1
|
Stoltzfus MJ, Workman RE, Keith NC, Modell JW. A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage. Nat Microbiol 2024; 9:2410-2421. [PMID: 38997519 PMCID: PMC11983678 DOI: 10.1038/s41564-024-01748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Many CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems, which provide bacteria with adaptive immunity against phages, are transcriptionally repressed in their native hosts. How CRISPR-Cas expression is induced as needed, for example, during a bacteriophage infection, remains poorly understood. In Streptococcus pyogenes, a non-canonical guide RNA tracr-L directs Cas9 to autorepress its own promoter. Here we describe a dynamic subpopulation of cells harbouring single mutations that disrupt Cas9 binding and cause CRISPR-Cas overexpression. Cas9 actively expands this population by elevating mutation rates at the tracr-L target site. Overexpressers show higher rates of memory formation, stronger potency of old memories and a larger memory storage capacity relative to wild-type cells, which are surprisingly vulnerable to phage infection. However, in the absence of phage, CRISPR-Cas overexpression reduces fitness. We propose that CRISPR-Cas overexpressers are critical players in phage defence, enabling bacterial populations to mount rapid transcriptional responses to phage without requiring transient changes in any one cell.
Collapse
Affiliation(s)
- Marie J Stoltzfus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas C Keith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua W Modell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Mancilla-Rojano J, Flores V, Cevallos MA, Ochoa SA, Parra-Flores J, Arellano-Galindo J, Xicohtencatl-Cortes J, Cruz-Córdova A. A bioinformatic approach to identify confirmed and probable CRISPR-Cas systems in the Acinetobacter calcoaceticus- Acinetobacter baumannii complex genomes. Front Microbiol 2024; 15:1335997. [PMID: 38655087 PMCID: PMC11035748 DOI: 10.3389/fmicb.2024.1335997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The Acinetobacter calcoaceticus-Acinetobacter baumannii complex, or Acb complex, consists of six species: Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter seifertii, and Acinetobacter lactucae. A. baumannii is the most clinically significant of these species and is frequently related to healthcare-associated infections (HCAIs). Clustered regularly interspaced short palindromic repeat (CRISPR) arrays and associated genes (cas) constitute bacterial adaptive immune systems and function as variable genetic elements. This study aimed to conduct a genomic analysis of Acb complex genomes available in databases to describe and characterize CRISPR systems and cas genes. Methods Acb complex genomes available in the NCBI and BV-BRC databases, the identification and characterization of CRISPR-Cas systems were performed using CRISPRCasFinder, CRISPRminer, and CRISPRDetect. Sequence types (STs) were determined using the Oxford scheme and ribosomal multilocus sequence typing (rMLST). Prophages were identified using PHASTER and Prophage Hunter. Results A total of 293 genomes representing six Acb species exhibited CRISPR-related sequences. These genomes originate from various sources, including clinical specimens, animals, medical devices, and environmental samples. Sequence typing identified 145 ribosomal multilocus sequence types (rSTs). CRISPR-Cas systems were confirmed in 26.3% of the genomes, classified as subtypes I-Fa, I-Fb and I-Fv. Probable CRISPR arrays and cas genes associated with CRISPR-Cas subtypes III-A, I-B, and III-B were also detected. Some of the CRISPR-Cas systems are associated with genomic regions related to Cap4 proteins, and toxin-antitoxin systems. Moreover, prophage sequences were prevalent in 68.9% of the genomes. Analysis revealed a connection between these prophages and CRISPR-Cas systems, indicating an ongoing arms race between the bacteria and their bacteriophages. Furthermore, proteins associated with anti-CRISPR systems, such as AcrF11 and AcrF7, were identified in the A. baumannii and A. pittii genomes. Discussion This study elucidates CRISPR-Cas systems and defense mechanisms within the Acb complex, highlighting their diverse distribution and interactions with prophages and other genetic elements. This study also provides valuable insights into the evolution and adaptation of these microorganisms in various environments and clinical settings.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Víctor Flores
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miguel A. Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gomez, Mexico, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Ariadnna Cruz-Córdova
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| |
Collapse
|
4
|
Yenew B, Ghodousi A, Diriba G, Tesfaye E, Cabibbe AM, Amare M, Moga S, Alemu A, Dagne B, Sinshaw W, Mollalign H, Meaza A, Tadesse M, Gamtesa DF, Abebaw Y, Seid G, Zerihun B, Getu M, Chiacchiaretta M, Gaudin C, Marceau M, Didelot X, Tolera G, Abdella S, Kebede A, Getahun M, Mehammed Z, Supply P, Cirillo DM. A smooth tubercle bacillus from Ethiopia phylogenetically close to the Mycobacterium tuberculosis complex. Nat Commun 2023; 14:7519. [PMID: 37980337 PMCID: PMC10657438 DOI: 10.1038/s41467-023-42755-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.
Collapse
Affiliation(s)
- Bazezew Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Arash Ghodousi
- Vita-Salute San Raffaele University, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Getu Diriba
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ephrem Tesfaye
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Misikir Amare
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Shewki Moga
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Binyam Dagne
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Abyot Meaza
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Getachew Seid
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Melak Getu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Cyril Gaudin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, CV4 7AL, Coventry, UK
| | | | - Saro Abdella
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abebaw Kebede
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Daniela Maria Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Ullah N, Yang N, Guan Z, Xiang K, Wang Y, Diaby M, Chen C, Gao B, Song C. Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea. Genes (Basel) 2023; 14:1911. [PMID: 37895260 PMCID: PMC10606334 DOI: 10.3390/genes14101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Type-V-F Cas12f proteins, also known as Cas14, have drawn significant interest within the diverse CRISPR-Cas nucleases due to their compact size. This study involves analyzing and comparing Cas14-homology proteins in prokaryotic genomes through mining, sequence comparisons, a phylogenetic analysis, and an array/repeat analysis. In our analysis, we identified and mined a total of 93 Cas14-homology proteins that ranged in size from 344 aa to 843 aa. The majority of the Cas14-homology proteins discovered in this analysis were found within the Firmicutes group, which contained 37 species, representing 42% of all the Cas14-homology proteins identified. In archaea, the DPANN group had the highest number of species containing Cas14-homology proteins, a total of three species. The phylogenetic analysis results demonstrate the division of Cas14-homology proteins into three clades: Cas14-A, Cas14-B, and Cas14-U. Extensive similarity was observed at the C-terminal end (CTD) through a domain comparison of the three clades, suggesting a potentially shared mechanism of action due to the presence of cutting domains in that region. Additionally, a sequence similarity analysis of all the identified Cas14 sequences indicated a low level of similarity (18%) between the protein variants. The analysis of repeats/arrays in the extended nucleotide sequences of the identified Cas14-homology proteins highlighted that 44 out of the total mined proteins possessed CRISPR-associated repeats, with 20 of them being specific to Cas14. Our study contributes to the increased understanding of Cas14 proteins across prokaryotic genomes. These homologous proteins have the potential for future applications in the mining and engineering of Cas14 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (N.U.); (N.Y.); (Z.G.); (K.X.); (Y.W.); (M.D.); (C.C.); (B.G.)
| |
Collapse
|
6
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, Xie Y, Li H, Zhu T, Lu X, Hess WR. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. Nat Commun 2023; 14:924. [PMID: 36801863 PMCID: PMC9938897 DOI: 10.1038/s41467-023-36542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.
Collapse
Affiliation(s)
- Marcus Ziemann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Viktoria Reimann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yajing Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yue Shi
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Honglei Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuman Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany.
| |
Collapse
|
8
|
Kosmopoulos JC, Campbell DE, Whitaker RJ, Wilbanks EG. Horizontal gene transfer and CRISPR targeting drive phage-bacterial host interactions and coevolution in pink berry marine microbial aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527410. [PMID: 36798152 PMCID: PMC9934561 DOI: 10.1101/2023.02.06.527410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bacteriophages (phages), viruses that infect bacteria, are the most abundant components of microbial communities and play roles in community dynamics and host evolution. The study of phage-host interactions, however, is made difficult by a paucity of model systems from natural environments and known and cultivable phage-host pairs. Here, we investigate phage-host interactions in the "pink berry" consortia, naturally-occurring, low-diversity, macroscopic aggregates of bacteria found in the Sippewissett Salt Marsh (Falmouth, MA, USA). We leverage metagenomic sequence data and a comparative genomics approach to identify eight compete phage genomes, infer their bacterial hosts from host-encoded clustered regularly interspaced short palindromic repeats (CRISPR), and observe the potential evolutionary consequences of these interactions. Seven of the eight phages identified infect the known pink berry symbionts Desulfofustis sp. PB-SRB1, Thiohalocapsa sp. PB-PSB1, and Rhodobacteraceae sp. A2, and belong to entirely novel viral taxa, except for one genome which represents the second member of the Knuthellervirus genus. We further observed increased nucleotide variation over a region of a conserved phage capsid gene that is commonly targeted by host CRISPR systems, suggesting that CRISPRs may drive phage evolution in pink berries. Finally, we identified a predicted phage lysin gene that was horizontally transferred to its bacterial host, potentially via a transposon intermediary, emphasizing the role of phages in bacterial evolution in pink berries. Taken together, our results demonstrate that pink berry consortia contain diverse and variable phages, and provide evidence for phage-host co-evolution via multiple mechanisms in a natural microbial system. IMPORTANCE Phages (viruses that infect bacteria) are important components of all microbial systems, where they drive the turnover of organic matter by lysing host cells, facilitate horizontal gene transfer (HGT), and co-evolve with their bacterial hosts. Bacteria resist phage infection, which is often costly or lethal, through a diversity of mechanisms. One of these mechanisms are CRISPR systems, which encode arrays of phage-derived sequences from past infections to block subsequent infection with related phages. Here, we investigate bacteria and phage populations from a simple marine microbial community known as "pink berries" found in salt marshes of Falmouth, Massachusetts, as a model of phage-host co-evolution. We identify eight novel phages, and characterize a case of putative CRISPR-driven phage evolution and an instance of HGT between phage and host, together suggesting that phages have large evolutionary impacts in a naturally-occuring microbial community.
Collapse
Affiliation(s)
- James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbial Diversity 2020, University of Chicago Marine Biological Laboratory, Woods Hole, MA, USA
| | - Danielle E. Campbell
- Microbial Diversity 2020, University of Chicago Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Address correspondence to or
| | - Rachel J. Whitaker
- Microbial Diversity 2020, University of Chicago Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Elizabeth G. Wilbanks
- Microbial Diversity 2020, University of Chicago Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Address correspondence to or
| |
Collapse
|
9
|
Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation. Microorganisms 2022; 10:microorganisms10081605. [PMID: 36014023 PMCID: PMC9415379 DOI: 10.3390/microorganisms10081605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/07/2022] [Indexed: 01/07/2023] Open
Abstract
Akkermansia muciniphila is a champion of mucin degradation in the human gastrointestinal tract. Here, we report the isolation of six novel strains from healthy human donors and their genomic, proteomic and physiological characterization in comparison to the type-strains A. muciniphila MucT and A. glycaniphila PytT. Complete genome sequencing revealed that, despite their large genomic similarity (>97.6%), the novel isolates clustered into two distinct subspecies of A. muciniphila: Amuc1, which includes the type-strain MucT, and AmucU, a cluster of unassigned strains that have not yet been well characterized. CRISPR analysis showed all strains to be unique and confirmed that single healthy subjects can carry more than one A. muciniphila strain. Mucin degradation pathways were strongly conserved amongst all isolates, illustrating the exemplary niche adaptation of A. muciniphila to the mucin interface. This was confirmed by analysis of the predicted glycoside hydrolase profiles and supported by comparing the proteomes of A. muciniphila strain H2, belonging to the AmucU cluster, to MucT and A. glycaniphila PytT (including 610 and 727 proteins, respectively). While some intrinsic resistance was observed among the A. muciniphila straind, none of these seem to pose strain-specific risks in terms of their antibiotic resistance patterns nor a significant risk for the horizontal transfer of antibiotic resistance determinants, opening the way to apply the type-strain MucT or these new A. muciniphila strains as next generation beneficial microbes.
Collapse
|
10
|
Kahraman-Ilıkkan Ö. Comparison of Propionibacterium genomes: CRISPR-Cas systems, phage/plasmid diversity, and insertion sequences. Arch Microbiol 2022; 204:434. [DOI: 10.1007/s00203-022-03062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
|
11
|
Parra-Flores J, Holý O, Acuña S, Lepuschitz S, Pietzka A, Contreras-Fernández A, Chavarría-Sepulveda P, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Castillo A, Ruppitsch W, Forsythe S. Genomic Characterization of Cronobacter spp. and Salmonella spp. Strains Isolated From Powdered Infant Formula in Chile. Front Microbiol 2022; 13:884721. [PMID: 35722296 PMCID: PMC9201451 DOI: 10.3389/fmicb.2022.884721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018–2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA, and blaCMA. In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6′)-Iaa, β-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondřej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Castillo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
12
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
van Riet J, Saha C, Strepis N, Brouwer RWW, Martens-Uzunova ES, van de Geer WS, Swagemakers SMA, Stubbs A, Halimi Y, Voogd S, Tanmoy AM, Komor MA, Hoogstrate Y, Janssen B, Fijneman RJA, Niknafs YS, Chinnaiyan AM, van IJcken WFJ, van der Spek PJ, Jenster G, Louwen R. CRISPRs in the human genome are differentially expressed between malignant and normal adjacent to tumor tissue. Commun Biol 2022; 5:338. [PMID: 35396392 PMCID: PMC8993844 DOI: 10.1038/s42003-022-03249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.
Collapse
Affiliation(s)
- Job van Riet
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wesley S van de Geer
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sigrid M A Swagemakers
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yassir Halimi
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne Voogd
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arif Mohammad Tanmoy
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka, 1207, Bangladesh
| | - Malgorzata A Komor
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Remond J A Fijneman
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter J van der Spek
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
14
|
Kahraman Ilıkkan Ö. Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity. Indian J Microbiol 2022; 62:40-46. [PMID: 35068602 PMCID: PMC8758818 DOI: 10.1007/s12088-021-00971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes constitute an adaptive (acquired) defense system of bacteria and archaea. Here 72 probiotic bacteria genomes were investigated in terms of the presence of CRISPR/Cas systems and phage/plasmid invaders through spacer analysis. 49 CRISPR/Cas systems were detected within probiotic strains, namely,17 type II-A, 10 type I-C, 8 type I-E, 5 Type I-U (I-G), 4 type III-A, 2 type I-B, 1 type I-A, 1 type IV-B, and 1 type II-C. The predicted target of spacers was determined in 25 strains and consequently, three different spacer and target patterns were revealed. The diversity of CRISPR spacers provides insight and understanding to determine strain-specific invaders of probiotic bacteria as well as their relationships between strains. CRISPR systems were clarified in many studies for genomic characterization. However, recently, endogenous genome editing with CRISPR has provided an approach for various genome editing projects. Thus, in the future, producing strain-specific phage-resistant starter cultures or probiotics by endogenous genome editing methods according to phage/plasmid survey can be utilized for industrial and pharmaceutical applications. Therefore, this study intended a comprehensive investigation of CRISPR systems of probiotic bacteria. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00971-1.
Collapse
Affiliation(s)
- Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Başkent University, Food Quality Control and Analysis Program, Ankara, Turkey
| |
Collapse
|
15
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
16
|
Esmail GA, Al-Dhabi NA, AlDawood B, Somily AM. Shotgun whole genome sequencing of drug-resistance Streptococcus anginosus strain 47S1 isolated from a patient with pharyngitis in Saudi Arabia. J Infect Public Health 2021; 14:1740-1749. [PMID: 34836797 DOI: 10.1016/j.jiph.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Streptococcus anginosus is an emergence opportunistic pathogen that colonize the human upper respiratory tract (URT), S. anginosus alongside with S. intermedius and S. constellatus, members of S. anginosus group, are implicated in several human infections. However, our understanding this bacterium to the genotype level with determining the genes associated with pathogenicity and antimicrobial resistance (AMR) is scarce. S. anginosus 47S1 strain was isolated from sore throat infection, the whole genome was characterized and the virulence & AMR genes contributing in pathogenicity were investigated. METHODOLOGY The whole genome of 47S1 was sequenced by Illumina sequencing technology. Strain 47S1 genome was de novo assembled with different strategies and annotated via PGAP, PROKKA and RAST pipelines. Identifying the CRISPR-Cass system and prophages sequences was performed using CRISPRloci and PhiSpy tools respectively. Prediction the virulence genes were performed with the VFDB database. AMR genes were detected in silico using NCBI AMRFinderPlus pipeline and CARD database and compared with in vitro AST findings. RESULTS β-hemolytic strain 47S1 was identified with conventional microbiology techniques and confirmed by the sequences of 16S rRNA gene. Genome of 47S1 comprised of 1981512 bp. Type I-C CRISPR-Cas system and 4 prophages were detected among the genome of 47S1. Several virulence genes were predicted, most of these genes are found in other pathogenic streptococci, mainly lmb, pavA, htrA/degP, eno, sagA, psaA and cpsI which play a significant role in colonizing, invading host tissues and evade form immune system. In silico AMR findings showed that 47S1 gnome harbors (tetA, tetB &tet32), (aac(6')-I, aadK &aph(3')-IVa), fusC, and PmrA genes that mediated-resistance to tetracyclines, aminoglycosides, fusidic acid, and fluoroquinolone respectively which corresponds with in vitro AST obtained results. In conclusion, WGS is a key approach to predict the virulence and AMR genes, results obtained in this study may contribute for a better understanding of the opportunistic S. anginosus pathogenicity.
Collapse
Affiliation(s)
- Galal Ali Esmail
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Badr AlDawood
- Department of Emergency Medicine, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Ali Mohammed Somily
- Department of Pathology and Laboratory Medicine/Microbiology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
17
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
18
|
Li C, Wang Y, Gao Y, Li C, Ma B, Wang H. Antimicrobial Resistance and CRISPR Typing Among Salmonella Isolates From Poultry Farms in China. Front Microbiol 2021; 12:730046. [PMID: 34603259 PMCID: PMC8481896 DOI: 10.3389/fmicb.2021.730046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although knowledge of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been applied in many research areas, comprehensive studies of this system in Salmonella, particularly in analysis of antibiotic resistance, have not been reported. In this work, 75 Salmonella isolates obtained from broilers or broilers products were characterized to determine their antimicrobial susceptibilities, antibiotic resistance gene profiles, and CRISPR array diversities, and genotyping was explored. In total, 80.00% (60/75) of the strains were multidrug resistant, and the main pattern observed in the isolates was CN-AZM-AMP-AMC-CAZ-CIP-ATM-TE-SXT-FOS-C. The resistance genes of streptomycin (aadA), phenicol (floR-like and catB3-like), β-lactams (bla TEM, bla OXA, and bla CTX), tetracycline [tet(A)-like], and sulfonamides (sul1 and sul2) appeared at higher frequencies among the corresponding resistant isolates. Subsequently, we analyzed the CRISPR arrays and found 517 unique spacer sequences and 31 unique direct repeat sequences. Based on the CRISPR spacer sequences, we developed a novel typing method, CRISPR locus three spacer sequences typing (CLTSST), to help identify sources of Salmonella outbreaks especially correlated with epidemiological data. Compared with multi-locus sequence typing (MLST), conventional CRISPR typing (CCT), and CRISPR locus spacer pair typing (CLSPT), discrimination using CLTSST was weaker than that using CCT but stronger than that using MLST and CLSPT. In addition, we also found that there were no close correlations between CRISPR loci and antibiotics but had close correlations between CRISPR loci and antibiotic resistance genes in Salmonella isolates.
Collapse
Affiliation(s)
- Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulong Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yufeng Gao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Boheng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2021; 50:4315-4328. [PMID: 34606604 PMCID: PMC9071438 DOI: 10.1093/nar/gkab859] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas. Nature 2021; 598:515-520. [PMID: 34588691 PMCID: PMC9164213 DOI: 10.1038/s41586-021-03951-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.
Collapse
|
21
|
Vink JNA, Baijens JHL, Brouns SJJ. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biol 2021; 22:281. [PMID: 34593010 PMCID: PMC8482600 DOI: 10.1186/s13059-021-02495-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. RESULTS By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. CONCLUSIONS This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Jan H L Baijens
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
- Kavli Institute of Nanoscience, Delft, The Netherlands.
| |
Collapse
|
22
|
Nethery MA, Korvink M, Makarova KS, Wolf YI, Koonin EV, Barrangou R. CRISPRclassify: Repeat-Based Classification of CRISPR Loci. CRISPR J 2021; 4:558-574. [PMID: 34406047 DOI: 10.1089/crispr.2021.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detection and classification of CRISPR-Cas systems in metagenomic data have become increasingly prevalent in recent years due to their potential for diverse applications in genome editing. Traditionally, CRISPR-Cas systems are classified through reference-based identification of proximate cas genes. Here, we present a machine learning approach for the detection and classification of CRISPR loci using repeat sequences in a cas-independent context, enabling identification of unclassified loci missed by traditional cas-based approaches. Using biological attributes of the CRISPR repeat, the core element in CRISPR arrays, and leveraging methods from natural language processing, we developed a machine learning model capable of accurate classification of CRISPR loci in an extensive set of metagenomes, resulting in an F1 measure of 0.82 across all predictions and an F1 measure of 0.97 when limiting to classifications with probabilities >0.85. Furthermore, assessing performance on novel repeats yielded an F1 measure of 0.96. Although the performance of cas-based identification will exceed that of a repeat-based approach in many cases, CRISPRclassify provides an efficient approach to classification of CRISPR loci for cases in which cas gene information is unavailable, such as metagenomes and fragmented genome assemblies.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA; National Library of Medicine, Bethesda, Maryland, USA
| | - Michael Korvink
- ITS Data Science, Premier Inc., Charlotte, North Carolina, USA; and National Library of Medicine, Bethesda, Maryland, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA; National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Rahlff J, Turzynski V, Esser SP, Monsees I, Bornemann TLV, Figueroa-Gonzalez PA, Schulz F, Woyke T, Klingl A, Moraru C, Probst AJ. Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nat Commun 2021; 12:4642. [PMID: 34330907 PMCID: PMC8324899 DOI: 10.1038/s41467-021-24803-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
24
|
Alkhnbashi OS, Mitrofanov A, Bonidia R, Raden M, Tran V, Eggenhofer F, Shah S, Öztürk E, Padilha V, Sanches D, de Carvalho A, Backofen R. CRISPRloci: comprehensive and accurate annotation of CRISPR-Cas systems. Nucleic Acids Res 2021; 49:W125-W130. [PMID: 34133710 PMCID: PMC8265192 DOI: 10.1093/nar/gkab456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
CRISPR–Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci. The server integrates a series of advanced Machine Learning tools within a seamless web interface featuring: (i) prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a result, CRISPRloci is able to accurately determine the CRISPR array and associated information, such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas genes, all of which have been missing from existing tools. This annotation is presented in an interactive interface, making it easy for scientists to gain an overview of the CRISPR system in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR–Cas system characterization that offers annotation quality previously available only after manual inspection.
Collapse
Affiliation(s)
- Omer S Alkhnbashi
- To whom correspondence should be addressed. Tel: +49 761 2037460; Fax: +49 761 2037462;
| | | | | | - Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| | - Ekrem Öztürk
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Victor A Padilha
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP, Brazil
| | - Danilo S Sanches
- Universidade Tecnológica Federal do Paraná, Campus Cornélio Procópio, 86300000 Cornélio Procópio, PR, Brazil
| | | | - Rolf Backofen
- Correspondence may also be addressed to Rolf Backofen.
| |
Collapse
|
25
|
Padilha VA, Alkhnbashi OS, Tran VD, Shah SA, Carvalho ACPLF, Backofen R. Casboundary: automated definition of integral Cas cassettes. Bioinformatics 2021; 37:1352-1359. [PMID: 33226067 PMCID: PMC8208735 DOI: 10.1093/bioinformatics/btaa984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION CRISPR-Cas are important systems found in most archaeal and many bacterial genomes, providing adaptive immunity against mobile genetic elements in prokaryotes. The CRISPR-Cas systems are encoded by a set of consecutive cas genes, here termed cassette. The identification of cassette boundaries is key for finding cassettes in CRISPR research field. This is often carried out by using Hidden Markov Models and manual annotation. In this article, we propose the first method able to automatically define the cassette boundaries. In addition, we present a Cas-type predictive model used by the method to assign each gene located in the region defined by a cassette's boundaries a Cas label from a set of pre-defined Cas types. Furthermore, the proposed method can detect potentially new cas genes and decompose a cassette into its modules. RESULTS We evaluate the predictive performance of our proposed method on data collected from the two most recent CRISPR classification studies. In our experiments, we obtain an average similarity of 0.86 between the predicted and expected cassettes. Besides, we achieve F-scores above 0.9 for the classification of cas genes of known types and 0.73 for the unknown ones. Finally, we conduct two additional study cases, where we investigate the occurrence of potentially new cas genes and the occurrence of module exchange between different genomes. AVAILABILITY AND IMPLEMENTATION https://github.com/BackofenLab/Casboundary. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Victor A Padilha
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Omer S Alkhnbashi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Shiraz A Shah
- COPSAC, Copenhagen University Hospitals Herlev and Gentofte, DK-2820 Gentofte, Denmark
| | - André C P L F Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, Rodríguez-Fernández A, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W, Forsythe S. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol 2021; 12:694922. [PMID: 34276629 PMCID: PMC8278472 DOI: 10.3389/fmicb.2021.694922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Department of Public Health, Palacký University Olomouc, Olomouc, Czechia
| | | | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
27
|
CRISPR-Cas systems in Proteus mirabilis. INFECTION GENETICS AND EVOLUTION 2021; 92:104881. [PMID: 33905883 DOI: 10.1016/j.meegid.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a bacterial defense mechanism against bacteriophages composed of two different parts: the CRISPR array and the Cas genes. The spacer acquisition is done by the adaptation module consisting of the hallmark Cas1 Cas2 proteins, which inserts new spacers into the CRISPR array. Here we aimed to describe the CRISPR-Cas system in Proteus mirabilis (P. mirabilis) isolates. CRISPR loci was observed in 30 genomic contents of 109 P. mirabilis isolates that each locus was consisted of two CRISPR arrays and each array had a different preserved leader sequences. Only the type I-E CRISPR-Cas system was common in these isolates. The source of the spacers was identified, including phages and prophages. CRISPR spacer origin analysis also identified a conserved PAM sequence of 5'-AAG-3' nucleotide stretch. Through collecting spacers, CRISPR arrays of P. mirabilis isolates were expanded mostly by integration of bacteriophageal source of spacers. This study shows novel findings in the area of the P-mirabilis CRISPR-Cas system. In this regard, among analyzed genome of P. mirabilis isolates, Class I CRISR-Cas systems were dominant, and all belonged to type I-E. In the flanks of the CRISPR, some other elements with regulatory role were also found. A motif of 11 nt size was found to be preserved among the analyzed genome. We believe that it might has a CRISPR-Cas system transcription facilitator by targeting the Rho element.
Collapse
|
28
|
Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova K, Koonin E, Backofen R. CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Res 2021; 49:e20. [PMID: 33290505 PMCID: PMC7913763 DOI: 10.1093/nar/gkaa1158] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023] Open
Abstract
CRISPR–Cas are adaptive immune systems that degrade foreign genetic elements in archaea and bacteria. In carrying out their immune functions, CRISPR–Cas systems heavily rely on RNA components. These CRISPR (cr) RNAs are repeat-spacer units that are produced by processing of pre-crRNA, the transcript of CRISPR arrays, and guide Cas protein(s) to the cognate invading nucleic acids, enabling their destruction. Several bioinformatics tools have been developed to detect CRISPR arrays based solely on DNA sequences, but all these tools employ the same strategy of looking for repetitive patterns, which might correspond to CRISPR array repeats. The identified patterns are evaluated using a fixed, built-in scoring function, and arrays exceeding a cut-off value are reported. Here, we instead introduce a data-driven approach that uses machine learning to detect and differentiate true CRISPR arrays from false ones based on several features. Our CRISPR detection tool, CRISPRidentify, performs three steps: detection, feature extraction and classification based on manually curated sets of positive and negative examples of CRISPR arrays. The identified CRISPR arrays are then reported to the user accompanied by detailed annotation. We demonstrate that our approach identifies not only previously detected CRISPR arrays, but also CRISPR array candidates not detected by other tools. Compared to other methods, our tool has a drastically reduced false positive rate. In contrast to the existing tools, our approach not only provides the user with the basic statistics on the identified CRISPR arrays but also produces a certainty score as a practical measure of the likelihood that a given genomic region is a CRISPR array.
Collapse
Affiliation(s)
| | | | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Rolf Backofen
- To whom correspondence should be addressed. Tel: +49 761/203 7461; Fax: +49 761/203 7462;
| |
Collapse
|
29
|
Genomic and Phenotypic Analysis of Multidrug-Resistant Acinetobacter baumannii Clinical Isolates Carrying Different Types of CRISPR/Cas Systems. Pathogens 2021; 10:pathogens10020205. [PMID: 33668622 PMCID: PMC7918744 DOI: 10.3390/pathogens10020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen being one of the most important causative agents of a wide range of nosocomial infections associated with multidrug resistance and high mortality rate. This study presents a multiparametric and correlation analyses of clinical multidrug-resistant A. baumannii isolates using short- and long-read whole-genome sequencing, which allowed us to reveal specific characteristics of the isolates with different CRISPR/Cas systems. We also compared antibiotic resistance and virulence gene acquisition for the groups of the isolates having functional CRISPR/Cas systems, just CRISPR arrays without cas genes, and without detectable CRISPR spacers. The data include three schemes of molecular typing, phenotypic and genotypic antibiotic resistance determination, as well as phylogenetic analysis of full-length cas gene sequences, predicted prophage sequences and CRISPR array type determination. For the first time the differences between the isolates carrying Type I-F1 and Type I-F2 CRISPR/Cas systems were investigated. A. baumannii isolates with Type I-F1 system were shown to have smaller number of reliably detected CRISPR arrays, and thus they could more easily adapt to environmental conditions through acquisition of antibiotic resistance genes, while Type I-F2 A. baumannii might have stronger “immunity” and use CRISPR/Cas system to block the dissemination of these genes. In addition, virulence factors abaI, abaR, bap and bauA were overrepresented in A. baumannii isolates lacking CRISPR/Cas system. This indicates the role of CRISPR/Cas in fighting against phage infections and preventing horizontal gene transfer. We believe that the data presented will contribute to further investigations in the field of antimicrobial resistance and CRISPR/Cas studies.
Collapse
|
30
|
Comparative Genomic Analysis of Mycobacteriaceae Reveals Horizontal Gene Transfer-Mediated Evolution of the CRISPR-Cas System in the Mycobacterium tuberculosis Complex. mSystems 2021; 6:6/1/e00934-20. [PMID: 33468705 PMCID: PMC7820667 DOI: 10.1128/msystems.00934-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are conserved genetic elements in many prokaryotes, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Although knowledge of CRISPR locus variability has been utilized in M. tuberculosis strain genotyping, its evolutionary path in Mycobacteriaceae is not well understood. In this study, we have performed a comparative analysis of 141 mycobacterial genomes and identified the exclusive presence of the CRISPR-Cas type III-A system in M. tuberculosis complex (MTBC). Our global phylogenetic analysis of CRISPR repeats and Cas10 proteins offers evidence of horizontal gene transfer (HGT) of the CRISPR-Cas module in the last common ancestor of MTBC and Mycobacterium canettii from a Streptococcus-like environmental bacterium. Additionally, our results show that the variation of CRISPR-Cas organization in M. tuberculosis lineages, especially in the Beijing sublineage of lineage 2, is due to the transposition of insertion sequence IS6110 The direct repeat (DR) region of the CRISPR-Cas locus acts as a hot spot for IS6110 insertion. We show in M. tuberculosis H37Rv that the repeat at the 5' end of CRISPR1 of the forward strand is an atypical repeat made up partly of IS-terminal inverted repeat and partly CRISPR DR. By tracing an undetectable spacer sequence in the DR region, the two CRISPR loci could theoretically be joined to reconstruct the ancestral single CRISPR-Cas locus organization, as seen in M. canettii This study retracing the evolutionary events of HGT and IS6110-driven genomic deletions helps us to better understand the strain-specific variations in M. tuberculosis lineages.IMPORTANCE Comparative genomic analysis of prokaryotes has led to a better understanding of the biology of several pathogenic microorganisms. One such clinically important pathogen is M. tuberculosis, the leading cause of bacterial infection worldwide. Recent evidence on the functionality of the CRISPR-Cas system in M. tuberculosis has brought back focus on these conserved genetic elements, present in many prokaryotes. Our study advances understanding of mycobacterial CRISPR-Cas origin and its diversity among the different species. We provide phylogenetic evidence of acquisition of CRISPR-Cas type III-A in the last common ancestor shared between MTBC and M. canettii, by HGT-mediated events. The most likely source of HGT was an environmental Firmicutes bacterium. Genomic mapping of the CRISPR loci showed the IS6110 transposition-driven variations in M. tuberculosis strains. Thus, this study offers insights into events related to the evolution of CRISPR-Cas in M. tuberculosis lineages.
Collapse
|
31
|
Mycobacterium tuberculosis CRISPR/Cas system Csm1 holds clues to the evolutionary relationship between DNA polymerase and cyclase activity. Int J Biol Macromol 2020; 170:140-149. [PMID: 33352158 DOI: 10.1016/j.ijbiomac.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Prokaryotic CRISPR/Cas systems confer immunity against invading nucleic acids through effector complexes. Csm1, the signature protein of Type III effector complexes, catalyses cyclic oligoadenylate synthesis when in the effector complex, but not when alone, activating the Csm6 nuclease and switching on the antiviral response. Here, we provide biochemical evidence that M. tuberculosis Csm1 (MtbCsm1) has ion-dependent polymerase activity when independent of the effector complex. Structural studies provide supporting evidence that the catalytic core of the MtbCsm1 palm2 domain is almost identical to that of classical DNA polymerase Pol IV, and that the palm1 and B domains function as the other structural elements required (thumb and fingers) for DNA polymerase activity. MtbCsm1 polymerase activity is relatively weak in vitro and its functional relevance in vivo is unknown. Our structural and mutagenesis data suggest that residue K692 in the palm2 domain has been significant in the evolution of Csm1 from a polymerase to a cyclase, and support the notion that the cyclase activity of Csm1 requires the presence of other elements provided by the CRISPR/Cas effector complex. This structural rationale for Csm1 polymerase (alone) and cyclase (within the effector complex) activity should benefit future functional investigations and engineering.
Collapse
|
32
|
Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: Automated Identification, Annotation, and Classification of CRISPR-Cas Loci. CRISPR J 2020; 3:462-469. [PMID: 33275853 DOI: 10.1089/crispr.2020.0059] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Automated classification of CRISPR-Cas systems has been challenged by their dynamic nature and expanding classification. Here, we developed CRISPRCasTyper, an automated tool with improved capabilities for identifying and typing CRISPR arrays and cas loci based on the latest nomenclature (44 subtypes/variants). As a novel feature, CRISPRCasTyper uses a machine learning approach to subtype CRISPR arrays based on the sequences of the repeats, which allows the typing of orphan and distant arrays. CRISPRCasTyper provides a graphical output, where CRISPRs and cas operons are visualized as gene maps, thus aiding annotation of partial and novel systems through synteny. CRISPRCasTyper was benchmarked against a manually curated set of 31 subtypes with a median accuracy of 98.6% and used to explore CRISPR-Cas diversity across >3,000 metagenomes. Altogether, we present an up-to-date software for improved automated prediction of CRISPR-Cas loci. CRISPRCasTyper is available through conda and as a web server (cctyper.crispr.dk).
Collapse
Affiliation(s)
- Jakob Russel
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; and Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
34
|
Zhang Y, Zhao G, Ahmed FYH, Yi T, Hu S, Cai T, Liao Q. In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Front Oncol 2020; 10:584404. [PMID: 33123486 PMCID: PMC7567020 DOI: 10.3389/fonc.2020.584404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas system has stood in the center of attention in the last few years as a revolutionary gene editing tool with a wide application to investigate gene functions. However, the labor-intensive workflow requires a sophisticated pre-experimental and post-experimental analysis, thus becoming one of the hindrances for the further popularization of practical applications. Recently, the increasing emergence and advancement of the in silico methods play a formidable role to support and boost experimental work. However, various tools based on distinctive design principles and frameworks harbor unique characteristics that are likely to confuse users about how to choose the most appropriate one for their purpose. In this review, we will present a comprehensive overview and comparisons on the in silico methods from the aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental assistance. Furthermore, we establish the hypotheses in light of the new trends around the technical optimization and hope to provide significant clues for future tools development.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Fatma Yislam Hadi Ahmed
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
35
|
Zhou J, Sun T, Kang W, Tang D, Feng Q. Pathogenic and antimicrobial resistance genes in Streptococcus oralis strains revealed by comparative genome analysis. Genomics 2020; 112:3783-3793. [PMID: 32334114 DOI: 10.1016/j.ygeno.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Streptococcus oralis is an early colonizer bacterium in dental plaques and is considered a potential pathogen of infective endocarditis (IE) disease. In this study, we built a complete genome map of Streptococcus oralis strain SOT, Streptococcus oralis strain SOD and Streptococcus infantis strain SO and performed comparative genomic analysis among these three strains. The results showed that there are five genomic islands (GIs) in strain SOT and one CRISPR in strain SOD. Each genome harbors various pathogenic genes related to diseases and drug resistance, while the antibiotic resistance genes in strains SOT and SOD were quite similar but different from those in strain SO. In addition, we identified 17 main virulence factors and capsule-related genes in three strains. These results suggest the pathogenic potential of Streptococcus strains, which lay a foundation for the prevention and treatment of a Streptococcus oralis infection.
Collapse
Affiliation(s)
- Jiannan Zhou
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University,266237 Qingdao, Shandong, China; NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China.
| |
Collapse
|
36
|
Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, Gomila M, Bennasar-Figueras A, Russell JE, Fazal MA, Alexander S, Moore ERB. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci Rep 2020; 10:11656. [PMID: 32669560 PMCID: PMC7363880 DOI: 10.1038/s41598-020-68249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023] Open
Abstract
We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198T and CCUG 4207T, the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198T and CCUG 4207T are derived from deposit of the same strain at two different culture collections. NCTC 8198T was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207T was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden.
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Hedvig E Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
- Nanoxis Consulting AB, 400 16, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | | | - Julie E Russell
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Mohammed Abbas Fazal
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
37
|
Padilha VA, Alkhnbashi OS, Shah SA, de Carvalho ACPLF, Backofen R. CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience 2020; 9:giaa062. [PMID: 32556168 PMCID: PMC7298778 DOI: 10.1093/gigascience/giaa062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR-Cas genes are extraordinarily diverse and evolve rapidly when compared to other prokaryotic genes. With the rapid increase in newly sequenced archaeal and bacterial genomes, manual identification of CRISPR-Cas systems is no longer viable. Thus, an automated approach is required for advancing our understanding of the evolution and diversity of these systems and for finding new candidates for genome engineering in eukaryotic models. RESULTS We introduce CRISPRcasIdentifier, a new machine learning-based tool that combines regression and classification models for the prediction of potentially missing proteins in instances of CRISPR-Cas systems and the prediction of their respective subtypes. In contrast to other available tools, CRISPRcasIdentifier can both detect cas genes and extract potential association rules that reveal functional modules for CRISPR-Cas systems. In our experimental benchmark on the most recently published and comprehensive CRISPR-Cas system dataset, CRISPRcasIdentifier was compared with recent and state-of-the-art tools. According to the experimental results, CRISPRcasIdentifier presented the best Cas protein identification and subtype classification performance. CONCLUSIONS Overall, our tool greatly extends the classification of CRISPR cassettes and, for the first time, predicts missing Cas proteins and association rules between Cas proteins. Additionally, we investigated the properties of CRISPR subtypes. The proposed tool relies not only on the knowledge of manual CRISPR annotation but also on models trained using machine learning.
Collapse
Affiliation(s)
- Victor A Padilha
- Institute of Mathematics and Computer Sciences, University of São Paulo, Av. Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Omer S Alkhnbashi
- Bioinformatics Group, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | - Shiraz A Shah
- COPSAC, Copenhagen University Hospitals Herlev and Gentofte, Ledreborg Alle 34, DK-2820 Gentofte, Denmark
| | - André C P L F de Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo, Av. Trabalhador São Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Rolf Backofen
- Bioinformatics Group, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
38
|
Lopatina A, Medvedeva S, Artamonova D, Kolesnik M, Sitnik V, Ispolatov Y, Severinov K. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180092. [PMID: 30905291 PMCID: PMC6452258 DOI: 10.1098/rstb.2018.0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the diversity of CRISPR spacers of Thermus communities from two locations in Italy, two in Chile and one location in Russia. Among the five sampling sites, a total of more than 7200 unique spacers belonging to different CRISPR-Cas systems types and subtypes were identified. Most of these spacers are not found in CRISPR arrays of sequenced Thermus strains. Comparison of spacer sets revealed that samples within the same area (separated by few to hundreds of metres) have similar spacer sets, which appear to be largely stable at least over the course of several years. While at further distances (hundreds of kilometres and more) the similarity of spacer sets is decreased, there are still multiple common spacers in Thermus communities from different continents. The common spacers can be reconstructed in identical or similar CRISPR arrays, excluding their independent appearance and suggesting an extensive migration of thermophilic bacteria over long distances. Several new Thermus phages were isolated in the sampling sites. Mapping of spacers to bacteriophage sequences revealed examples of local acquisition of spacers from some phages and distinct patterns of targeting of phage genomes by different CRISPR-Cas systems. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- Anna Lopatina
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,2 Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sofia Medvedeva
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,4 Pasteur Institute , Paris , France
| | - Daria Artamonova
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Matvey Kolesnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Vasily Sitnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Yaroslav Ispolatov
- 5 Department of Physics, University of Santiago de Chile , Santiago , Chile
| | - Konstantin Severinov
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,6 Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey , Piscataway, NJ , USA.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
39
|
Alkhnbashi OS, Meier T, Mitrofanov A, Backofen R, Voß B. CRISPR-Cas bioinformatics. Methods 2020; 172:3-11. [PMID: 31326596 DOI: 10.1016/j.ymeth.2019.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) are essential genetic elements in many archaeal and bacterial genomes, playing a key role in a prokaryote adaptive immune system against invasive foreign elements. In recent years, the CRISPR-Cas system has also been engineered to facilitate target gene editing in eukaryotic genomes. Bioinformatics played an essential role in the detection and analysis of CRISPR systems and here we review the bioinformatics-based efforts that pushed the field of CRISPR-Cas research further. We discuss the bioinformatics tools that have been published over the last few years and, finally, present the most popular tools for the design of CRISPR-Cas9 guides.
Collapse
Affiliation(s)
| | - Tobias Meier
- Computational Biology, Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.
| | | | - Rolf Backofen
- Chair of Bioinformatics, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany.
| | - Björn Voß
- Computational Biology, Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
40
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67-83. [DOI: 10.1038/s41579-019-0299-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
41
|
Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A, Walker CA, Brownlie J, Blanchard A, Thebault P, Sirand-Pugnet P. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria ( Mollicutes). Front Microbiol 2019; 10:2701. [PMID: 31824468 PMCID: PMC6882279 DOI: 10.3389/fmicb.2019.02701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas systems provide adaptive defense mechanisms against invading nucleic acids in prokaryotes. Because of its interest as a genetic tool, the Type II CRISPR/Cas9 system from Streptococcus pyogenes has been extensively studied. It includes the Cas9 endonuclease that is dependent on a dual-guide RNA made of a tracrRNA and a crRNA. Target recognition relies on crRNA annealing and the presence of a protospacer adjacent motif (PAM). Mollicutes are currently the bacteria with the smallest genome in which CRISPR/Cas systems have been reported. Many of them are pathogenic to humans and animals (mycoplasmas and ureaplasmas) or plants (phytoplasmas and some spiroplasmas). A global survey was conducted to identify and compare CRISPR/Cas systems found in the genome of these minimal bacteria. Complete or degraded systems classified as Type II-A and less frequently as Type II-C were found in the genome of 21 out of 52 representative mollicutes species. Phylogenetic reconstructions predicted a common origin of all CRISPR/Cas systems of mycoplasmas and at least two origins were suggested for spiroplasmas systems. Cas9 in mollicutes were structurally related to the S. aureus Cas9 except the PI domain involved in the interaction with the PAM, suggesting various PAM might be recognized by Cas9 of different mollicutes. Structure of the predicted crRNA/tracrRNA hybrids was conserved and showed typical stem-loop structures pairing the Direct Repeat part of crRNAs with the 5' region of tracrRNAs. Most mollicutes crRNA/tracrRNAs showed G + C% significantly higher than the genome, suggesting a selective pressure for maintaining stability of these secondary structures. Examples of CRISPR spacers matching with mollicutes phages were found, including the textbook case of Mycoplasma cynos strain C142 having no prophage sequence but a CRISPR/Cas system with spacers targeting prophage sequences that were found in the genome of another M. cynos strain that is devoid of a CRISPR system. Despite their small genome size, mollicutes have maintained protective means against invading DNAs, including restriction/modification and CRISPR/Cas systems. The apparent lack of CRISPR/Cas systems in several groups of species including main pathogens of humans, ruminants, and plants suggests different evolutionary routes or a lower risk of phage infection in specific ecological niches.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Iason Tsarmpopoulos
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Vincent Talenton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Christine Gaspin
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Annick Moisan
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Caray A Walker
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Joe Brownlie
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
42
|
Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science 2019; 363:1342-1345. [PMID: 30898932 DOI: 10.1126/science.aar4416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The composition of cooperative systems, including animal societies, organismal bodies, and microbial groups, reflects their past and shapes their future evolution. However, genomic diversity within many multiunit systems remains uncharacterized, limiting our ability to understand and compare their evolutionary character. We have analyzed genomic and social-phenotype variation among 120 natural isolates of the cooperative bacterium Myxococcus xanthus derived from six multicellular fruiting bodies. Each fruiting body was composed of multiple lineages radiating from a unique recent ancestor. Genomic evolution was concentrated in selection hotspots associated with evolutionary change in social phenotypes. Synonymous mutations indicated that kin lineages within the same fruiting body often first diverged from a common ancestor more than 100 generations ago. Thus, selection appears to promote endemic diversification of kin lineages that remain together over long histories of local interaction, thereby potentiating social coevolution.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Rebekka Wolfensberger
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lei Sun
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Francesca Fiegna
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Gregory J Velicer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Zhang M, Bi C, Wang M, Fu H, Mu Z, Zhu Y, Yan Z. Analysis of the structures of confirmed and questionable CRISPR loci in 325 Staphylococcus genomes. J Basic Microbiol 2019; 59:901-913. [PMID: 31347199 DOI: 10.1002/jobm.201900124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/23/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
The CRISPR-Cas (clustered regular interspaced short palindromic repeats and CRISPR-associated proteins) system is a newly discovered immune defense system in the genome of prokaryotes, which can resist the invasion of foreign genetic elements, such as plasmids or phage. In this study, 154 strains of Staphylococcus published in the CRISPRDatabase and 171 strains included in NCBI were downloaded, the confirmed and questionable CRISPR loci of which were analyzed by bioinformatics methods, including their distribution, characteristics of the structure (including the direct repeats, spacers and cas genes), and the relationship between the presence of CRISPR and the mecA gene. Meanwhile, a comprehensive analysis of orphan CRISPR arrays was performed on this basis. A total of 196 confirmed and 1757 questionable CRISPR loci were found in 325 Staphylococcus genomes. Only 25 strains contained cas genes, which were classified into III-A (48.1%) and II-C (51.9%). The difference between the presence of the cas gene and the carrying rate of mecA was statistically significant, and they were negatively correlated. A total of 137 confirmed and 1755 questionable CRISPR loci were assumed to be false-CRISPR. The present study also analyzed the questionable CRISPR array for the first time while analyzing the confirmed CRISPR array in the Staphylococcal genome and screened the false-CRISPR elements in the orphan CRISPR array.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Microbiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Chunxia Bi
- Department of Clinical Laboratory, Qingdao Municipal Hospital affiliated to Qingdao University, Qingdao, Shandong, China
| | - Mengyuan Wang
- Department of Microbiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Hengxia Fu
- Department of Microbiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Zhengrong Mu
- Department of Microbiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Yuanqi Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiyong Yan
- Department of Microbiology, Medical College of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
44
|
Dong C, Zeng Z, Pu DK, Wen QF, Liu S, Du MZ, Sun Y, Gao YZ, Rao N, Huang J, Guo FB. CasLocusAnno: a web-based server for annotating cas loci and their corresponding (sub)types. FEBS Lett 2019; 593:2646-2654. [PMID: 31260103 DOI: 10.1002/1873-3468.13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023]
Abstract
In prokaryotes, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems constitute adaptive immune systems against mobile genetic elements (MGEs). Here, we introduce the Markov cluster algorithm (MCL) to Makarova et al.'s method in order to select a more reasonable profile. Additionally, our new Maximum Continuous Cas Subcluster (MCCS) method helps identification of tightly clustered loci. The comparison with two other commonly used programs shows that the method could identify Cas proteins with higher accuracy and lower Additional Prediction Rate (APR). Moreover, we developed a web-based server, CasLocusAnno (http://cefg.uestc.cn/CasLocusAnno), capable of annotating Cas proteins, cas loci and their (sub)types less than ~ 28 s following the whole proteome sequence submission. Its standalone version can be downloaded at https://github.com/RiversDong/CasLocusAnno.
Collapse
Affiliation(s)
- Chuan Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhi Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong-Kai Pu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing-Feng Wen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuo Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Meng-Ze Du
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yan Sun
- Institutes for Systems Genetics, West China Hospital, Chengdu, China
| | - Yi-Zhou Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Nini Rao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Key Laboratory for Neuroinformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Regmi A, Boyd EF. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus. BMC Microbiol 2019; 19:112. [PMID: 31133029 PMCID: PMC6537148 DOI: 10.1186/s12866-019-1487-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Utilizing unique carbohydrates or utilizing them more efficiently help bacteria expand and colonize new niches. Horizontal gene transfer (HGT) of catabolic systems is a powerful mechanism by which bacteria can acquire new phenotypic traits that can increase survival and fitness in different niches. In this work, we examined carbon catabolism diversity among Vibrio parahaemolyticus, a marine species that is also an important human and fish pathogen. RESULTS Phenotypic differences in carbon utilization between Vibrio parahaemolyticus strains lead us to examine genotypic differences in this species and the family Vibrionaceae in general. Bioinformatics analysis showed that the ability to utilize D-galactose was present in all V. parahaemolyticus but at least two distinct transporters were present; a major facilitator superfamily (MFS) transporter and a sodium/galactose transporter (SGLT). Growth and genetic analyses demonstrated that SGLT was a more efficient transporter of D-galactose and was the predominant type among strains. Phylogenetic analysis showed that D-galactose gene galM was acquired multiples times within the family Vibrionaceae and was transferred between distantly related species. The ability to utilize D-gluconate was universal within the species. Deletion of eda (VP0065), which encodes aldolase, a key enzyme in the Entner-Doudoroff (ED) pathway, reached a similar biomass to wild type when grown on D-gluconate as a sole carbon source. Two additional eda genes were identified, VPA1708 (eda2) associated with a D-glucuronate cluster and VPA0083 (eda3) that clustered with an oligogalacturonide (OGA) metabolism cluster. EDA2 and EDA3 were variably distributed among the species. A metabolic island was identified that contained citrate fermentation, L-rhamnose and OGA metabolism clusters as well as a CRISPR-Cas system. Phylogenetic analysis showed that CitF and RhaA had a limited distribution among V. parahaemolyticus, and RhaA was acquired at least three times. Within V. parahaemolyticus, two different regions contained the gene for L-arabinose catabolism and most strains had the ability to catabolism this sugar. CONCLUSION Our data suggest that horizontal transfer of metabolic systems among Vibrionaceae is an important source of metabolic diversity. This work identified four EDA homologues suggesting that the ED pathway plays a significant role in metabolism. We describe previously uncharacterized metabolism islands that were hotspots for the gain and loss of functional modules likely mediated by transposons.
Collapse
Affiliation(s)
- Abish Regmi
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA
| | - Ethna Fidelma Boyd
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
46
|
Chevallereau A, Meaden S, van Houte S, Westra ER, Rollie C. The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180094. [PMID: 30905293 PMCID: PMC6452272 DOI: 10.1098/rstb.2018.0094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
CRISPR-Cas immune systems are present in around half of bacterial genomes. Given the specificity and adaptability of this immune mechanism, it is perhaps surprising that they are not more widespread. Recent insights into the requirement for specific host factors for the function of some CRISPR-Cas subtypes, as well as the negative epistasis between CRISPR-Cas and other host genes, have shed light on potential reasons for the partial distribution of this immune strategy in bacteria. In this study, we examined how mutations in the bacterial mismatch repair system, which are frequently observed in natural and clinical isolates and cause elevated host mutation rates, influence the evolution of CRISPR-Cas-mediated immunity. We found that hosts with a high mutation rate very rarely evolved CRISPR-based immunity to phage compared to wild-type hosts. We explored the reason for this effect and found that the higher frequency at which surface mutants pre-exist in the mutator host background causes them to rapidly become the dominant phenotype under phage infection. These findings suggest that natural variation in bacterial mutation rates may, therefore, influence the distribution of CRISPR-Cas adaptive immune systems. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | | | | | - Edze R. Westra
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Clare Rollie
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
47
|
Guan Y, Ngugi DK, Vinu M, Blom J, Alam I, Guillot S, Ferry JG, Stingl U. Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea. Front Microbiol 2019; 10:839. [PMID: 31068917 PMCID: PMC6491703 DOI: 10.3389/fmicb.2019.00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through salt-out strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats.
Collapse
Affiliation(s)
- Yue Guan
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David K. Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatik und Systembiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Guillot
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Microbiology and Cell Science, UF/IFAS Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
48
|
Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 2019; 16:518-529. [PMID: 29995583 PMCID: PMC6546389 DOI: 10.1080/15476286.2018.1493330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/01/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
Novel CRISPR-Cas systems possess substantial potential for genome editing and manipulation of gene expression. The types and numbers of CRISPR-Cas systems vary substantially between different organisms. Some filamentous cyanobacteria harbor > 40 different putative CRISPR repeat-spacer cassettes, while the number of cas gene instances is much lower. Here we addressed the types and diversity of CRISPR-Cas systems and of CRISPR-like repeat-spacer arrays in 171 publicly available genomes of multicellular cyanobacteria. The number of 1328 repeat-spacer arrays exceeded the total of 391 encoded Cas1 proteins suggesting a tendency for fragmentation or the involvement of alternative adaptation factors. The model cyanobacterium Anabaena sp. PCC 7120 contains only three cas1 genes but hosts three Class 1, possibly one Class 2 and five orphan repeat-spacer arrays, all of which exhibit crRNA-typical expression patterns suggesting active transcription, maturation and incorporation into CRISPR complexes. The CRISPR-Cas system within the element interrupting the Anabaena sp. PCC 7120 fdxN gene, as well as analogous arrangements in other strains, occupy the genetic elements that become excised during the differentiation-related programmed site-specific recombination. This fact indicates the propensity of these elements for the integration of CRISPR-cas systems and points to a previously not recognized connection. The gene all3613 resembling a possible Class 2 effector protein is linked to a short repeat-spacer array and a single tRNA gene, similar to its homologs in other cyanobacteria. The diversity and presence of numerous CRISPR-Cas systems in DNA elements that are programmed for homologous recombination make filamentous cyanobacteria a prolific resource for their study. Abbreviations: Cas: CRISPR associated sequences; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; C2c: Class 2 candidate; SDR: small dispersed repeat; TSS: transcriptional start site; UTR: untranslated region.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Omer S. Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Alicia M. Muro-Pastor
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies,University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat Microbiol 2019; 4:956-963. [PMID: 30886355 PMCID: PMC6533911 DOI: 10.1038/s41564-019-0400-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) loci and their associated (cas) genes encode an adaptive immune system that protects prokaryotes from viral1 and plasmid2 invaders. Following viral (phage) infection, a small fraction of the prokaryotic cells are able to integrate a small sequence of the invader's genome into the CRISPR array1. These sequences, known as spacers, are transcribed and processed into small CRISPR RNA guides3-5 that associate with Cas nucleases to specify a viral target for destruction6-9. Although CRISPR-cas loci are widely distributed throughout microbial genomes and often display hallmarks of horizontal gene transfer10-12, the drivers of CRISPR dissemination remain unclear. Here, we show that spacers can recombine with phage target sequences to mediate a form of specialized transduction of CRISPR elements. Phage targets in phage 85, ΦNM1, ΦNM4 and Φ12 can recombine with spacers in either chromosomal or plasmid-borne CRISPR loci in Staphylococcus, leading to either the transfer of CRISPR-adjacent genes or the propagation of acquired immunity to other bacteria in the population, respectively. Our data demonstrate that spacer sequences not only specify the targets of Cas nucleases but also can promote horizontal gene transfer.
Collapse
Affiliation(s)
- Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Sean Meaden
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, UK
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Edze R Westra
- Environment and Sustainability Institute, Centre for Ecology and Conservation, University of Exeter, Biosciences, Penryn, Cornwall, UK
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
50
|
McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 2019; 20:105. [PMID: 30717668 PMCID: PMC6360697 DOI: 10.1186/s12864-019-5439-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background Bacteria are prey for many viruses that hijack the bacterial cell in order to propagate, which can result in bacterial cell lysis and death. Bacteria have developed diverse strategies to counteract virus predation, one of which is the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated (Cas) proteins immune defense system. Species within the bacterial family Vibrionaceae are marine organisms that encounter large numbers of phages. Our goal was to determine the significance of CRISPR-Cas systems as a mechanism of defense in this group by investigating their prevalence, phylogenetic distribution, and genome context. Results Herein, we describe all the CRISPR-Cas system types and their distribution within the family Vibrionaceae. In Vibrio cholerae genomes, we identified multiple variant type I-F systems, which were also present in 41 additional species. In a large number of Vibrio species, we identified a mini type I-F system comprised of tniQcas5cas7cas6f, which was always associated with Tn7-like transposons. The Tn7-like elements, in addition to the CRISPR-Cas system, also contained additional cargo genes such as restriction modification systems and type three secretion systems. A putative hybrid CRISPR-Cas system was identified containing type III-B genes followed by a type I-F cas6f and a type I-F CRISPR that was associated with a prophage in V. cholerae and V. metoecus strains. Our analysis identified CRISPR-Cas types I-C, I-E, I-F, II-B, III-A, III-B, III-D, and the rare type IV systems as well as cas loci architectural variants among 70 species. All systems described contained a CRISPR array that ranged in size from 3 to 179 spacers. The systems identified were present predominantly within mobile genetic elements (MGEs) such as genomic islands, plasmids, and transposon-like elements. Phylogenetic analysis of Cas proteins indicated that the CRISPR-Cas systems were acquired by horizontal gene transfer. Conclusions Our data show that CRISPR-Cas systems are phylogenetically widespread but sporadic in occurrence, actively evolving, and present on MGEs within Vibrionaceae. Electronic supplementary material The online version of this article (10.1186/s12864-019-5439-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan D McDonald
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Abish Regmi
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Daniel P Morreale
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Joseph D Borowski
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|