1
|
Dalgliesh C, Aldalaqan S, Atallah C, Best A, Scott E, Ehrmann I, Merces G, Mannion J, Badurova B, Sandher R, Illing Y, Wirth B, Wells S, Codner G, Teboul L, Smith GR, Hedley A, Herbert M, de Rooij DG, Miles C, Reynard LN, Elliott DJ. An ultra-conserved poison exon in the Tra2b gene encoding a splicing activator is essential for male fertility and meiotic cell division. EMBO J 2025; 44:877-902. [PMID: 39748121 PMCID: PMC11791180 DOI: 10.1038/s44318-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes. To address this, we used mouse genetics to disrupt an ultra-conserved PE in the Tra2b gene encoding the SR protein Tra2β. Focussing on germ cell development, we found that Tra2b PE deletion causes azoospermia due to catastrophic cell death during meiotic prophase. Failure to proceed through meiosis was associated with increased Tra2b expression sufficient to drive aberrant Tra2β protein hyper-responsive splice patterns. Although critical for meiotic prophase, Tra2b PE deletion spared earlier mitotically active germ cells, even though these still required Tra2b gene function. Our data indicate that PE splicing control prevents the accumulation of toxic levels of Tra2β protein that are incompatible with meiotic prophase. This unexpected connection with male fertility helps explain Tra2b PE ultra-conservation and indicates the importance of evaluating PE function in animal models.
Collapse
Affiliation(s)
- Caroline Dalgliesh
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Saad Aldalaqan
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Christian Atallah
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Best
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Emma Scott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ingrid Ehrmann
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - George Merces
- Newcastle University Biosciences Institute (NUBI), Innovation, Methodology and Application (IMA) Research Theme, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK
- Image Analysis Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joel Mannion
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Barbora Badurova
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Raveen Sandher
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Ylva Illing
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
| | - Brunhilde Wirth
- University of Cologne, Institute of Human Genetics, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Genetics, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Sara Wells
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Gemma Codner
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lydia Teboul
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ann Hedley
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mary Herbert
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin Miles
- Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Louise N Reynard
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK
| | - David J Elliott
- Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK.
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
2
|
Wang X, Yang C, Wei X, Zhang Y, Xiao Y, Wang J, Jiang Q, Ju Z, Gao Y, Li Y, Gao Y, Huang J. Single-cell RNA sequencing reveals the critical role of alternative splicing in cattle testicular spermatagonia. Biol Direct 2024; 19:145. [PMID: 39726007 DOI: 10.1186/s13062-024-00579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes. Gene expression profiling and enrichment analysis were utilized to uncover the varied functional roles of different cell types involved in cattle spermatogenesis. Additionally, unique gene markers specific to each testicular cell type were identified. Moreover, differentially expressed genes in spermatogonia exhibited notable enrichment in GO terms and KEGG pathway linked to alternative splicing. Notably, our study has shown that the activity of the YY1 regulation displays distinct expression patterns in spermatogonia, specifically targeting spliceosome proteins including RBM39, HNRNPA2B1, HNRNPH3, CPSF1, PCBP1, SRRM1, and SRRM2, which play essential roles in mRNA splicing. These results emphasize the importance of mRNA processing in spermatogonia within cattle testes, providing a basis for further investigation into their involvement in spermatogonial development.
Collapse
Affiliation(s)
- Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
| |
Collapse
|
3
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen K, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. Nucleic Acids Res 2024; 52:12244-12261. [PMID: 39373517 PMCID: PMC11551747 DOI: 10.1093/nar/gkae862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of the Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that the RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics are controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano,20129 Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, Milan, Italy
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- CZ Biohub Chicago, LLC, Chicago, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Wang S, Cai Y, Li T, Wang Y, Bao Z, Wang R, Qin J, Wang Z, Liu Y, Liu Z, Chan W, Chen X, Lu G, Chen Z, Huang T, Liu H. CWF19L2 is Essential for Male Fertility and Spermatogenesis by Regulating Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403866. [PMID: 38889293 PMCID: PMC11336944 DOI: 10.1002/advs.202403866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 06/20/2024]
Abstract
The progression of spermatogenesis along specific developmental trajectories depends on the coordinated regulation of pre-mRNA alternative splicing (AS) at the post-transcriptional level. However, the fundamental mechanism of AS in spermatogenesis remains to be investigated. Here, it is demonstrated that CWF19L2 plays a pivotal role in spermatogenesis and male fertility. In germline conditional Cwf19l2 knockout mice exhibiting male sterility, impaired spermatogenesis characterized by increased apoptosis and decreased differentiated spermatogonia and spermatocytes is observed. That CWF19L2 interacted with several spliceosome proteins to participate in the proper assembly and stability of the spliceosome is discovered. By integrating RNA-seq and LACE-seq data, it is further confirmed CWF19L2 directly bound and regulated the splicing of genes related to spermatogenesis (Znhit1, Btrc, and Fbxw7) and RNA splicing (Rbfox1, Celf1, and Rbm10). Additionally, CWF19L2 can indirectly amplify its effect on splicing regulation through modulating RBFOX1. Collectively, this research establishes that CWF19L2 orchestrates a splicing factor network to ensure accurate pre-mRNA splicing during the early steps of spermatogenesis.
Collapse
|
5
|
Wang Y, Chembazhi UV, Yee D, Chen S, Ji J, Wang Y, Nguyen KL, Lin P, Ratti A, Hess R, Qiao H, Ko C, Yang J, Kalsotra A, Mei W. PTBP1 mediates Sertoli cell actin cytoskeleton organization by regulating alternative splicing of actin regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598725. [PMID: 38915624 PMCID: PMC11195235 DOI: 10.1101/2024.06.12.598725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics is controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- These authors contributed equally to the work
| | - Ullas Valiya Chembazhi
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally to the work
| | - Danielle Yee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sijie Chen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jie Ji
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yujie Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Current address: College of Arts and Science, Vanderbilt University, Nashville, TN, USA
| | - Ka Lam Nguyen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - PoChing Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Universita degli studi di Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, The School of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
7
|
Liu X, Wu J, Li M, Zuo F, Zhang G. A Comparative Full-Length Transcriptome Analysis Using Oxford Nanopore Technologies (ONT) in Four Tissues of Bovine Origin. Animals (Basel) 2024; 14:1646. [PMID: 38891695 PMCID: PMC11170998 DOI: 10.3390/ani14111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The transcriptome complexity and splicing patterns in male and female cattle are ambiguous, presenting a substantial obstacle to genomic selection programs that seek to improve productivity, disease resistance, and reproduction in cattle. A comparative transcriptomic analysis using Oxford Nanopore Technologies (ONT) was conducted in bovine testes (TESTs), ovaries (OVAs), muscles (MUSCs), and livers (LIVs). An average of 5,144,769 full-length reads were obtained from each sample. The TESTs were found to have the greatest number of alternative polyadenylation (APA) events involved in processes such as sperm flagellum development and fertilization in male reproduction. In total, 438 differentially expressed transcripts (DETs) were identified in the LIVs in a comparison of females vs. males, and 214 DETs were identified in the MUSCs between females and males. Additionally, 14,735, 36,347, and 33,885 DETs were detected in MUSC vs. LIV, MUSC vs. TEST, and OVA vs. TEST comparisons, respectively, revealing the complexity of the TEST. Gene Set Enrichment Analysis (GSEA) showed that these DETs were mainly involved in the "spermatogenesis", "flagellated sperm motility", "spermatid development", "reproduction", "reproductive process", and "microtubule-based movement" KEGG pathways. Additional studies are necessary to further characterize the transcriptome in different cell types, developmental stages, and physiological conditions in bovines and ascertain the functions of the novel transcripts.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.W.); (M.L.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
8
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
9
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
10
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
11
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
12
|
Naro C, Sette C, Geremia R. Purification by STA-PUT Technique of Male Germ Cells from Single Mouse and RNA-Extraction for Transcriptomic Analysis. Methods Mol Biol 2024; 2770:37-52. [PMID: 38351445 DOI: 10.1007/978-1-0716-3698-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Transcriptomic analyses of germ cells at different stages of differentiation have shed light on the transcriptional and post-transcriptional mechanisms regulating gene expression that ensure the correct progression of spermatogenesis and male fertility. In this chapter, we describe a method to isolate meiotic and post-meiotic germ cells, based on gravimetric sedimentation, starting from a testicular germ cell suspension isolated from a single adult mouse. We also describe how to assess the purity and quality of the collected fractions of germ cells and how to optimize the extraction from these samples of RNA for subsequent RNA-sequencing experiment. In our experience, this protocol is suitable for germ cell isolation and transcriptomic analysis for mouse models with spermatogenic defects, overcoming the limits that reduced fertility poses to the obtaining of experimental animals.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Raffaele Geremia
- Department of Biomedicine and Prevention, Section of Human Anatomy, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Lei WL, Li YY, Du Z, Su R, Meng TG, Ning Y, Hou G, Schatten H, Wang ZB, Han Z, Sun F, Qian WP, Liu C, Sun QY. SRSF1-mediated alternative splicing is required for spermatogenesis. Int J Biol Sci 2023; 19:4883-4897. [PMID: 37781512 PMCID: PMC10539708 DOI: 10.7150/ijbs.83474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf1 led to complete infertility by affecting spermatogenesis. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF1 affected the AS of Stra8 in a direct manner and Dazl, Dmc1, Mre11a, Syce2 and Rif1 in an indirect manner. Our findings demonstrate that SRSF1 has crucial functions in spermatogenesis and male fertility by regulating alternative splicing.
Collapse
Affiliation(s)
- Wen-Long Lei
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongchang Du
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibao Su
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanmei Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Ping Qian
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
15
|
Jiang Y, N'Diaye A, Koh CS, Quilichini TD, Shunmugam ASK, Kirzinger MW, Konkin D, Bekkaoui Y, Sari E, Pasha A, Esteban E, Provart NJ, Higgins JD, Rozwadowski K, Sharpe AG, Pozniak CJ, Kagale S. The coordinated regulation of early meiotic stages is dominated by non-coding RNAs and stage-specific transcription in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:209-224. [PMID: 36710629 DOI: 10.1111/tpj.16125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.
Collapse
Affiliation(s)
- Yunfei Jiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Arun S K Shunmugam
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Morgan W Kirzinger
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Ehsan Sari
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Kevin Rozwadowski
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N 0X2, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Rd., Saskatoon, SK, S7N 4L8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
16
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
17
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
18
|
Liu S, Ma X, Wang Z, Lin F, Li M, Li Y, Yang L, Rushdi HE, Riaz H, Gao T, Yang L, Fu T, Deng T. MAEL gene contributes to bovine testicular development through the m5C-mediated splicing. iScience 2023; 26:105941. [PMID: 36711243 PMCID: PMC9876746 DOI: 10.1016/j.isci.2023.105941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Knowledge of RNA molecules regulating testicular development and spermatogenesis in bulls is essential for elite bull selection and an ideal breeding program. Herein, we performed direct RNA sequencing (DRS) to explore the functional characterization of RNA molecules produced in the testicles of 9 healthy Simmental bulls at three testicular development stages (prepuberty, puberty, and postpuberty). We identified 5,043 differentially expressed genes associated with testicular weight. These genes exhibited more alternative splicing at sexual maturity, particularly alternative 3' (A3) and 5' (A5) splice sites usage and exon skipping (SE). The expression of hub genes in testicular developmental stages was also affected by both m6A and m5C RNA modifications. We found m5C-mediated splicing events significantly (p < 0.05) increased MAEL gene expression at the isoform level, likely promoting spermatogenesis. Our findings highlight the complexity of RNA processing and expression as well as the regulation of transcripts involved in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Zichen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yali Li
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Liu Yang
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Hossam E. Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Punjab, Pakistan
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Liguo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Corresponding author
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China,Corresponding author
| |
Collapse
|
19
|
Qin J, Huang T, Wang Z, Zhang X, Wang J, Dang Q, Cui D, Wang X, Zhai Y, Zhao L, Lu G, Shao C, Li S, Liu H, Liu Z. Bud31-mediated alternative splicing is required for spermatogonial stem cell self-renewal and differentiation. Cell Death Differ 2023; 30:184-194. [PMID: 36114296 PMCID: PMC9883385 DOI: 10.1038/s41418-022-01057-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) is tightly regulated during cell differentiation and development. AS events are prevalent in the testis, but the splicing regulation in spermatogenesis remains unclear. Here we report that the spliceosome component Bud31 plays a crucial role during spermatogenesis in mice. Germ cell-specific knockout of Bud31 led to loss of spermatogonia and to male infertility. We further demonstrate that Bud31 is required for both spermatogonial stem cell pool maintenance and the initiation of spermatogenesis. SMART-seq revealed that deletion of Bud31 in germ cells causes widespread exon-skipping and intron retention. Particularly, we identified Cdk2 as one of the direct splicing targets of Bud31, knockout of Bud31 resulted in retention of the first intron of Cdk2, which led to a decrease in Cdk2 expression. Our findings suggest that Bud31-mediated AS within spermatogonial stem cells regulates the self-renewal and differentiation of male germ cells in mammals.
Collapse
Affiliation(s)
- Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianli Dang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Donghai Cui
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Shiyang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
20
|
Liu W, Lu X, Zhao ZH, SU R, Li QNL, Xue Y, Gao Z, Sun SMS, Lei WL, Li L, An G, Liu H, Han Z, Ouyang YC, Hou Y, Wang ZB, Sun QY, Liu J. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing. eLife 2022; 11:e78211. [PMID: 36355419 PMCID: PMC9648972 DOI: 10.7554/elife.78211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruibao SU
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qian-Nan Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Si-Min Sun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
21
|
Gutiérrez J, van Wely KHM, Martínez-A C. Hepatitis, testicular degeneration, and ataxia in DIDO3-deficient mice with altered mRNA processing. Cell Biosci 2022; 12:84. [PMID: 35672775 PMCID: PMC9172153 DOI: 10.1186/s13578-022-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background mRNA processing is an essential step of gene expression; its malfunction can lead to different degrees of physiological disorder from subclinical disease to death. We previously identified Dido1 as a stemness marker and a gene involved in embryonic stem cell differentiation. DIDO3, the largest protein encoded by the Dido1 gene, is necessary for accurate mRNA splicing and correct transcription termination. The deletion of Dido1 exon16, which encodes the carboxy-terminal half of DIDO3, results in early embryonic lethality in mouse. Results We obtained mice bearing a Cre-LoxP conditional version of that deletion and studied the effects of inducing it ubiquitously in adult stages. DIDO3-deficient mice survive the deletion but suffer mild hepatitis, testicular degeneration, and progressive ataxia, in association with systemic alterations in mRNA splicing and transcriptional readthrough. Conclusions These results offer insight into the distinct vulnerabilities in mouse organs following impairment of the mRNA processing machinery, and could aid understanding of human health dependence on accurate mRNA metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00804-8.
Collapse
|
22
|
Dai S, Wang C, Zhang C, Feng L, Zhang W, Zhou X, He Y, Xia X, Chen B, Song W. PTB: Not just a polypyrimidine tract-binding protein. J Cell Physiol 2022; 237:2357-2373. [PMID: 35288937 DOI: 10.1002/jcp.30716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Polypyrimidine tract-binding protein (PTB), as a member of the heterogeneous nuclear ribonucleoprotein family, functions by rapidly shuttling between the nucleus and the cytoplasm. PTB is involved in the alternative splicing of pre-messenger RNA (mRNA) and almost all steps of mRNA metabolism. PTB regulation is organ-specific; brain- or muscle-specific microRNAs and long noncoding RNAs partially contribute to regulating PTB, thereby modulating many physiological and pathological processes, such as embryonic development, cell development, spermatogenesis, and neuron growth and differentiation. Previous studies have shown that PTB knockout can inhibit tumorigenesis and development. The knockout of PTB in glial cells can be reprogrammed into functional neurons, which shows great promise in the field of nerve regeneration but is controversial.
Collapse
Affiliation(s)
- Shirui Dai
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xuezhi Zhou
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| |
Collapse
|
23
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
24
|
Aldalaqan S, Dalgliesh C, Luzzi S, Siachisumo C, Reynard LN, Ehrmann I, Elliott DJ. Cryptic splicing: common pathological mechanisms involved in male infertility and neuronal diseases. Cell Cycle 2021; 21:219-227. [PMID: 34927545 PMCID: PMC8855859 DOI: 10.1080/15384101.2021.2015672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a “guardian of the transcriptome” that protects against the use of aberrant (or “cryptic”) splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer’s disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.
Collapse
Affiliation(s)
- Saad Aldalaqan
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Caroline Dalgliesh
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Sara Luzzi
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Chileleko Siachisumo
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Louise N Reynard
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Ingrid Ehrmann
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - David J Elliott
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| |
Collapse
|
25
|
Muzafar S, Sharma RD, Chauhan N, Prasad R. Intron distribution and emerging role of alternative splicing in fungi. FEMS Microbiol Lett 2021; 368:6414529. [PMID: 34718529 DOI: 10.1093/femsle/fnab135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Spliceosomal introns are noncoding sequences that are spliced from pre-mRNA. They are ubiquitous in eukaryotic genomes, although the average number of introns per gene varies considerably between different eukaryotic species. Fungi are diverse in terms of intron numbers ranging from 4% to 99% genes with introns. Alternative splicing is one of the most common modes of posttranscriptional regulation in eukaryotes, giving rise to multiple transcripts from a single pre-mRNA and is widespread in metazoans and drives extensive proteome diversity. Earlier, alternative splicing was considered to be rare in fungi, but recently, increasing numbers of studies have revealed that alternative splicing is also widespread in fungi and has been implicated in the regulation of fungal growth and development, protein localization and the improvement of survivability, likely underlying their unique capacity to adapt to changing environmental conditions. However, the role of alternative splicing in pathogenicity and development of drug resistance is only recently gaining attention. In this review, we describe the intronic landscape in fungi. We also present in detail the newly discovered functions of alternative splicing in various cellular processes and outline areas particularly in pathogenesis and clinical drug resistance for future studies that could lead to the development of much needed new therapeutics.
Collapse
Affiliation(s)
- Suraya Muzafar
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India
| |
Collapse
|
26
|
Abstract
Myotonic dystrophy is a dominantly inherited multisystem disorder that results from increased CTG repeats in the 3' region of the myotonic dystrophy protein kinase gene (DMPK). The mutant DMPK mRNA remains in the nucleus and sequesters RNA-binding proteins, including regulators of mRNA splicing. Myotonic dystrophy is characterized by a highly variable phenotype that includes muscle weakness and myotonia, and the disorder may affect the function of many endocrine glands. DMPK mRNA is expressed in muscle, testis, liver, pituitary, thyroid, and bone; the mutated form leads to disruption of meiosis and an increase in fetal insulin receptor-A relative to adult insulin receptor-B, resulting in adult primary testicular failure and insulin resistance predisposing to diabetes, respectively. Patients with myotonic dystrophy are also at increased risk for hyperlipidemia, nonalcoholic fatty liver disease, erectile dysfunction, benign and malignant thyroid nodules, bone fractures, miscarriage, preterm delivery, and failed labor during delivery. Circulating parathyroid hormone and adrenocorticotropic hormone levels may be elevated, but the mechanisms for these associations are unclear. This review summarizes what is known about endocrine dysfunction in individuals with myotonic dystrophy.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Wu R, Zhan J, Zheng B, Chen Z, Li J, Li C, Liu R, Zhang X, Huang X, Luo M. SYMPK Is Required for Meiosis and Involved in Alternative Splicing in Male Germ Cells. Front Cell Dev Biol 2021; 9:715733. [PMID: 34434935 PMCID: PMC8380814 DOI: 10.3389/fcell.2021.715733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
SYMPK is a scaffold protein that supports polyadenylation machinery assembly on nascent transcripts and is also involved in alternative splicing in some mammalian somatic cells. However, the role of SYMPK in germ cells remains unknown. Here, we report that SYMPK is highly expressed in male germ cells, and germ cell-specific knockout (cKO) of Sympk in mouse leads to male infertility. Sympk cKODdx4–cre mice showed reduced spermatogonia at P4 and almost no germ cells at P18. Sympk cKOStra8–Cre spermatocytes exhibit defects in homologous chromosome synapsis, DNA double-strand break (DSB) repair, and meiotic recombination. RNA-Seq analyses reveal that SYMPK is associated with alternative splicing, besides regulating the expressions of many genes in spermatogenic cells. Importantly, Sympk deletion results in abnormal alternative splicing and a decreased expression of Sun1. Taken together, our results demonstrate that SYMPK is pivotal for meiotic progression by regulating pre-mRNA alternative splicing in male germ cells.
Collapse
Affiliation(s)
- Rui Wu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Zheng
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhen Chen
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jianbo Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changrong Li
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Rong Liu
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
28
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
29
|
Talebi-Yazdabadi Z, Jahanbakhsh N, Dormiani K, Forouzanfar M, Lachinani L, Zohrabi D, Tavalaee M, Nasr-Esfahani MH. Assessment of MUSASHI 1 and MUSASHI 2 expression in spermatozoa and testicular tissue. Andrologia 2021; 53:e14187. [PMID: 34309875 DOI: 10.1111/and.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
MUSASHI (MSI) family plays the main role in the spermatogenesis process. The purpose of this study was the assessment of sperm MSI1 and MSI2, and sperm functional tests in infertile men (n = 30) with varicocele and fertile men (n = 30). Furthermore, MSI1 and MSI2 proteins were assessed in testicular tissue of azoospermic men (n = 9) as well as epididymal spermatozoa and testis of mice. Expression of MSI1 and MSI2 was assessed at RNA and protein levels in human spermatozoa. Sperm concentration and motility were significantly lower, while abnormal sperm morphology, lipid peroxidation, DNA fragmentation and protamine deficiency were significantly higher in men with varicocele compared to fertile individuals. Any significant difference was not observed in the expression of MSI1 and MSI2 mRNA between the two groups. Unlike MSI1 protein that was not detectable in humans, the relative expression of MSI2 protein was similar in varicocele and fertile individuals. The expression level of both Msi1 and Msi2 proteins was also observable in mouse spermatozoa. No significant relationship was observed between sperm functional parameters with expression of these genes. The data of this study demonstrated that although MSI1 and MSI2 play important roles during spermatogenesis, their relative expression in spermatozoa was not affected by varicocele.
Collapse
Affiliation(s)
- Zohreh Talebi-Yazdabadi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,ACECR Institute of Higher Education, Isfahan, Iran
| | - Neda Jahanbakhsh
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Dina Zohrabi
- ACECR Institute of Higher Education, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
30
|
Tian H, Petkov PM. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis. Development 2021; 148:269056. [PMID: 34100066 DOI: 10.1242/dev.199414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
31
|
Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle 2021; 20:480-489. [PMID: 33632061 PMCID: PMC8018374 DOI: 10.1080/15384101.2021.1889187] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
32
|
Zhang Y, Zhong Y, Guo S, Zhu Y, Guo J, Fu Y, Li M. CircRNA profiling reveals circ880 functions as miR-375-3p sponge in medaka gonads. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100797. [PMID: 33714082 DOI: 10.1016/j.cbd.2021.100797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/25/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) have been regarded as regulators in the biological processes of various species. However, there is no report about circRNAs in the gonads of model fish medaka (Oryzias latipes). In this study, 1157 and 1570 circRNAs were obtained in the ovary and testis by RNA-sequencing. The characteristics of circRNAs were explored in sequence length, exon composition, and chromosome position. 24 circRNAs were significantly up or down-regulated in the testis compared to the ovary, 9 of which were verified by qRT-PCR. Interestingly, circ452 was highly expressed in the testis while circ880 expression exhibited sexual dimorphism. In situ hybridization (ISH) revealed that circ452 and circ880 were expressed in meiotic germ cells, and circ880 was also abundant in spermatogonia. In addition, dual-luciferase reporter assay manifested that circ880 and Oldnd can combine with miR-375-3p. Overall, these results provide emerging circRNA libraries and open new avenues for future investigation of circRNAs in medaka.
Collapse
Affiliation(s)
- Yu Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shaoyu Guo
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yefei Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Guo
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
33
|
Barakate A, Orr J, Schreiber M, Colas I, Lewandowska D, McCallum N, Macaulay M, Morris J, Arrieta M, Hedley PE, Ramsay L, Waugh R. Barley Anther and Meiocyte Transcriptome Dynamics in Meiotic Prophase I. FRONTIERS IN PLANT SCIENCE 2021; 11:619404. [PMID: 33510760 PMCID: PMC7835676 DOI: 10.3389/fpls.2020.619404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 05/07/2023]
Abstract
In flowering plants, successful germinal cell development and meiotic recombination depend upon a combination of environmental and genetic factors. To gain insights into this specialized reproductive development program we used short- and long-read RNA-sequencing (RNA-seq) to study the temporal dynamics of transcript abundance in immuno-cytologically staged barley (Hordeum vulgare) anthers and meiocytes. We show that the most significant transcriptional changes in anthers occur at the transition from pre-meiosis to leptotene-zygotene, which is followed by increasingly stable transcript abundance throughout prophase I into metaphase I-tetrad. Our analysis reveals that the pre-meiotic anthers are enriched in long non-coding RNAs (lncRNAs) and that entry to meiosis is characterized by their robust and significant down regulation. Intriguingly, only 24% of a collection of putative meiotic gene orthologs showed differential transcript abundance in at least one stage or tissue comparison. Argonautes, E3 ubiquitin ligases, and lys48 specific de-ubiquitinating enzymes were enriched in prophase I meiocyte samples. These developmental, time-resolved transcriptomes demonstrate remarkable stability in transcript abundance in meiocytes throughout prophase I after the initial and substantial reprogramming at meiosis entry and the complexity of the regulatory networks involved in early meiotic processes.
Collapse
Affiliation(s)
- Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Nicola McCallum
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
34
|
Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine D. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucleic Acids Res 2021; 49:479-490. [PMID: 33330934 PMCID: PMC7797038 DOI: 10.1093/nar/gkaa1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/07/2020] [Accepted: 11/28/2020] [Indexed: 11/14/2022] Open
Abstract
The mammalian Ate1 gene encodes an arginyl transferase enzyme with tumor suppressor function that depends on the inclusion of one of the two mutually exclusive exons (MXE), exons 7a and 7b. We report that the molecular mechanism underlying MXE splicing in Ate1 involves five conserved regulatory intronic elements R1-R5, of which R1 and R4 compete for base pairing with R3, while R2 and R5 form an ultra-long-range RNA structure spanning 30 Kb. In minigenes, single and double mutations that disrupt base pairings in R1R3 and R3R4 lead to the loss of MXE splicing, while compensatory triple mutations that restore RNA structure revert splicing to that of the wild type. In the endogenous Ate1 pre-mRNA, blocking the competing base pairings by LNA/DNA mixmers complementary to R3 leads to the loss of MXE splicing, while the disruption of R2R5 interaction changes the ratio of MXE. That is, Ate1 splicing is controlled by two independent, dynamically interacting, and functionally distinct RNA structure modules. Exon 7a becomes more included in response to RNA Pol II slowdown, however it fails to do so when the ultra-long-range R2R5 interaction is disrupted, indicating that exon 7a/7b ratio depends on co-transcriptional RNA folding. In sum, these results demonstrate that splicing is coordinated both in time and in space over very long distances, and that the interaction of these components is mediated by RNA structure.
Collapse
Affiliation(s)
- Marina Kalinina
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Dmitry Skvortsov
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Svetlana Kalmykova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Timofei Ivanov
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Olga Dontsova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| |
Collapse
|
35
|
Senoo M, Hozoji H, Ishikawa-Yamauchi Y, Takijiri T, Ohta S, Ukai T, Kabata M, Yamamoto T, Yamada Y, Ikawa M, Ozawa M. RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3. J Reprod Dev 2020; 66:459-467. [PMID: 32624547 PMCID: PMC7593632 DOI: 10.1262/jrd.2020-060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS)
or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the
molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in
Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next
generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly,
no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of
Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also
revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore,
Nanos3+/−;Ptbp1+/− mice exhibited abnormal spermatogenesis, which resembled the effects of germ
cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that
PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part,
in concert with NANOS3.
Collapse
Affiliation(s)
- Manami Senoo
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroshi Hozoji
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu Ishikawa-Yamauchi
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sho Ohta
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyo Ukai
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.,AMED-CREST, Tokyo 100-0004, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
36
|
Cesari E, Loiarro M, Naro C, Pieraccioli M, Farini D, Pellegrini L, Pagliarini V, Bielli P, Sette C. Combinatorial control of Spo11 alternative splicing by modulation of RNA polymerase II dynamics and splicing factor recruitment during meiosis. Cell Death Dis 2020; 11:240. [PMID: 32303676 PMCID: PMC7165175 DOI: 10.1038/s41419-020-2443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
Abstract
Homologous recombination and chromosome segregation in meiosis rely on the timely expression of two splice variants of the endonuclease SPO11, named α and β, which respectively skip or include exon 2. However, in spite of its physiological importance, the mechanism underlying Spo11 alternative splicing in meiosis is still unknown. By screening the activity of factors that are predicted to bind the alternatively spliced region of Spo11, we identified hnRNPH as a key regulator of SPO11α splicing in mouse spermatocytes. Although hnRNPH was not upregulated in meiosis concomitantly with the switch in splicing, its recruitment to Spo11 pre-mRNA was favored by selective modulation of RNA polymerase II (RNAPII) phosphorylation and processivity in proximity of exon 2. The hnRNPH binding sites were localized near those of splicing factors that promote SPO11β splicing, suggesting that hnRNPH favors exon 2 skipping by competing out positive regulators. Indeed, hnRNPH binds proximal to a consensus motif for Sam68, a positive regulator of SPO11β splicing in vitro and in vivo, and it interferes with Sam68 binding to the Spo11 pre-mRNA. Thus, our work reveals that modulation of RNAPII dynamics in concert with hnRNPH recruitment exerts a combinatorial control of the timely regulated Spo11 splicing during meiosis.
Collapse
Affiliation(s)
- Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Maria Loiarro
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Marco Pieraccioli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Donatella Farini
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Livia Pellegrini
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Pamela Bielli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy. .,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
| |
Collapse
|
37
|
Song H, Wang L, Chen D, Li F. The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. Int J Biol Sci 2020; 16:38-48. [PMID: 31892844 PMCID: PMC6930371 DOI: 10.7150/ijbs.34422] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional regulation of gene expression functioned during many developmental processes, such as spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the notion that the development of testis is regulated by a higher level of alternative splicing than other tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the splicing variants functioned in the process of spermatogenesis and the male infertility. There are five points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the production and degradation of abnormal transcripts caused by gene variations and nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing variants in mammal spermatogenesis and provides new insights of the potential application of the alternative splicing into the therapy of male infertility.
Collapse
Affiliation(s)
- Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dake Chen
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| |
Collapse
|
38
|
Horiuchi K, Perez-Cerezales S, Papasaikas P, Ramos-Ibeas P, López-Cardona AP, Laguna-Barraza R, Fonseca Balvís N, Pericuesta E, Fernández-González R, Planells B, Viera A, Suja JA, Ross PJ, Alén F, Orio L, Rodriguez de Fonseca F, Pintado B, Valcárcel J, Gutiérrez-Adán A. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Rep 2019; 23:143-155. [PMID: 29617656 DOI: 10.1016/j.celrep.2018.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Serafín Perez-Cerezales
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Panagiotis Papasaikas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Priscila Ramos-Ibeas
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | | | - Ricardo Laguna-Barraza
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca Balvís
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raul Fernández-González
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Angel Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Francisco Alén
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Laura Orio
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Fernando Rodriguez de Fonseca
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain
| | - Belén Pintado
- Servicio de Transgénicos, CNB-CSIC, UAM, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alfonso Gutiérrez-Adán
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain.
| |
Collapse
|
39
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3' end formation for mRNAs during transcription. APA often occurs in a tissue- or developmental stage-specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue-specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue-specific factors in APA. However, while a few tissue-specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue-specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue-specific APA could lead to numerous advances in gene activity control. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology & BiochemistryTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
40
|
Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril 2019; 112:61-72.e1. [DOI: 10.1016/j.fertnstert.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
41
|
Identification of piRNAs and piRNA clusters in the testes of the Mongolian horse. Sci Rep 2019; 9:5022. [PMID: 30903011 PMCID: PMC6430771 DOI: 10.1038/s41598-019-41475-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
P-element induced wimpy testis-interacting RNAs (piRNAs) are essential for testicular development and spermatogenesis in mammals. Comparative analyses of the molecular mechanisms of spermatogenesis among different organisms are therefore dependent on accurate characterizations of piRNAs. At present, little is known of piRNAs in non-model organisms. Here, we characterize piRNAs in the Mongolian horse, a hardy breed that reproduces under extreme circumstances. A thorough understanding of spermatogenesis and reproduction in this breed may provide insights for the improvement of fecundity and reproductive success in other breeds. We identified 4,936,717 piRNAs and 7,890 piRNA clusters across both testicular developmental stages. Of these, 2,236,377 putative piRNAs were expressed in the mature samples only, and 2,391,271 putative piRNAs were expressed in the immature samples only. Approximately 3,016 piRNA clusters were upregulated in the mature testes as compared to the immature testes, and 4,874 piRNA clusters were downregulated. Functional and pathway analyses indicated that the candidate generating genes of the predicted piRNAs were likely involved in testicular development and spermatogenesis. Our results thus provide information about differential expression patterns in genes associated with testicular development and spermatogenesis in a non-model animal.
Collapse
|
42
|
Ehrmann I, Crichton JH, Gazzara MR, James K, Liu Y, Grellscheid SN, Curk T, de Rooij D, Steyn JS, Cockell S, Adams IR, Barash Y, Elliott DJ. An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. eLife 2019; 8:39304. [PMID: 30674417 PMCID: PMC6345566 DOI: 10.7554/elife.39304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis. In particular, RBMXL2 represses the selection of aberrant splice sites and the insertion of cryptic and premature terminal exons. Our data suggest a Rbmxl2 retrogene has been conserved across mammals as part of a splicing control mechanism that is fundamentally important to germ cell biology. We propose that this mechanism is essential to meiosis because it buffers the high ambient concentrations of splicing activators, thereby preventing poisoning of key transcripts and disruption to gene expression by aberrant splice site selection. In humans and other mammals, a sperm from a male fuses with an egg cell from a female to produce an embryo that may ultimately grow into a new individual. Sperm and egg cells are made when certain cells in the body divide in a process called meiosis. Many proteins are required for meiosis to happen and these proteins are made using instructions provided by genes, which are made of a molecule called DNA. The DNA within a gene is transcribed to make molecules of ribonucleic acid (or RNA for short). The cell then modifies many of these RNAs in a process called splicing before using them as templates to make proteins. During splicing, segments of RNA known as introns are discarded and other segments termed exons are joined together. Some exons may also be removed from RNAs in different combinations to create different proteins from the same gene. A protein called RBMXL2 is able to bind to RNA molecules and is only made during and after meiosis in humans and most other mammals. RBMXL2 can also bind to other proteins that are known to be involved in controlling splicing of RNAs, but its role in splicing remains unclear. To address this question, Ehrmann et al. studied the gene that encodes the RBMXL2 protein in mice. Removing this gene prevented male mice from being able to make sperm. Further experiments using a technique called RNA sequencing showed that the RBMXL2 protein helps to ensure that splicing happens correctly by preventing bits of exons and introns in mouse genes from being rearranged. These findings suggest that the gene encoding RBMXL2 is part of a splicing control mechanism that is important for making sperm and egg cells. The work of Ehrmann et al. could eventually help some couples understand why they have problems conceiving children. Male infertility is poorly understood, and not knowing its causes can harm the mental health of affected men. Furthermore, these findings may help researchers to understand the role of a closely related protein called RBMY that has also been linked to infertility in men, but is much more difficult to study.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Katherine James
- Life Sciences, Natural History Museum, London, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Sushma Nagaraja Grellscheid
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | - Tomaž Curk
- Laboratory of Bioinformatics, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jannetta S Steyn
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, United States
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
43
|
Mu W, Starmer J, Yee D, Magnuson T. EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics Chromatin 2018; 11:71. [PMID: 30522506 PMCID: PMC6282306 DOI: 10.1186/s13072-018-0242-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) is responsible for establishing and maintaining histone H3K27 methylation during cell differentiation and proliferation. H3K27 can be mono-, di-, or trimethylated, resulting in differential gene regulation. However, it remains unknown how PRC2 specifies the degree and biological effects of H3K27 methylation within a given cellular context. One way to determine PRC2 specificity may be through alternative splicing of Ezh2, PRC2’s catalytic subunit, during cell differentiation and tissue maturation. Results We fully characterized the alternative splicing of Ezh2 in somatic cells and male germ cells and found that Ezh’s exon 14 was differentially regulated during mitosis and meiosis. The Ezh2 isoform containing exon 14 (ex14-Ezh2) is upregulated during cell cycle progression, consistent with a role in maintaining H3K27 methylation during chromatin replication. In contrast, the isoform lacking exon 14 (ex14D-Ezh2) was almost exclusively present in spermatocytes when new H3K27me2 is established during meiotic differentiation. Moreover, Ezh2’s transcript is normally controlled by E2F transcription activators, but in spermatocytes, Ezh2’s transcription is controlled by the meiotic regulator MYBL1. Compared to ex14-EZH2, ex14D-EZH2 has a diminished efficiency for catalyzing H3K27me3 and promotes embryonic stem cell differentiation. Conclusions Ezh2’s expression is regulated at transcriptional and post-transcriptional levels in a cellular context-dependent manner. EZH2 variants determine functional specificity of PRC2 in histone methylation during cell proliferation and differentiation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0242-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weipeng Mu
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Joshua Starmer
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Della Yee
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, USA.
| |
Collapse
|
44
|
Senoo M, Takijiri T, Yoshida N, Ozawa M, Ikawa M. PTBP1 contributes to spermatogenesis through regulation of proliferation in spermatogonia. J Reprod Dev 2018; 65:37-46. [PMID: 30416150 PMCID: PMC6379764 DOI: 10.1262/jrd.2018-109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a highly conserved RNA-binding protein that is a well-known regulator of alternative splicing. Testicular tissue is one of the richest
tissues with respect to the number of alternative splicing mRNA isoforms, but the molecular role(s) of PTBP1 in the regulation of these isoforms during spermatogenesis is still unclear.
Here, we developed a germ cell–specific Ptbp1 conditional knockout (cKO) mouse model by using the Cre-loxP system to investigate the role of PTBP1 in spermatogenesis. Testis
weight in Ptbp1 cKO mice was comparable to that in age-matched controls until 3 weeks of age; at ≥ 2 months old, testis weight was significantly lighter in cKO mice than in
age-matched controls. Sperm count in Ptbp1 cKO mice at 2 months old was comparable to that in controls, whereas sperm count significantly decreased at 6 months old.
Seminiferous tubules that exhibited degeneration in spermatogenic function were more evident in the 2-month-old Ptbp1 cKO mice than in controls. In addition, the early
neonatal proliferation of spermatogonia, during postnatal days 1–5, was significantly retarded in Ptbp1 cKO mice compared with that in controls. An in vitro
spermatogonia culture model (germline stem cells) revealed that hydroxytamoxifen-induced deletion of PTBP1 from germline stem cells caused severe proliferation arrest accompanied by an
increase of apoptotic cell death. These data suggest that PTBP1 contributes to spermatogenesis through regulation of spermatogonia proliferation.
Collapse
Affiliation(s)
- Manami Senoo
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.,Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Takijiri
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.,Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Manabu Ozawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahito Ikawa
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong MH. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 2018; 28:879-896. [PMID: 30061742 PMCID: PMC6123400 DOI: 10.1038/s41422-018-0074-y] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
A systematic interrogation of male germ cells is key to complete understanding of molecular mechanisms governing spermatogenesis and the development of new strategies for infertility therapies and male contraception. Here we develop an approach to purify all types of homogeneous spermatogenic cells by combining transgenic labeling and synchronization of the cycle of the seminiferous epithelium, and subsequent single-cell RNA-sequencing. We reveal extensive and previously uncharacterized dynamic processes and molecular signatures in gene expression, as well as specific patterns of alternative splicing, and novel regulators for specific stages of male germ cell development. Our transcriptomics analyses led us to discover discriminative markers for isolating round spermatids at specific stages, and different embryo developmental potentials between early and late stage spermatids, providing evidence that maturation of round spermatids impacts on embryo development. This work provides valuable insights into mammalian spermatogenesis, and a comprehensive resource for future studies towards the complete elucidation of gametogenesis.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yun Gao
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suming Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tongtong Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nannan Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rong Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China.
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
46
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
47
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
48
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
49
|
Esrp1 is a marker of mouse fetal germ cells and differentially expressed during spermatogenesis. PLoS One 2018; 13:e0190925. [PMID: 29324788 PMCID: PMC5764326 DOI: 10.1371/journal.pone.0190925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/24/2017] [Indexed: 01/15/2023] Open
Abstract
ESRP1 regulates alternative splicing, producing multiple transcripts from its target genes in epithelial tissues. It is upregulated during mesenchymal to epithelial transition associated with reprogramming of fibroblasts to iPS cells and has been linked to pluripotency. Mouse fetal germ cells are the founders of the adult gonadal lineages and we found that Esrp1 mRNA was expressed in both male and female germ cells but not in gonadal somatic cells at various stages of gonadal development (E12.5-E15.5). In the postnatal testis, Esrp1 mRNA was highly expressed in isolated cell preparations enriched for spermatogonia but expressed at lower levels in those enriched for pachytene spermatocytes and round spermatids. Co-labelling experiments with PLZF and c-KIT showed that ESRP1 was localized to nuclei of both Type A and B spermatogonia in a speckled pattern, but was not detected in SOX9+ somatic Sertoli cells. No co-localization with the nuclear speckle marker, SC35, which has been associated with post-transcriptional splicing, was observed, suggesting that ESRP1 may be associated with co-transcriptional splicing or have other functions. RNA interference mediated knockdown of Esrp1 expression in the seminoma-derived Tcam-2 cell line demonstrated that ESRP1 regulates alternative splicing of mRNAs in a non-epithelial cell germ cell tumour cell line.
Collapse
|
50
|
Osman K, Yang J, Roitinger E, Lambing C, Heckmann S, Howell E, Cuacos M, Imre R, Dürnberger G, Mechtler K, Armstrong S, Franklin FCH. Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:17-33. [PMID: 29078019 PMCID: PMC5767750 DOI: 10.1111/tpj.13752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
During meiosis, the formation of crossovers (COs) generates genetic variation and provides physical links that are essential for accurate chromosome segregation. COs occur in the context of a proteinaceous chromosome axis. The transcriptomes and proteomes of anthers and meiocytes comprise several thousand genes and proteins, but because of the level of complexity relatively few have been functionally characterized. Our understanding of the physical and functional interactions between meiotic proteins is also limited. Here we use affinity proteomics to analyse the proteins that are associated with the meiotic chromosome axis protein, ASY1, in Brassica oleracea anthers and meiocytes. We show that during prophase I ASY1 and its interacting partner, ASY3, are extensively phosphorylated, and we precisely assign phosphorylation sites. We identify 589 proteins that co-immunoprecipitate with ASY1. These correspond to 492 Arabidopsis orthologues, over 90% of which form a coherent protein-protein interaction (PPI) network containing known and candidate meiotic proteins, including proteins more usually associated with other cellular processes such as DNA replication and proteolysis. Mutant analysis confirms that affinity proteomics is a viable strategy for revealing previously unknown meiotic proteins, and we show how the PPI network can be used to prioritise candidates for analysis. Finally, we identify another axis-associated protein with a role in meiotic recombination. Data are available via ProteomeXchange with identifier PXD006042.
Collapse
Affiliation(s)
- Kim Osman
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jianhua Yang
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Faculty of Engineering and ComputingCoventry UniversityCoventryCV1 5FBUK
| | | | - Christophe Lambing
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Stefan Heckmann
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben, Corrensstrasse 3D‐06466Stadt SeelandGermany
| | - Elaine Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Maria Cuacos
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben, Corrensstrasse 3D‐06466Stadt SeelandGermany
| | | | - Gerhard Dürnberger
- IMP‐IMBA1030ViennaAustria
- Gregor Mendel Institute of Molecular Plant BiologyDr. Bohr‐Gasse 31030ViennaAustria
| | | | - Susan Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|