1
|
Derollez E, Lesterlin C, Bigot S. Design, potential and limitations of conjugation-based antibacterial strategies. Microb Biotechnol 2024; 17:e70050. [PMID: 39548711 PMCID: PMC11568246 DOI: 10.1111/1751-7915.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past few decades, the global spread of antimicrobial resistance has underscored the urgent need to develop innovative non-antibiotic antibacterial strategies and to reduce antibiotic use worldwide. In response to this challenge, several methods have been developed that rely on gene transfer by conjugation to deliver toxic compounds or CRISPR systems specifically designed to kill or resensitize target bacterial strains to antibiotics. This review explores the design, potential, and limitations of these conjugation-based antibacterial strategies, focusing on the recent advances in the delivery of CRISPR systems as antibacterial effectors.
Collapse
Affiliation(s)
- Elisabeth Derollez
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale (MMSB)Université Lyon 1, CNRS, Inserm, UMR5086LyonFrance
| |
Collapse
|
2
|
Zhang Y, Pan M, Wang Q, Wang L, Liao L. Complete Genome Sequence and Pan-Genome Analysis of Shewanella oncorhynchi Z-P2, a Siderophore Putrebactin-Producing Bacterium. Microorganisms 2023; 11:2961. [PMID: 38138105 PMCID: PMC10745600 DOI: 10.3390/microorganisms11122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we reported the complete genome sequence of Shewanella oncorhynchi for the first time. S. oncorhynchi Z-P2 is a bacterium that produces the siderophore putrebactin. Its genome consists of a circular chromosome of 5,034,612 bp with a G + C content of 45.4%. A total of 4544 protein-coding genes, 109 tRNAs and 31 rRNAs were annotated by the RAST. Five non-ribosomal peptide synthetase (NRPS) and polyketide synthetase (PKS) gene clusters were identified by the antiSMASH analysis. The pan-genome analysis of Z-P2 and 10 Shewanella putrefaciens revealed 9228 pan-gene clusters and 2681 core gene clusters, with Z-P2 having 618 unique gene clusters. Additionally, the gene cluster involved in putrebactin biosynthesis in Z-P2 was annotated, and the mechanism of putrebactin biosynthesis was analyzed. The putrebactin produced by Z-P2 was detected using UPLC-MS analysis, with an [M + H]+ molecular ion at m/z 373.21. These findings provide valuable support for further research on the genetic engineering of putrebactin biosynthetic genes of Z-P2 and their potential applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Mengjie Pan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Qiaoyun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
| | - Li Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
| |
Collapse
|
3
|
Adefisoye MA, Olaniran AO. Antimicrobial resistance expansion in pathogens: a review of current mitigation strategies and advances towards innovative therapy. JAC Antimicrob Resist 2023; 5:dlad127. [PMID: 38089461 PMCID: PMC10712721 DOI: 10.1093/jacamr/dlad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Martins A Adefisoye
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Esquerra-Ruvira B, Baquedano I, Ruiz R, Fernandez A, Montoliu L, Mojica FJM. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering. Microb Biotechnol 2023. [PMID: 37097160 DOI: 10.1111/1751-7915.14266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Non-coding RNAs (crRNAs) produced from clustered regularly interspaced short palindromic repeats (CRISPR) loci and CRISPR-associated (Cas) proteins of the prokaryotic CRISPR-Cas systems form complexes that interfere with the spread of transmissible genetic elements through Cas-catalysed cleavage of foreign genetic material matching the guide crRNA sequences. The easily programmable targeting of nucleic acids enabled by these ribonucleoproteins has facilitated the implementation of CRISPR-based molecular biology tools for in vivo and in vitro modification of DNA and RNA targets. Despite the diversity of DNA-targeting Cas nucleases so far identified, native and engineered derivatives of the Streptococcus pyogenes SpCas9 are the most widely used for genome engineering, at least in part due to their catalytic robustness and the requirement of an exceptionally short motif (5'-NGG-3' PAM) flanking the target sequence. However, the large size of the SpCas9 variants impairs the delivery of the tool to eukaryotic cells and smaller alternatives are desirable. Here, we identify in a metagenome a new CRISPR-Cas9 system associated with a smaller Cas9 protein (EHCas9) that targets DNA sequences flanked by 5'-NGG-3' PAMs. We develop a simplified EHCas9 tool that specifically cleaves DNA targets and is functional for genome editing applications in prokaryotes and eukaryotic cells.
Collapse
Affiliation(s)
- Belen Esquerra-Ruvira
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ignacio Baquedano
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Raul Ruiz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Almudena Fernandez
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
| | - Francisco J M Mojica
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Alicante, Spain
| |
Collapse
|
5
|
Tao S, Chen H, Li N, Liang W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist 2022; 15:4155-4168. [PMID: 35942309 PMCID: PMC9356603 DOI: 10.2147/idr.s370869] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The emergence and global epidemic of antimicrobial resistance (AMR) poses a serious threat to global public health in recent years. AMR genes are shared between bacterial pathogens mainly via horizontal gene transfer (HGT) on mobile genetic elements (MGEs), thereby accelerating the spread of antimicrobial resistance (AMR) and increasing the burden of drug resistance. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are an RNA-guided adaptive immune system in prokaryotes that recognizes and defends against invasive genetic elements such as phages and plasmids. Because of its specifically target and cleave DNA sequences encoding antibiotic resistance genes, CRISPR/Cas system has been developed into a new gene-editing tool for the prevention and control of bacterial drug resistance. CRISPR-Cas plays a potentially important role in controlling horizontal gene transfer and limiting the spread of antibiotic resistance. In this review, we will introduce the structure and working mechanism of CRISPR-Cas systems, followed by delivery strategies, and then focus on the relationship between antimicrobial resistance and CRISPR-Cas. Moreover, the challenges and prospects of this research field are discussed, thereby providing a reference for the prevention and control of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People’s Republic of China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, 233030, People’s Republic of China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, 222023, People’s Republic of China
| |
Collapse
|
6
|
Ambroa A, Blasco L, López M, Pacios O, Bleriot I, Fernández-García L, González de Aledo M, Ortiz-Cartagena C, Millard A, Tomás M. Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. Front Microbiol 2022; 12:784949. [PMID: 35250902 PMCID: PMC8891609 DOI: 10.3389/fmicb.2021.784949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage-resistant strains that can be overcome by the analysis of metadata provided by whole-genome sequencing. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strains belonging to the ST-2 clonal complex during a decade (Ab2000 vs. 2010): 9 from 2000 to 9 from 2010. The presence of genes putatively associated with phage resistance was detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defense systems but with unknown function, and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands in the 2000 strains and 32% in the 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems. A moderately higher presence of these genes in the strains of 2010 in comparison with those of 2000 was found, especially those related to the restriction-modification system and CRISPR-Cas system. The presence of these genes in genomic islands at a higher rate in the strains of 2010 compared with those of 2000 was also detected. Whole-genome sequencing and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in possible phage therapy.
Collapse
Affiliation(s)
- Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Infectious Diseases Network Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Manuel González de Aledo
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - María Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Infectious Diseases Network Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
7
|
Podlevsky JD, Hudson CM, Timlin JA, Williams KP. CasCollect: targeted assembly of CRISPR-associated operons from high-throughput sequencing data. NAR Genom Bioinform 2021; 2:lqaa063. [PMID: 33575613 PMCID: PMC7671303 DOI: 10.1093/nargab/lqaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
CRISPR arrays and CRISPR-associated (Cas) proteins comprise a widespread adaptive immune system in bacteria and archaea. These systems function as a defense against exogenous parasitic mobile genetic elements that include bacteriophages, plasmids and foreign nucleic acids. With the continuous spread of antibiotic resistance, knowledge of pathogen susceptibility to bacteriophage therapy is becoming more critical. Additionally, gene-editing applications would benefit from the discovery of new cas genes with favorable properties. While next-generation sequencing has produced staggering quantities of data, transitioning from raw sequencing reads to the identification of CRISPR/Cas systems has remained challenging. This is especially true for metagenomic data, which has the highest potential for identifying novel cas genes. We report a comprehensive computational pipeline, CasCollect, for the targeted assembly and annotation of cas genes and CRISPR arrays—even isolated arrays—from raw sequencing reads. Benchmarking our targeted assembly pipeline demonstrates significantly improved timing by almost two orders of magnitude compared with conventional assembly and annotation, while retaining the ability to detect CRISPR arrays and cas genes. CasCollect is a highly versatile pipeline and can be used for targeted assembly of any specialty gene set, reconfigurable for user provided Hidden Markov Models and/or reference nucleotide sequences.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Corey M Hudson
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jerilyn A Timlin
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Kelly P Williams
- Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
8
|
Görücü Yilmaz S. Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI JOURNAL 2021; 20:19-45. [PMID: 33510590 PMCID: PMC7838830 DOI: 10.17179/excli2020-3070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Genome editing technologies include techniques used for desired genetic modifications and allow the insertion, modification or deletion of specific DNA fragments. Recent advances in genome biology offer unprecedented promise for interdisciplinary collaboration and applications in gene editing. New genome editing technologies enable specific and efficient genome modifications. The sources that inspire these modifications and already exist in the genome are DNA degradation enzymes and DNA repair pathways. Six of these recent technologies are the clustered regularly interspaced short palindromic repeats (CRISPR), leveraging endogenous ADAR for programmable editing of RNA (LEAPER), recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing (RESTORE), chemistry-based artificial restriction DNA cutter (ARCUT), single homology arm donor mediated intron-targeting integration (SATI), RNA editing for specific C-to-U exchange (RESCUE). These technologies are widely used from various biomedical researches to clinics, agriculture, and allow you to rearrange genomic sequences, create cell lines and animal models to solve human diseases. This review emphasizes the characteristics, superiority, limitations, also whether each technology can be used in different biological systems and the potential application of these systems in the treatment of several human diseases.
Collapse
Affiliation(s)
- Senay Görücü Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey 27310
| |
Collapse
|
9
|
Wu R, Chai B, Cole JR, Gunturu SK, Guo X, Tian R, Gu JD, Zhou J, Tiedje JM. Targeted assemblies of cas1 suggest CRISPR-Cas's response to soil warming. ISME JOURNAL 2020; 14:1651-1662. [PMID: 32221408 PMCID: PMC7305122 DOI: 10.1038/s41396-020-0635-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
There is an increasing interest in the clustered regularly interspaced short palindromic repeats CRISPR-associated protein (CRISPR-Cas) system to reveal potential virus–host dynamics. The universal and most conserved Cas protein, cas1 is an ideal marker to elucidate CRISPR-Cas ecology. We constructed eight Hidden Markov Models (HMMs) and assembled cas1 directly from metagenomes by a targeted-gene assembler, Xander, to improve detection capacity and resolve the diverse CRISPR-Cas systems. The eight HMMs were first validated by recovering all 17 cas1 subtypes from the simulated metagenome generated from 91 prokaryotic genomes across 11 phyla. We challenged the targeted method with 48 metagenomes from a tallgrass prairie in Central Oklahoma recovering 3394 cas1. Among those, 88 were near full length, 5 times more than in de-novo assemblies from the Oklahoma metagenomes. To validate the host assignment by cas1, the targeted-assembled cas1 was mapped to the de-novo assembled contigs. All the phylum assignments of those mapped contigs were assigned independent of CRISPR-Cas genes on the same contigs and consistent with the host taxonomies predicted by the mapped cas1. We then investigated whether 8 years of soil warming altered cas1 prevalence within the communities. A shift in microbial abundances was observed during the year with the biggest temperature differential (mean 4.16 °C above ambient). cas1 prevalence increased and even in the phyla with decreased microbial abundances over the next 3 years, suggesting increasing virus–host interactions in response to soil warming. This targeted method provides an alternative means to effectively mine cas1 from metagenomes and uncover the host communities.
Collapse
Affiliation(s)
- Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.,Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Benli Chai
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Santosh K Gunturu
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Xue Guo
- Department of Microbiology & Plant Biology, Institute for Environmental Genomics, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Renmao Tian
- Department of Microbiology & Plant Biology, Institute for Environmental Genomics, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.,Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Jizhong Zhou
- Department of Microbiology & Plant Biology, Institute for Environmental Genomics, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA. .,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
11
|
Soto-Perez P, Bisanz JE, Berry JD, Lam KN, Bondy-Denomy J, Turnbaugh PJ. CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog. Cell Host Microbe 2019; 26:325-335.e5. [PMID: 31492655 DOI: 10.1016/j.chom.2019.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
Bacteriophages are abundant within the human gastrointestinal tract, yet their interactions with gut bacteria remain poorly understood, particularly with respect to CRISPR-Cas immunity. Here, we show that the type I-C CRISPR-Cas system in the prevalent gut Actinobacterium Eggerthella lenta is transcribed and sufficient for specific targeting of foreign and chromosomal DNA. Comparative analyses of E. lenta CRISPR-Cas systems across (meta)genomes revealed 2 distinct clades according to cas sequence similarity and spacer content. We assembled a human virome database (HuVirDB), encompassing 1,831 samples enriched for viral DNA, to identify protospacers. This revealed matches for a majority of spacers, a marked increase over other databases, and uncovered "hyper-targeted" phage sequences containing multiple protospacers targeted by several E. lenta strains. Finally, we determined the positional mismatch tolerance of observed spacer-protospacer pairs. This work emphasizes the utility of merging computational and experimental approaches for determining the function and targets of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paola Soto-Perez
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan E Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel D Berry
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathy N Lam
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Chai G, Yu M, Jiang L, Duan Y, Huang J. HMMCAS: A Web Tool for the Identification and Domain Annotations of CAS Proteins. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1313-1315. [PMID: 28186905 DOI: 10.1109/tcbb.2017.2665542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems are discovered in many bacteria and most archaea. These systems are encoded by cas (CRISPR-associated) operons that have an extremely diverse architecture. The most crucial step in the depiction of cas operons composition is the identification of cas genes or Cas proteins. With the continuous increase of the newly sequenced archaeal and bacterial genomes, the recognition of new Cas proteins is becoming possible, which not only provides candidates for novel genome editing tools but also helps to understand the prokaryotic immune system better. Here, we describe HMMCAS, a web service for the detection of CRISPR-associated structural and functional domains in protein sequences. HMMCAS uses hmmscan similarity search algorithm in HMMER3.1 to provide a fast, interactive service based on a comprehensive collection of hidden Markov models of Cas protein family. It can accurately identify the Cas proteins including those fusion proteins, for example the Cas1-Cas4 fusion protein in Candidatus Chloracidobacterium thermophilum B (Cab. thermophilum B). HMMCAS can also find putative cas operon and determine which type it belongs to. HMMCAS is freely available at http://i.uestc.edu.cn/hmmcas.
Collapse
|
13
|
Cao J, Lv Y, Li X. Interspaced Repeat Sequences Confer the Regulatory Functions of AtXTH10, Important for Root Growth in Arabidopsis. PLANTS 2019; 8:plants8050130. [PMID: 31100875 PMCID: PMC6572656 DOI: 10.3390/plants8050130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
An interspaced repeat sequence (IRS) is a unique sequence similar to prokaryotic CRISPR in structure. In this study, 1343 IRSs were identified in the Arabidopsis genome. Functional annotation of the IRS-related genes showed that they were associated with various growth and development processes. More than 30% of the IRSs were located in promoter regions. Deletion of some IRSs affected promoter activity, suggesting their roles in the regulation of gene expression. Next, the function of the AtXTH10 gene was further analyzed, and the expression of this gene was regulated by IRSs in its promoter region. Transgenic and mutant plants analysis indicated that the AtXTH10 gene was associated with root development by affecting cell wall structure. Moreover, the expression profiles of some key genes involved in root development signaling pathways were also affected by AtXTH10. These results suggest that IRSs could be involved in regulating the expression of genes with important roles in plant development.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Yueqing Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Xiang Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
Tang Z, Chen S, Chen A, He B, Zhou Y, Chai G, Guo F, Huang J. CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5549733. [PMID: 31411686 PMCID: PMC6693189 DOI: 10.1093/database/baz093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/01/2019] [Accepted: 06/21/2019] [Indexed: 12/04/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) constitute CRISPR–Cas systems, which are antiphage immune systems present in numerous bacterial and most archaeal species. In recent years, CRISPR–Cas systems have been developed into reliable and powerful genome editing tools. Nevertheless, finding similar or better tools from bacteria or archaea remains crucial. This requires the exploration of different CRISPR systems, identification and characterization new Cas proteins. Archives tailored for Cas proteins are urgently needed and necessitate the prediction and grouping of Cas proteins into an information center with all available experimental evidence. Here, we constructed Cas Protein Data Bank (CasPDB), an integrated and annotated online database for Cas proteins from bacteria and archaea. The CasPDB database contains 287 reviewed Cas proteins, 257 745 putative Cas proteins and 3593 Cas operons from 32 023 bacteria species and 1802 archaea species. The database can be freely browsed and searched. The CasPDB web interface also represents all the 3593 putative Cas operons and its components. Among these operons, 328 are members of the type II CRISPR–Cas system.
Collapse
Affiliation(s)
- Zhongjie Tang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - ShaoQi Chen
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ang Chen
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bifang He
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Medicine, Guizhou University, Guiyang 550025, China
| | - Yuwei Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoshi Chai
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - FengBiao Guo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
15
|
Abstract
Pervasive application of CRISPR-Cas systems in genome editing has prompted an increase in both interest and necessity to further elucidate existing systems as well as discover putative novel systems. The ubiquity and power of current computational platforms have made in silico approaches to CRISPR-Cas identification and characterization accessible to a wider audience and increasingly amenable for processing extensive data sets. Here, we describe in silico methods for predicting and visualizing notable features of CRISPR-Cas systems, including Cas domain determination, CRISPR array visualization, and inference of the protospacer-adjacent motif. The efficiency of these tools enables rapid exploration of CRISPR-Cas diversity across prokaryotic genomes and supports scalable analysis of large genomic data sets.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
16
|
Zhang Q, Ye Y. Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC Bioinformatics 2017; 18:92. [PMID: 28166719 PMCID: PMC5294841 DOI: 10.1186/s12859-017-1512-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Background The CRISPR–Cas systems in prokaryotes are RNA-guided immune systems that target and deactivate foreign nucleic acids. A typical CRISPR–Cas system consists of a CRISPR array of repeat and spacer units, and a locus of cas genes. The CRISPR and the cas locus are often located next to each other in the genomes. However, there is no quantitative estimate of the co-location. In addition, ad-hoc studies have shown that some non-CRISPR genomic elements contain repeat-spacer-like structures and are mistaken as CRISPRs. Results Using available genome sequences, we observed that a significant number of genomes have isolated cas loci and/or CRISPRs. We found that 11%, 22% and 28% of the type I, II and III cas loci are isolated (without CRISPRs in the same genomes at all or with CRISPRs distant in the genomes), respectively. We identified a large number of genomic elements that superficially reassemble CRISPRs but don’t contain diverse spacers and have no companion cas genes. We called these elements false-CRISPRs and further classified them into groups, including tandem repeats and Staphylococcus aureus repeat (STAR)-like elements. Conclusion This is the first systematic study to collect and characterize false-CRISPR elements. We demonstrated that false-CRISPRs could be used to reduce the false annotation of CRISPRs, therefore showing them to be useful for improving the annotation of CRISPR–Cas systems. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1512-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Zhang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Ave, Bloomington, IN, 47405, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Ave, Bloomington, IN, 47405, USA.
| |
Collapse
|
17
|
Ye Y, Zhang Q. Characterization of CRISPR RNA transcription by exploiting stranded metatranscriptomic data. RNA (NEW YORK, N.Y.) 2016; 22:945-956. [PMID: 27190232 PMCID: PMC4911918 DOI: 10.1261/rna.055988.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
CRISPR-Cas systems are bacterial adaptive immune systems, each typically composed of a locus of cas genes and a CRISPR array of spacers flanked by repeats. Processed transcripts of CRISPR arrays (crRNAs) play important roles in the interference process mediated by these systems, guiding targeted immunity. Here we developed computational approaches that allow us to characterize the expression of many CRISPRs in their natural environments, using community RNA-seq (metatranscriptomic) data. By exploiting public human gut metatranscriptomic data sets, we studied the expression of 56 repeat-sequence types of CRISPRs, revealing that most CRISPRs are transcribed in one direction (producing crRNAs). In rarer cases, including a type II system associated with Bacteroides fragilis, CRISPRs are transcribed in both directions. Type III CRISPR-Cas systems were found in the microbiomes, but metatranscriptomic reads were barely found for their CRISPRs. We observed individual-level variation of the crRNA transcription, and an even greater transcription of a CRISPR from the antisense strand than the crRNA strand in one sample. The orientations of CRISPR expression implicated by metatranscriptomic data are largely in agreement with prior predictions for CRISPRs, with exceptions. Our study shows the promise of exploiting community RNA-seq data for investigating the transcription of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| | - Quan Zhang
- School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
18
|
Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics 2016; 17:356. [PMID: 27184979 PMCID: PMC4869251 DOI: 10.1186/s12864-016-2627-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/16/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic genomes. However, currently available detection algorithms do not utilise recently discovered features regarding CRISPR loci. RESULTS We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays. It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools. As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with 'extra-large' repeats in bacteria (repeats 44-50 nt). The CRISPRDetect output is integrated with other analysis tools. Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets. CONCLUSION CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and archaeal reference genomes.
Collapse
Affiliation(s)
- Ambarish Biswas
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Raymond H J Staals
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- Genetics Otago, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
19
|
Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 2016; 7:10476. [PMID: 26814032 PMCID: PMC4737851 DOI: 10.1038/ncomms10476] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. The analysis of existing metagenomic data can lead to discovery of new microorganisms. Here, Eloe-Fadrosh et al. perform a large-scale analysis of global metagenomic data, followed by genome reconstruction and single-cell genomics, to describe a new bacterial phylum that inhabits geothermal springs.
Collapse
Affiliation(s)
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jessica Jarett
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Anne E Dekas
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Allyson L Brady
- School of Geography &Earth Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Hailiang Dong
- Department of Geology and Environmental Earth Sciences, Miami University, Oxford, Ohio 45056, USA
| | - Brandon R Briggs
- Department of Biological Sciences, University of Alaska-Anchorage, Anchorage, Alaska 99508, USA
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Edward M Rubin
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
20
|
Abstract
This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.
Collapse
Affiliation(s)
- Rimantas Kodzius
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Saudi Arabia; Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
21
|
Identification of diversity-generating retroelements in human microbiomes. Int J Mol Sci 2014; 15:14234-46. [PMID: 25196521 PMCID: PMC4159848 DOI: 10.3390/ijms150814234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/02/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by accelerating the evolution of target genes through a specialized, error-prone, reverse transcription process. First identified in a Bordetella phage (BPP-1), which mediates the phage tropism specificity by generating variability in an involved gene, DGRs were predicted to be present in a larger collection of viral and bacterial species. A minimal DGR system is comprised of a reverse transcriptase (RTase) gene, a template sequence (TR) and a variable region (VR) within a target gene. We developed a computational tool, DGRscan, to allow either de novo identification (based on the prediction of potential template-variable region pairs) or similarity-based searches of DGR systems using known template sequences as the reference. The application of DGRscan to the human microbiome project (HMP) datasets resulted in the identification of 271 non-redundant DGR systems, doubling the size of the collection of known DGR systems. We further identified a large number of putative target genes (651, which share no more than 90% sequence identity at the amino acid level) that are potentially under diversification by the DGR systems. Our study provides the first survey of the DGR systems in the human microbiome, showing that the DGR systems are frequently found in human-associated bacterial communities, although they are of low incidence in individual genomes. Our study also provides functional clues for a large number of genes (reverse transcriptases and target genes) that were previously annotated as proteins of unknown functions or nonspecific functions.
Collapse
|
22
|
Abstract
CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules.
Collapse
Affiliation(s)
- Gisle Vestergaard
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark; Molecular Microbial Ecology Group; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Roger A Garrett
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Shiraz A Shah
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|