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. METHODS Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. RESULTS Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. CONCLUSION Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases.
Collapse
Affiliation(s)
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.200, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Identifying Novel Transcriptional Regulators with Circadian Expression. Mol Cell Biol 2015; 36:545-58. [PMID: 26644408 DOI: 10.1128/mcb.00701-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms.
Collapse
|
15
|
Ogawa Y, Kawano Y, Yamazaki Y, Onishi Y. Shikonin shortens the circadian period: possible involvement of Top2 inhibition. Biochem Biophys Res Commun 2014; 443:339-43. [PMID: 24321095 DOI: 10.1016/j.bbrc.2013.11.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/30/2013] [Indexed: 12/01/2022]
Abstract
The naphthoquinone pigment, shikonin, is a natural product derived from Lithospermum erythrorhizon and an active component of a Chinese traditional herbal therapeutic. We identified shikonin as a candidate for shortening the circadian period using real-time reporter gene assays based on NIH3T3-derived stable reporter cells. Period length that became shortened in cells incubated with shikonin or etoposide reverted to that of control cells after continued incubation without these compounds. These findings indicated that shikonin and etoposide shorten the circadian period reversibly and through similar mechanisms. Topoisomerase II (Top2)-specific decatenation assays confirmed that shikonin, liker etoposide, is a Top2 inhibitor. Shikonin was incorporated into the nucleus and Top2 was located in the Bmal1 promoter, suggesting the relationship between Bmal1 transcription and Top2 inhibition. Top2a siRNA also shortened period length, suggesting that Top2 is involved in this process. Promoter assays showed that Top2a siRNA, etoposide and shikonin reduce Bmal1 promoter activity. These findings indicated that Top2 is involved in Bmal1 transcription and influences the circadian period, and that shikonin is a novel contributor to the control of period length in mammalian cells.
Collapse
Affiliation(s)
- Yoshikatsu Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yasuhiro Kawano
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshimitsu Yamazaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan
| | - Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| |
Collapse
|
16
|
Satou R, Sugihara N, Ishizuka Y, Matsukubo T, Onishi Y. DNA methylation of the BMAL1 promoter. Biochem Biophys Res Commun 2013; 440:449-53. [PMID: 24103761 DOI: 10.1016/j.bbrc.2013.09.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/10/2023]
Abstract
We previously analyzed transcriptional regulation of the BMAL1 gene, a critical component of the mammalian clock system and found that the BMAL1 gene is expressed with circadian oscillation and that its regulatory region is located in hypomethylated CpG islands with an open chromatin structure. Here, we found that the BMAL1 gene is not expressed with circadian oscillation in CPT-K cells because the CpG islands located in the BMAL1 promoter are hypermethylated and that 5-aza-2'-deoxycytidine (aza-dC) recovered BMAL1 expression. In contrast, CpG islands in the PER2 promoter were hypomethylated, the PER2 gene was expressed and aza-dC enhanced PER2 gene expression in CPT-K cells. Reporter gene assays showed that intracellular transcriptional machinery for the BMAL1 gene is active, suggesting that BMAL1 inactivation is caused by DNA methylation and not by malfunctional promoter activity. Incubating CPT-K cells with aza-dC also increased CRY1 expression, whereas CLOCK expression was not altered and the CRY1 promoter was unmethylated. These results suggest that aza-dC induces BMAL1 expression via DNA demethylation in the BMAL1 promoter and enhances PER2 and CRY1 transcription. Finally, aza-dC recovered the circadian oscillation of BMAL1 transcription. These results suggest that DNA methylation of the BMAL1 gene is critical for interfering with circadian rhythms.
Collapse
Affiliation(s)
- R Satou
- Department of Epidemiology and Public Health, Tokyo Dental College, Japan
| | | | | | | | | |
Collapse
|