1
|
Yusuf A, Wakaya K, Sakamoto T, Uemura T, Okamura K, Ramadan A, Nozawa A, Suzuki T, Inui Y, Matsunaga S, Sawasaki T, Arimura G. Histone Modification-Dependent Transcriptional Regulation of Defence Genes in Early Response of Arabidopsis to Spodoptera litura Attack. PLANT, CELL & ENVIRONMENT 2025; 48:3257-3268. [PMID: 39722556 PMCID: PMC11963488 DOI: 10.1111/pce.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Histone modification is a cellular process for transcriptional regulation. In herbivore-damaged plants, activation of genes involved in defence responses is required for antiherbivore properties, but little is known about how the chromatin remodelling system is involved. In Arabidopsis (Arabidopsis thaliana) plants responding to Spodoptera litura larvae, HAC1 and HDA6, a histone acetyltransferase and a histone deacetylase, respectively, were found here to be involved in histone H3 (Lys9; H3K9) acetylation/deacetylation at the promoter region of the plant defensin gene PDF1.2 and the gene body of ethylene response factor 13 (ERF13) as early as 2 h after the onset of herbivore attack. The H3K9 acetylation was responsible for the robust upregulation of PDF1.2 later, at 24 h, and ERF13 even earlier, at 1 h. TOPLESS (TPL) and TOPLESS-related (TPR) corepressors interacted with HDA6 to deacetylate H3K9 at PDF1.2 and ERF13, while negatively regulating the expression of PDF1.2 but not ERF13. Furthermore, TPL also interacted with ERF13, resulting in ERF13-mediated regulation of PDF1.2. Taken together, these data suggest a model of promoter-restricted, TPL/TPR-directed histone deacetylation and transcription factor repression in healthy Arabidopsis plants for the feedback regulation of the antiherbivore response.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
- Department of BotanyFaculty of Science, Ain Shams UniversityCairoEgypt
| | - Kota Wakaya
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Takuya Sakamoto
- Department of ScienceFaculty of Science, Kanagawa UniversityYokohamaJapan
| | - Takuya Uemura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Koudai Okamura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Abdelaziz Ramadan
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Akira Nozawa
- Proteo‐Science CenterEhime UniversityMatsuyamaJapan
| | - Takamasa Suzuki
- College of Bioscience and BiotechnologyChubu UniversityKasugaiJapan
| | - Yayoi Inui
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Sachihiro Matsunaga
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | | | - Gen‐Ichiro Arimura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| |
Collapse
|
2
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025. [PMID: 40312022 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
3
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2025; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
4
|
Phillips M, Cook ED, Marunde MR, Tonelli M, Khan L, Henrickson A, Lignos JM, Stein JL, Stein GS, Frietze S, Demeler B, Glass KC. The CECR2 bromodomain displays distinct binding modes to select for acetylated histone proteins versus non-histone ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627393. [PMID: 39713312 PMCID: PMC11661176 DOI: 10.1101/2024.12.09.627393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay. The CECR2-BRD selectively binds acetylated histone H3 and H4 ligands, exhibiting a preference for multi-acetylated over mono-acetylated targets. The highest affinity was observed for tetra-acetylated histone H4. Neighboring post-translational modifications, including methylation and phosphorylation, modulate acetyllysine recognition, with significant effects observed for histone H3 ligands. Additionally, this study explored the interaction of the CECR2-BRD with the acetylated RelA subunit of NF-κB, a pivotal transcription factor in inflammatory signaling. Dysregulated NF-κB signaling is implicated in numerous pathologies, including cancer progression, with acetylation of RelA at lysine 310 (K310ac) being critical for its transcriptional activity. Recent evidence linking the CECR2-BRD to RelA suggests it plays a role in inflammatory and metastatic pathways, underscoring the need to understand the molecular basis of this interaction. We found the CECR2-BRD binds to acetylated RelA with micromolar affinity, and uses a distinctive binding mode to recognize this non-histone ligand. These results provide new insight on the role of CECR2 in regulating NF-κB-mediated inflammatory pathways. Functional mutagenesis of critical residues, such as Asn514 and Asp464, highlight their roles in ligand specificity and binding dynamics. Notably, the CECR2-BRD remained monomeric in solution and exhibited differential conformational responses upon ligand binding, suggesting adaptive recognition mechanisms. Furthermore, the CECR2-BRD exclusively interacts with nucleosome substrates containing multi-acetylated histones, emphasizing its role in transcriptional activation within euchromatic regions. These findings position the CECR2-BRD as a key chromatin reader and a promising therapeutic target for modulating transcriptional and inflammatory processes, particularly through the development of selective bromodomain inhibitors.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Elizabeth D. Cook
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | | | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laiba Khan
- EpiCypher Inc., Durham, North Carolina 27709, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - James M. Lignos
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karen C. Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Lorenz V, Doná F, Cadaviz DB, Milesi MM, Varayoud J. Glyphosate and a glyphosate-based herbicide dysregulate the epigenetic landscape of Homeobox A10 ( Hoxa10) gene during the endometrial receptivity in Wistar rats. FRONTIERS IN TOXICOLOGY 2024; 6:1438826. [PMID: 39345349 PMCID: PMC11427440 DOI: 10.3389/ftox.2024.1438826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
We observed that gestational plus lactational exposure to glyphosate (Gly), as active ingredient, or a glyphosate-based herbicide (GBH) lead to preimplantation losses in F1 female Wistar rats. Here, we investigated whether GBH and/or Gly exposure could impair Hoxa10 gene transcription by inducing epigenetic changes during the receptive stage in rats, as a possible herbicide mechanism implicated in implantation failures. F0 dams were treated with Gly or a GBH through a food dose of 2 mg Gly/kg bw/day from gestational day (GD) 9 up to lactational day 21. F1 female rats were bred, and uterine tissues were analyzed on GD5 (preimplantation period). Transcripts levels of Hoxa10, DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b), histone deacetylases (Hdac-1 and Hdac-3) and histone methyltransferase (EZH2) were assessed by quantitative polymerase chain reaction (qPCR). Four CpG islands containing sites targeted by BstUI methylation-sensitive restriction enzyme and predicted transcription factors (TFs) were identified in Hoxa10 gene. qPCR-based methods were used to evaluate DNA methylation and histone post-translational modifications (hPTMs) in four regulatory regions (RRs) along the gene by performing methylation-sensitive restriction enzymes and chromatin immunoprecipitation assays, respectively. GBH and Gly downregulated Hoxa10 mRNA. GBH and Gly increased DNA methylation levels and Gly also induced higher levels than GBH in all the RRs analyzed. Both GBH and Gly enriched histone H3 and H4 acetylation in most of the RRs. While GBH caused higher H3 acetylation, Gly caused higher H4 acetylation in all RRs. Finally, GBH and Gly enhanced histone H3 lysine 27 trimethylation (H3K27me3) marker at 3 out of 4 RRs studied which was correlated with increased EZH2 levels. In conclusion, exposure to GBH and Gly during both gestational plus lactational phases induces epigenetic modifications in regulatory regions of uterine Hoxa10 gene. We show for the first time that Gly and a GBH cause comparable gene expression and epigenetic changes. Our results might contribute to delineate the mechanisms involved in the implantation failures previously reported. Finally, we propose that epigenetic information might be a valuable tool for risk assessment in the near future, although more research is needed to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Dalma B Cadaviz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
6
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
7
|
Kim SH, Haynes KA. Reader-Effectors as Actuators of Epigenome Editing. Methods Mol Biol 2024; 2842:103-127. [PMID: 39012592 DOI: 10.1007/978-1-0716-4051-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.
Collapse
Affiliation(s)
- Seong Hu Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Taghizadeh N, Mohammadi S, yousefi Z, Golpour P, Taheri A, Maleki MH, Nourbakhsh M, Nourbakhsh M, Azar MR. Assessment of global histone acetylation in pediatric and adolescent obesity: Correlations with SIRT1 expression and metabolic-inflammatory profiles. PLoS One 2023; 18:e0293217. [PMID: 37862340 PMCID: PMC10588878 DOI: 10.1371/journal.pone.0293217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.
Collapse
Affiliation(s)
- Nima Taghizadeh
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pegah Golpour
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alemeh Taheri
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Children Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Hazrat Aliasghar Children Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Hirashima S, Park S, Sugiyama H. Evaluation by Experimentation and Simulation of a FRET Pair Comprising Fluorescent Nucleobase Analogs in Nucleosomes. Chemistry 2023; 29:e202203961. [PMID: 36700521 PMCID: PMC10332638 DOI: 10.1002/chem.202203961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Förster resonance energy transfer (FRET) is an attractive tool for understanding biomolecular dynamics. FRET-based analysis of nucleosomes has the potential to fill the knowledge gaps between static structures and dynamic cellular behaviors. Compared with typical FRET pairs using bulky fluorophores introduced by flexible linkers, fluorescent nucleoside-based FRET pair has great potential since it can be fitted within the helical structures of nucleic acids. Herein we report on the construction of nucleosomes containing a nucleobase FRET pair and the investigation of experimental and theoretical FRET efficiencies through steady-state fluorescence spectroscopy and calculation based on molecular dynamics simulations, respectively. Distinguishable experimental FRET efficiencies were observed depending on the positions of FRET pairs in nucleosomal DNA. The tendency could be supported by theoretical study. This work suggests the possibility of our approach to analyze structural changes of nucleosomes by epigenetic modifications or internucleosomal interactions.
Collapse
Affiliation(s)
- Shingo Hirashima
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University Yamadaoka, Suita, 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
12
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
14
|
Konrad SF, Vanderlinden W, Lipfert J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. Biophys J 2022; 121:841-851. [PMID: 35065917 PMCID: PMC8943691 DOI: 10.1016/j.bpj.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F. Konrad
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany.
| |
Collapse
|
15
|
Jing Y, Liu Z, Li XD. Preparation of Site-Specific Succinylated Histone Mimics to Investigate Its Impact on Nucleosome Dynamics. Methods Mol Biol 2022; 2530:141-157. [PMID: 35761047 DOI: 10.1007/978-1-0716-2489-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranslational modifications (PTMs) of histones have been demonstrated to be the key regulating mechanism of nucleosome dynamics and chromatin structure. Lysine succinylation is a recently discovered PTM that plays critical roles in metabolism, epigenetic signaling, and is correlated with several diseases. One significant challenge in studying the effects of this modification on nucleosome dynamics is to obtain site-specifically modified histones. Here, we report the rapid site-specific incorporation of a succinylation mimic into histones, which facilitates the characterization of its impact on nucleosome dynamics with a Förster resonance energy transfer (FRET) approach.
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
16
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
17
|
Jing Y, Liu Z, Li XD. Protocol for the preparation of site-specific succinylated histone mimics to investigate the impact on nucleosome dynamics. STAR Protoc 2021; 2:100604. [PMID: 34189470 PMCID: PMC8215284 DOI: 10.1016/j.xpro.2021.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lysine succinylation is a recently discovered posttranslational modification that plays critical roles in metabolism, epigenetic signaling, and human diseases. To investigate the effects of site-specific histone lysine succinylation on nucleosome dynamics requires the generation of homogeneously modified histones, which is a significant challenge. Here, we report a protocol for the rapid site-specific installation of a succinyl lysine analog onto histone. We then use a Förster resonance energy transfer approach to characterize the impact on nucleosome dynamics. For complete details on the use and execution of this protocol, please refer to Jing et al. (2018). Strategy for site-specific installation of a succinyl-lysine analog into histones Strategy is generally applicable to all histones and other acid-resistant proteins A FRET-based biophysical assay reveals that H2BK34succ destabilizes nucleosomes
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
18
|
Jing Y, Tian G, Qin X, Liu Z, Li XD. Lysine succinylation on non-histone chromosomal protein HMG-17 (HMGN2) regulates nucleosomal DNA accessibility by disrupting the HMGN2-nucleosome association. RSC Chem Biol 2021; 2:1257-1262. [PMID: 34458839 PMCID: PMC8341127 DOI: 10.1039/d1cb00070e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/01/2023] Open
Abstract
Lysine succinylation (Ksucc) is a novel posttranslational modification that frequently occurs on chromatin proteins including histones and non-histone proteins. Histone Ksucc affects nucleosome dynamics by increasing the DNA unwrapping rate and accessibility. However, very little is known about the regulation and functions of Ksucc located on non-histone chromosomal proteins. Here, we site-specifically installed a succinyl lysine analogue (Kcsucc) onto the non-histone chromosomal protein HMG-17 (HMGN2) to mimic the natural succinylated protein. We found that the incorporation of Kcsucc into HMGN2 at the K30 site (HMGN2Kc30succ), which is located within the nucleosome-binding domain (NBD), leads to significantly decreased HMGN2 binding to the mononucleosome. HMGN2Kc30succ also increased the nucleosomal DNA accessibility by promoting nucleosomal DNA unwrapping in the entry/exit region. This study reveals a novel mechanism of non-histone protein succinylation on altering chromatin recruitment, which can further affect nucleosome and chromatin dynamics. Succinylated HMGN2, prepared by a ‘thiol–ene reaction’, disrupted the association of HMGN2 with the nucleosome and increased nucleosomal DNA accessibility.![]()
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiaoyu Qin
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
19
|
DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study. Biophys J 2021; 120:3747-3763. [PMID: 34293303 DOI: 10.1016/j.bpj.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.
Collapse
|
20
|
Pojani E, Barlocco D. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy. Curr Med Chem 2021; 28:1290-1303. [PMID: 32013816 DOI: 10.2174/0929867327666200203113926] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human HDACs represent a group of enzymes able to modify histone and non-histone proteins, which interact with DNA to generate chromatin. The correlation between irregular covalent modification of histones and tumor development has been proved over the last decades. Therefore, HDAC inhibitors are considered as potential drugs in cancer treatment. Romidepsin (FK228), Belinostat (PXD-101), Vorinostat (SAHA), Panobinostat (LBH-589) and Chidamide were approved by FDA as novel antitumor agents. OBJECTIVE The aim of this review article is to highlight the structure-activity relationships of several FK228 analogues as HDAC inhibitors. In addition, the synergistic effects of a dual HDAC/PI3K inhibition by some derivatives have been investigated. MATERIALS AND METHODS PubMed, MEDLINE, CAPLUS, SciFinder Scholar database were considered by selecting articles which fulfilled the objectives of this review, dating from 2015 till present time. RESULTS HDAC inhibitors have a significant role in cancer pathogenesis and evolution. Class I HDAC isoforms are expressed in many tumor types, therefore, potent and selective Class I HDAC inhibitors are of great interest as candidate therapeutic agents with limited side effects. By structurebased optimization, several FK228 analogues [15 (FK-A5), 22, 23 and 26 (FK-A11)] were identified, provided with significant activity against Class I HDAC enzymes and dose dependent antitumor activity. Compound 26 was recognized as an interesting HDAC/PI3K dual inhibitor (IC50 against p110α of 6.7 μM while for HDAC1 inhibitory activity IC50 was 0.64 nM). CONCLUSION Romidepsin analogues HDAC inhibitors have been confirmed as useful anticancer agents. In addition, dual HDAC/PI3K inhibition showed by some of them exhibited synergistic effects in inducing apoptosis in human cancer cells. Further studies on FK228 analogues may positively contribute to the availability of potent agents in tumor treatment.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25, Milan 20133, Italy
| |
Collapse
|
21
|
Harris CM, Zamperoni KE, Sernoskie SC, Chow NSM, Massey TE. Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation. Toxicology 2021; 454:152753. [PMID: 33741493 DOI: 10.1016/j.tox.2021.152753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kristen E Zamperoni
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Samantha C Sernoskie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Natalie S M Chow
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
22
|
Caffrey PJ, Delaney S. Nucleosome Core Particles Lacking H2B or H3 Tails Are Altered Structurally and Have Differential Base Excision Repair Fingerprints. Biochemistry 2021; 60:210-218. [PMID: 33426868 DOI: 10.1021/acs.biochem.0c00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A recently discovered post-translational modification of histone proteins is the irreversible proteolytic clipping of the histone N-terminal tail domains. This modification is involved in the regulation of various biological processes, including the DNA damage response. In this work, we used chemical footprinting to characterize the structural alterations to nucleosome core particles (NCPs) that result from a lack of a histone H2B or H3 tail. We also examine the influence of these histone tails on excision of the mutagenic lesion 1,N6-ethenoadenine (εA) by the repair enzyme alkyladenine DNA glycosylase. We found that the absence of the H2B or H3 tail results in altered DNA periodicity relative to that of native NCPs. We correlated these structural alterations to εA excision by utilizing a global analysis of 21 εA sites in NCPs and unincorporated duplex DNA. In comparison to native NCPs, there is enhanced excision of εA in tailless H2B NCPs in regions that undergo DNA unwrapping. This enhanced excision is not observed for tailless H3 NCPs; rather, excision is inhibited in more static areas of the NCP not prone to unwrapping. Our results support in vivo observations of alkylation damage profiles and the potential role of tail clipping as a mechanism for overcoming physical obstructions caused by packaging in NCPs but also reveal the potential inhibition of repair by tail clipping in some locations. Taken together, these results further our understanding of how base excision repair can be facilitated or diminished by histone tail removal and contribute to our understanding of the underlying mechanism that leads to mutational hot spots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
23
|
Eukaryote-conserved histone post-translational modification landscape in Giardia duodenalis revealed by mass spectrometry. Int J Parasitol 2020; 51:225-239. [PMID: 33275945 DOI: 10.1016/j.ijpara.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.
Collapse
|
24
|
Jing Y, Ding D, Tian G, Kwan KCJ, Liu Z, Ishibashi T, Li XD. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res 2020; 48:9538-9549. [PMID: 32766790 PMCID: PMC7515725 DOI: 10.1093/nar/gkaa663] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histones represent a crucial regulatory mechanism of nucleosome and chromatin dynamics in various of DNA-based cellular processes, such as replication, transcription and DNA damage repair. Lysine succinylation (Ksucc) is a newly identified histone PTM, but its regulation and function in chromatin remain poorly understood. Here, we utilized an expressed protein ligation (EPL) strategy to synthesize histone H4 with site-specific succinylation at K77 residue (H4K77succ), an evolutionarily conserved succinylation site at the nucleosomal DNA-histone interface. We then assembled mononucleosomes with the semisynthetic H4K77succ in vitro. We demonstrated that this succinylation impacts nucleosome dynamics and promotes DNA unwrapping from the histone surface, which allows proteins such as transcription factors to rapidly access buried regions of the nucleosomal DNA. In budding yeast, a lysine-to-glutamic acid mutation, which mimics Ksucc, at the H4K77 site reduced nucleosome stability and led to defects in DNA damage repair and telomere silencing in vivo. Our findings revealed this uncharacterized histone modification has important roles in nucleosome and chromatin dynamics.
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dongbo Ding
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ka Chun Jonathan Kwan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
25
|
Alashkar Alhamwe B, Meulenbroek LAPM, Veening-Griffioen DH, Wehkamp TMD, Alhamdan F, Miethe S, Harb H, Hogenkamp A, Knippels LMJ, Pogge von Strandmann E, Renz H, Garssen J, van Esch BCAM, Garn H, Potaczek DP, Tiemessen MM. Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients 2020; 12:E3193. [PMID: 33086571 PMCID: PMC7603208 DOI: 10.3390/nu12103193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin E (IgE)-mediated allergy against cow's milk protein fractions such as whey is one of the most common food-related allergic disorders of early childhood. Histone acetylation is an important epigenetic mechanism, shown to be involved in the pathogenesis of allergies. However, its role in food allergy remains unknown. IgE-mediated cow's milk allergy was successfully induced in a mouse model, as demonstrated by acute allergic symptoms, whey-specific IgE in serum, and the activation of mast cells upon a challenge with whey protein. The elicited allergic response coincided with reduced percentages of regulatory T (Treg) and T helper 17 (Th17) cells, matching decreased levels of H3 and/or H4 histone acetylation at pivotal Treg and Th17 loci, an epigenetic status favoring lower gene expression. In addition, histone acetylation levels at the crucial T helper 1 (Th1) loci were decreased, most probably preceding the expected reduction in Th1 cells after inducing an allergic response. No changes were observed for T helper 2 cells. However, increased histone acetylation levels, promoting gene expression, were observed at the signal transducer and activator of transcription 6 (Stat6) gene, a proallergic B cell locus, which was in line with the presence of whey-specific IgE. In conclusion, the observed histone acetylation changes are pathobiologically in line with the successful induction of cow's milk allergy, to which they might have also contributed mechanistically.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35039 Marburg, Germany;
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Laura A. P. M. Meulenbroek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Désirée H. Veening-Griffioen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Tjalling M. D. Wehkamp
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Sarah Miethe
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Léon M. J. Knippels
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35039 Marburg, Germany;
| | - Harald Renz
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Betty C. A. M. van Esch
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| | - Holger Garn
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine, the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, 35039 Marburg, Germany; (B.A.A.); (F.A.); (S.M.); (H.H.); (H.R.); (H.G.); (D.P.P.)
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Philipps University Marburg, 35039 Marburg, Germany
- John Paul II Hospital, 31-202 Krakow, Poland
| | - Machteld M. Tiemessen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.A.P.M.M.); (D.H.V.-G.); (T.M.D.W.); (L.M.J.K.); (J.G.); (B.C.A.M.v.E.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
26
|
Bendandi A, Patelli AS, Diaspro A, Rocchia W. The role of histone tails in nucleosome stability: An electrostatic perspective. Comput Struct Biotechnol J 2020; 18:2799-2809. [PMID: 33133421 PMCID: PMC7575852 DOI: 10.1016/j.csbj.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
We propose a methodology for the study of protein-DNA electrostatic interactions and apply it to clarify the effect of histone tails in nucleosomes. This method can be used to correlate electrostatic interactions to structural and functional features of protein-DNA systems, and can be combined with coarse-grained representations. In particular, we focus on the electrostatic field and resulting forces acting on the DNA. We investigate the electrostatic origins of effects such as different stages in DNA unwrapping, nucleosome destabilization upon histone tail truncation, and the role of specific arginines and lysines undergoing Post-Translational Modifications. We find that the positioning of the histone tails can oppose the attractive pull of the histone core, locally deform the DNA, and tune DNA unwrapping. Small conformational variations in the often overlooked H2A C-terminal tails had significant electrostatic repercussions near the DNA entry and exit sites. The H2A N-terminal tail exerts attractive electrostatic forces towards the histone core in positions where Polymerase II halts its progress. We validate our results with comparisons to previous experimental and computational observations.
Collapse
Affiliation(s)
- Artemi Bendandi
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16149 Genoa, Italy.,CHT Erzelli, Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Alessandro S Patelli
- LCVMM, Institute of Mathematics, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Alberto Diaspro
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16149 Genoa, Italy.,CHT Erzelli, Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| |
Collapse
|
27
|
Ranganayaki S, Govindaraj P, Gayathri N, Srinivas Bharath MM. Exposure to the neurotoxin 3-nitropropionic acid in neuronal cells induces unique histone acetylation pattern: Implications for neurodegeneration. Neurochem Int 2020; 140:104846. [PMID: 32927024 DOI: 10.1016/j.neuint.2020.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction is critical for neurodegeneration in movement disorders. Neurotoxicological models recapitulating movement disorder involve mitochondrial damage including inhibition of mitochondrial complexes. Previously, we demonstrated that neurotoxic models of Parkinson's disease and Manganism showed distinct morphological, electrophysiological and molecular profile indicating disease-specific characteristics. In a recent study, we demonstrated that the transcriptomic changes triggered by the neurotoxic mitochondrial complex II inhibitor 3-nitropropionic acid (3-NPA), was significantly different from the profile induced by the neurotoxic mitochondrial complex I inhibitor 1-methyl-4- phenylpyridinium (MPP+) and mitochondrial toxin Manganese (Mn). Among the plausible pathways, we surmised that epigenetic mechanisms could contribute to 3-NPA specific transcriptomic profile. To address this, we assessed global and individual lys-specific acetylation profile of Histone H3 and H4 in the 3-NPA neuronal cell model. Our data revealed histone acetylation profile unique to the 3-NPA model that was not noted in the MPP+ and Mn models. Among the individual lys, Histone H3K56 showed robust dose and time-dependent hyperacetylation in the 3-NPA model. Chromatin Immunoprecipitation-sequencing (ChIP-seq) revealed that acetylated H3K56 was associated with 13072 chromatin sites, which showed increased occupancy in the transcription start site-promoter site. Acetylated histone H3K56 was associated with 1747 up-regulated and 263 down-regulated genes in the 3-NPA model, which included many up-regulated autophagy and mitophagy genes. Western analysis validated the involvement of PINK1-Parkin dependent mitophagy in the 3-NPA model. We propose that 3-NPA specific chromatin dynamics could contribute to the unique transcriptomic profile with implications for movement disorders.
Collapse
Affiliation(s)
- S Ranganayaki
- Department of Neurochemistry, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
28
|
Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome. Proc Natl Acad Sci U S A 2020; 117:19661-19663. [PMID: 32747537 PMCID: PMC7443954 DOI: 10.1073/pnas.2010506117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A-H2B heterodimers and one histone (H3-H4)2 tetramer, wrapped around by ∼146 bp of DNA. The N-terminal flexible histone tails stick out from the histone core and have extensive posttranslational modifications, causing epigenetic changes of chromatin. Although crystal and cryogenic electron microscopy structures of nucleosomes are available, the flexible tail structures remain elusive. Using NMR, we have examined the dynamics of histone H3 tails in nucleosomes containing unmodified and tetra-acetylated H4 tails. In unmodified nucleosome, the H3 tail adopts a dynamic equilibrium structure between DNA-contact and reduced-contact states. In acetylated H4 nucleosome, however, the H3 tail equilibrium shifts to a mainly DNA-contact state with a minor reduced-contact state. The acetylated H4 tail is dynamically released from its own DNA-contact state to a reduced-contact state, while the H3 tail DNA-contact state becomes major. Notably, H3 K14 in the acetylated H4 nucleosome is much more accessible to acetyltransferase Gcn5 relative to unmodified nucleosome, possibly due to the formation of a favorable H3 tail conformation for Gcn5. In summary, each histone tail adopts a characteristic dynamic state but regulates one other, probably creating a histone tail network even on a nucleosome.
Collapse
|
29
|
Wong CYY, Ling YH, Mak JKH, Zhu J, Yuen KWY. "Lessons from the extremes: Epigenetic and genetic regulation in point monocentromere and holocentromere establishment on artificial chromosomes". Exp Cell Res 2020; 390:111974. [PMID: 32222413 DOI: 10.1016/j.yexcr.2020.111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences.
Collapse
Affiliation(s)
- Charmaine Yan Yu Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jason Ka Ho Mak
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
30
|
Caffrey PJ, Kher R, Bian K, Li D, Delaney S. Comparison of the Base Excision and Direct Reversal Repair Pathways for Correcting 1, N6-Ethenoadenine in Strongly Positioned Nucleosome Core Particles. Chem Res Toxicol 2020; 33:1888-1896. [PMID: 32293880 PMCID: PMC7374743 DOI: 10.1021/acs.chemrestox.0c00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1,N6-ethenoadenine (εA) is a
mutagenic lesion and biomarker observed in numerous cancerous tissues.
Two pathways are responsible for its repair: base excision repair
(BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase
(AAG) is the primary enzyme that excises εA in BER, generating
stable intermediates that are processed by downstream enzymes. For
DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs
εA by direct conversion of εA to A. While the molecular
mechanism of each enzyme is well understood on unpackaged duplex DNA,
less is known about their actions on packaged DNA. The nucleosome
core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic
organisms and is composed of 145–147 base pairs wrapped around
a core of eight histone proteins. In this work, we investigated the
activity of AAG and ALKBH2 on εA lesions globally distributed
at positions throughout a strongly positioned NCP. Overall, we examined
the repair of εA at 23 unique locations in packaged DNA. We
observed a strong correlation between rotational positioning of εA
and AAG activity but not ALKBH2 activity. ALKBH2 was more effective
than AAG at repairing occluded εA lesions, but only AAG was
capable of full repair of any εA in the NCP. However, notable
exceptions to these trends were observed, highlighting the complexity
of the NCP as a substrate for DNA repair. Modeling of binding of the
repair enzymes to NCPs revealed that some of these observations can
be explained by steric interference caused by DNA packaging. Specifically,
interactions between ALKBH2 and the histone proteins obstruct binding
to DNA, which leads to diminished activity. Taken together, these
results support in vivo observations of alkylation
damage profiles and contribute to our understanding of mutational
hotspots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Raadhika Kher
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
31
|
Zakzuk J, Acevedo N, Harb H, Eick L, Renz H, Potaczek DP, Caraballo L. IgE Levels to Ascaris and House Dust Mite Allergens Are Associated With Increased Histone Acetylation at Key Type-2 Immune Genes. Front Immunol 2020; 11:756. [PMID: 32425942 PMCID: PMC7204827 DOI: 10.3389/fimmu.2020.00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Epigenetic changes in response to allergen exposure are still not well understood. The aim of this study was to evaluate histone acetylation levels in peripheral blood leukocytes from humans naturally infected by intestinal parasites and perennially exposed to house dust mites (HDM). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from 20 infected and 21 non-infected individuals living in a rural/village in Colombia. Histone 3 acetylation (H3Ac) and histone 4 acetylation (H4Ac) levels were measured in six immune genes previously associated with helminth immunity by chromatin immunoprecipitation (ChIP)-quantitative PCR. Then we analyzed the association between histone acetylation levels with total parasite egg burden and IgE levels. Results We found an inverse correlation between H4Ac levels in the IL13 gene and egg worm burden that remained significant after adjustment by age [−0.20 (−0.32 to −0.09), p < 0.0001]. Moreover, we found significant associations between H4Ac levels in IL4 [0.32 (0.05–0.60), p = 0.02] and CHI3L1 [0.29 (0.08–0.51), p = 0.008] with the IgE levels to Ascaris lumbricoides. In addition, the levels of specific IgE antibodies to HDM were associated with H4Ac levels in the gene TNFSF13B encoding the B cell activating factor (BAFF) [0.51 (0.26–0.76), p < 0.001]. All values are presented as beta (95% CI). Conclusion Histone acetylation levels at key type-2 immune genes in humans were modified by nematode infection and HDM allergens and are associated with the intensity of the IgE response.
Collapse
Affiliation(s)
- Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Hani Harb
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Lisa Eick
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,John Paul II Hospital, Krakow, Poland
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
32
|
Lehmann K, Felekyan S, Kühnemuth R, Dimura M, Tóth K, Seidel CAM, Langowski J. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Nucleic Acids Res 2020; 48:1551-1571. [PMID: 31956896 PMCID: PMC7026643 DOI: 10.1093/nar/gkz1186] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Chromatin compaction and gene accessibility are orchestrated by assembly and disassembly of nucleosomes. Although the disassembly process was widely studied, little is known about the structure and dynamics of the disordered histone tails, which play a pivotal role for nucleosome integrity. This is a gap filling experimental FRET study from the perspective of the histone H3 N-terminal tail (H3NtT) of reconstituted mononucleosomes. By systematic variation of the labeling positions we monitored the motions of the H3NtT relative to the dyad axis and linker DNA. Single-molecule FRET unveiled that H3NtTs do not diffuse freely but follow the DNA motions with multiple interaction modes with certain permitted dynamic transitions in the μs to ms time range. We also demonstrate that the H3NtT can allosterically sense charge-modifying mutations within the histone core (helix α3 of histone H2A (R81E/R88E)) resulting in increased dynamic transitions and lower rate constants. Those results complement our earlier model on the NaCl induced nucleosome disassembly as changes in H3NtT configurations coincide with two major steps: unwrapping of one linker DNA and weakening of the internal DNA - histone interactions on the other side. This emphasizes the contribution of the H3NtT to the fine-tuned equilibrium between overall nucleosome stability and DNA accessibility.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany.,Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Suren Felekyan
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Mykola Dimura
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Katalin Tóth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf D-40225, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg D-69120, Germany
| |
Collapse
|
33
|
González B, Bernardi A, Torres OV, Jayanthi S, Gomez N, Sosa MH, García‐Rill E, Urbano FJ, Cadet J, Bisagno V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict Biol 2020; 25:e12737. [PMID: 30811820 DOI: 10.1111/adb.12737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Oscar V. Torres
- Department of Behavioral SciencesSan Diego Mesa College San Diego CA USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Natalia Gomez
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Máximo H. Sosa
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Edgar García‐Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental SciencesUniversity of Arkansas for Medical Sciences Little Rock AR USA
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y NeurocienciasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Jean‐Lud Cadet
- Molecular Neuropsychiatry Research BranchNIH/NIDA Intramural Research Program Baltimore MD USA
| | - Verónica Bisagno
- Instituto de Investigaciones FarmacológicasUniversidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
34
|
Ensembles of Breathing Nucleosomes: A Computational Study. Biophys J 2019; 118:2297-2308. [PMID: 31882248 DOI: 10.1016/j.bpj.2019.11.3395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
About three-fourths of the human DNA molecules are wrapped into nucleosomes, protein spools with DNA. Nucleosomes are highly dynamic, transiently exposing their DNA through spontaneous unspooling. Recent experiments allowed to observe the DNA of an ensemble of such breathing nucleosomes through x-ray diffraction with contrast matching between the solvent and the protein core. In this study, we calculate such an ensemble through a Monte Carlo simulation of a coarse-grained nucleosome model with sequence-dependent DNA mechanics. Our analysis gives detailed insights into the sequence dependence of nucleosome breathing observed in the experiment and allows us to determine the adsorption energy of the DNA bound to the protein core as a function of the ionic strength. Moreover, we predict the breathing behavior of other potentially interesting sequences and compare the findings to earlier related experiments.
Collapse
|
35
|
Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, Xiong Y, Wong JWH, Yuen KWY, Li XD. Glutarylation of Histone H4 Lysine 91 Regulates Chromatin Dynamics. Mol Cell 2019; 76:660-675.e9. [DOI: 10.1016/j.molcel.2019.08.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
|
36
|
Winogradoff D, Aksimentiev A. Molecular Mechanism of Spontaneous Nucleosome Unraveling. J Mol Biol 2019; 431:323-335. [PMID: 30468737 PMCID: PMC6331254 DOI: 10.1016/j.jmb.2018.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022]
Abstract
Meters of DNA wrap around histone proteins to form nucleosomes and fit inside the micron-diameter nucleus. For the genetic information encoded in the DNA to become available for transcription, replication, and repair, the DNA-histone assembly must be disrupted. Experiment has indicated that the outer stretches of nucleosomal DNA "breathe" by spontaneously detaching from and reattaching to the histone core. Here, we report direct observation of spontaneous DNA breathing in atomistic molecular dynamics simulations, detailing a microscopic mechanism of the DNA breathing process. According to our simulations, the outer stretches of nucleosomal DNA detach in discrete steps involving 5 or 10 base pairs, with the detachment process being orchestrated by the motion of several conserved histone residues. The inner stretches of nucleosomal DNA are found to be more stably associated with the histone core by more abundant nonspecific DNA-protein contacts, providing a microscopic interpretation of nucleosome unraveling experiments. The CG content of nucleosomal DNA is found to anticorrelate with the extent of unwrapping, supporting the possibility that AT-rich segments may signal the start of transcription by forming less stable nucleosomes.
Collapse
Affiliation(s)
- David Winogradoff
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
37
|
González B, Torres OV, Jayanthi S, Gomez N, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:222-234. [PMID: 30056065 PMCID: PMC8424782 DOI: 10.1016/j.pnpbp.2018.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
METH use causes neuroadaptations that negatively impact the prefrontal cortex (PFC) leading to addiction and associated cognitive decline in animals and humans. In contrast, modafinil enhances cognition by increasing PFC function. Accumulated evidence indicates that psychostimulant drugs, including modafinil and METH, regulate gene expression via epigenetic modifications. In this study, we measured the effects of single-dose injections of modafinil and METH on the protein levels of acetylated histone H3 (H3ac) and H4ac, deacetylases HDAC1 and HDAC2, and of the NMDA subunit GluN1 in the medial PFC (mPFC) of mice euthanized 1 h after drug administration. To test if dopamine (DA) receptors (DRs) participate in the biochemical effects of the two drugs, we injected the D1Rs antagonist, SCH23390, or the D2Rs antagonist, raclopride, 30 min before administration of METH and modafinil. We evaluated each drug effect on glutamate synaptic transmission in D1R-expressing layer V pyramidal neurons. We also measured the enrichment of H3ac and H4ac at the promoters of several genes including DA, NE, orexin, histamine, and glutamate receptors, and their mRNA expression, since they are responsive to chronic modafinil and METH treatment. Acute modafinil and METH injections caused similar effects on total histone acetylation, increasing H3ac and decreasing H4ac, and they also increased HDAC1, HDAC2 and GluN1 protein levels in the mouse mPFC. In addition, the effects of the drugs were prevented by pre-treatment with D1Rs and D2Rs antagonists. Specifically, the changes in H4ac, HDAC2, and GluN1 were responsive to SCH23390, whereas those of H3ac and GluN1 were responsive to raclopride. Whole-cell patch clamp in transgenic BAC-Drd1a-tdTomato mice showed that METH, but not modafinil, induced paired-pulse facilitation of EPSCs, suggesting reduced presynaptic probability of glutamate release onto layer V pyramidal neurons. Analysis of histone 3/4 enrichment at specific promoters revealed: i) distinct effects of the drugs on histone 3 acetylation, with modafinil increasing H3ac at Drd1 and Adra1b promoters, but METH increasing H3ac at Adra1a; ii) distinct effects on histone 4 acetylation enrichment, with modafinil increasing H4ac at the Drd2 promoter and decreasing it at Hrh1, but METH increasing H4ac at Drd1; iii) comparable effects of both psychostimulants, increasing H3ac at Drd2, Hcrtr1, and Hrh1 promoters, decreasing H3ac at Hrh3, increasing H4ac at Hcrtr1, and decreasing H4ac at Hcrtr2, Hrh3, and Grin1 promoters. Interestingly, only METH altered mRNA levels of genes with altered histone acetylation status, inducing increased expression of Drd1a, Adra1a, Hcrtr1, and Hrh1, and decreasing Grin1. Our study suggests that although acute METH and modafinil can both increase DA neurotransmission in the mPFC, there are similar and contrasting epigenetic and transcriptional consequences that may account for their divergent clinical effects.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Oscar V Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, California, United States
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Natalia Gomez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Máximo H Sosa
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edgar García-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jean-Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
38
|
High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nat Commun 2018; 9:4628. [PMID: 30401903 PMCID: PMC6219519 DOI: 10.1038/s41467-018-06758-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/17/2018] [Indexed: 11/08/2022] Open
Abstract
Nucleosomes play a dual role in compacting the genome and regulating the access to DNA. To unravel the underlying mechanism, we study fluorescently labeled mononucleosomes by multi-parameter FRET measurements and characterize their structural and dynamic heterogeneity upon NaCl-induced destabilization. Species-selective fluorescence lifetime analysis and dynamic photon distribution analysis reveal intermediates during nucleosome opening and lead to a coherent structural and kinetic model. In dynamic octasomes and hexasomes the interface between the H2A-H2B dimers and the (H3-H4)2 tetramer opens asymmetrically by an angle of ≈20° on a 50 and 15 µs time scale, respectively. This is followed by a slower stepwise release of the dimers coupled with DNA unwrapping. A mutation (H2A-R81A) at the interface between H2A and H3 facilitates initial opening, confirming the central role of the dimer:tetramer interface for nucleosome stability. Partially opened states such as those described here might serve as convenient nucleation sites for DNA-recognizing proteins.
Collapse
|
39
|
Chirico G, Gansen A, Leuba SH, Olins AL, Olins DE, Smith JC, Tóth K. Jörg Langowski: his scientific legacy and the future it promises. BMC BIOPHYSICS 2018; 11:5. [PMID: 30026939 PMCID: PMC6048899 DOI: 10.1186/s13628-018-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022]
Abstract
Background With the passing of Jörg Langowski 6 May 2017 in a sailplane accident, the scientific community was deprived of a strident and effective voice for DNA and chromatin molecular and computational biophysics, for open access publishing and for the creation of effective scientific research networks. Methods Here, after reviewing some of Jörg's key research contributions and ideas, we offer through the personal remembrance of his closest collaborators, a deep analysis of the major results of his research and the future directions they have engendered. Conclusions The legacy of Jörg Langowski has been to propel a way of viewing biological function that considers living systems as dynamic and in three dimensions. This physical view of biology that he pioneered is now, finally, becoming established also because of his great effort.
Collapse
Affiliation(s)
- Giuseppe Chirico
- 1Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
| | - Alexander Gansen
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sanford H Leuba
- 3Departments of Cell Biology and Bioengineering, 2.26a UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Ada L Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Donald E Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Jeremy C Smith
- 5Oak Ridge National Laboratory, P.O. Box 2008 MS6309, Oak Ridge, TN 37831-6309 USA.,6Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| | - Katalin Tóth
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Ge Y, Zhu J, Wang X, Zheng N, Tu C, Qu J, Ren X. Mapping dynamic histone modification patterns during arsenic-induced malignant transformation of human bladder cells. Toxicol Appl Pharmacol 2018; 355:164-173. [PMID: 29966674 DOI: 10.1016/j.taap.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 01/17/2023]
Abstract
Arsenic is a known potent risk factor for bladder cancer. Increasing evidence suggests that epigenetic alterations, e.g., DNA methylation and histones posttranslational modifications (PTMs), contribute to arsenic carcinogenesis. Our previous studies have demonstrated that exposure of human urothelial cells (UROtsa cells) to monomethylarsonous acid (MMAIII), one of arsenic active metabolites, changes the histone acetylation marks across the genome that are correlated with MMAIII-induced UROtsa cell malignant transformation. In the current study, we employed a high-resolution and high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify and quantitatively measure various PTM patterns during the MMAIII-induced malignant transformation. Our data showed that MMAIII exposure caused a time-dependent increase in histone H3 acetylation on lysine K4, K9, K14, K18, K23, and K27, but a decrease in acetylation on lysine K5, K8, K12, and K16 of histone H4. Consistent with this observation, H3K18ac was increased while H4K8ac was decreased in the leukocytes collected from people exposed to high concentrations of arsenic compared to those exposed to low concentrations. MMAIII was also able to alter histone methylation patterns: MMAIII transformed cells experienced a loss of H3K4me1, and an increase in H3K9me1 and H3K27me1. Collectively, our data shows that arsenic exposure causes dynamic changes in histone acetylation and methylation patterns during arsenic-induced cancer development. Exploring the genomic location of the altered histone marks and the resulting aberrant expression of genes will be of importance in deciphering the mechanism of arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Yichen Ge
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA
| | - Jinqiu Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA
| | - Xue Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Nina Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
41
|
Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, Garn H, Potaczek DP. Histone modifications and their role in epigenetics of atopy and allergic diseases. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:39. [PMID: 29796022 PMCID: PMC5966915 DOI: 10.1186/s13223-018-0259-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
This review covers basic aspects of histone modification and the role of posttranslational histone modifications in the development of allergic diseases, including the immune mechanisms underlying this development. Together with DNA methylation, histone modifications (including histone acetylation, methylation, phosphorylation, ubiquitination, etc.) represent the classical epigenetic mechanisms. However, much less attention has been given to histone modifications than to DNA methylation in the context of allergy. A systematic review of the literature was undertaken to provide an unbiased and comprehensive update on the involvement of histone modifications in allergy and the mechanisms underlying this development. In addition to covering the growing interest in the contribution of histone modifications in regulating the development of allergic diseases, this review summarizes some of the evidence supporting this contribution. There are at least two levels at which the role of histone modifications is manifested. One is the regulation of cells that contribute to the allergic inflammation (T cells and macrophages) and those that participate in airway remodeling [(myo-) fibroblasts]. The other is the direct association between histone modifications and allergic phenotypes. Inhibitors of histone-modifying enzymes may potentially be used as anti-allergic drugs. Furthermore, epigenetic patterns may provide novel tools in the diagnosis of allergic disorders.
Collapse
Affiliation(s)
- Bilal Alaskhar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
| | - Razi Khalaila
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Johanna Wolf
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Verena von Bülow
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
- Present Address: Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology, Women and Children’s Hospital Campus, North Adelaide, SA Australia
- Robinson Research Institute, School of Medicine and School of Biological Science, University of Adelaide, Adelaide, SA Australia
| | - Susan L. Prescott
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA Australia
| | - Antonio Ferrante
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- Department of Immunopathology, SA Pathology, Women and Children’s Hospital Campus, North Adelaide, SA Australia
- Robinson Research Institute, School of Medicine and School of Biological Science, University of Adelaide, Adelaide, SA Australia
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- German Center for Lung Research (DZL), Gießen, Germany
| | - Daniel P. Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), New York, NJ USA
- German Center for Lung Research (DZL), Gießen, Germany
- John Paul II Hospital, Krakow, Poland
| |
Collapse
|
42
|
Cai Y, Fu I, Geacintov NE, Zhang Y, Broyde S. Synergistic effects of H3 and H4 nucleosome tails on structure and dynamics of a lesion-containing DNA: Binding of a displaced lesion partner base to the H3 tail for GG-NER recognition. DNA Repair (Amst) 2018; 65:73-78. [PMID: 29631253 PMCID: PMC5911426 DOI: 10.1016/j.dnarep.2018.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
How DNA lesions in nucleosomes are recognized for global genome nucleotide excision repair (GG-NER) remains poorly understood, and the roles that histone tails may play remains to be established. Histone H3 and H4 N-terminal tails are of particular interest as their acetylation states are important in regulating nucleosomal functions in transcription, replication and repair. In particular the H3 tail has been the focus of recent attention as a site for the interaction with XPC, the GG-NER lesion recognition factor. Here we have investigated how the structure and dynamics of the DNA lesion cis-B[a]P-dG, derived from the environmental carcinogen benzo[a]pyrene (B[a]P), is impacted by the presence of flanking H3 and H4 tails. This lesion is well-repaired by GG-NER, and adopts a base-displaced/intercalated conformation in which the lesion partner C is displaced into the major groove. We used molecular dynamics simulations to obtain structural and dynamic characterizations for this lesion positioned in nucleosomal DNA so that it is bracketed by the H3 and H4 tails. The H4 tail was studied in unacetylated and acetylated states, while the H3 tail was unacetylated, its state when it binds XPC (Kakumu, Nakanishi et al., 2017). Our results reveal that upon acetylation, the H4 tail is released from the DNA surface; the H3 tail then forms a pocket that induces flipping and capture of the displaced lesion partner base C. This reveals synergistic effects of the behavior of the two tails. We hypothesize that the dual capability of the H3 tail to sense the displaced lesion partner base and to bind XPC could foster recognition of this lesion by XPC for initiation of GG-NER in nucleosomes.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Iwen Fu
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
43
|
Bobkov GOM, Gilbert N, Heun P. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J Cell Biol 2018; 217:1957-1972. [PMID: 29626011 PMCID: PMC5987708 DOI: 10.1083/jcb.201611087] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/11/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
How transcription contributes to the loading of the centromere histone CENP-A is unclear. Bobkov et al. report that transcription-mediated chromatin remodeling enables the transition of centromeric CENP-A from chromatin association to full nucleosome incorporation. Centromeres are essential for chromosome segregation and are specified epigenetically by the presence of the histone H3 variant CENP-A. In flies and humans, replenishment of the centromeric mark is uncoupled from DNA replication and requires the removal of H3 “placeholder” nucleosomes. Although transcription at centromeres has been previously linked to the loading of new CENP-A, the underlying molecular mechanism remains poorly understood. Here, we used Drosophila melanogaster tissue culture cells to show that centromeric presence of actively transcribing RNA polymerase II temporally coincides with de novo deposition of dCENP-A. Using a newly developed dCENP-A loading system that is independent of acute transcription, we found that short inhibition of transcription impaired dCENP-A incorporation into chromatin. Interestingly, initial targeting of dCENP-A to centromeres was unaffected, revealing two stability states of newly loaded dCENP-A: a salt-sensitive association with the centromere and a salt-resistant chromatin-incorporated form. This suggests that transcription-mediated chromatin remodeling is required for the transition of dCENP-A to fully incorporated nucleosomes at the centromere.
Collapse
Affiliation(s)
- Georg O M Bobkov
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
44
|
González B, Jayanthi S, Gomez N, Torres OV, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:1-11. [PMID: 29247759 PMCID: PMC6983674 DOI: 10.1016/j.pnpbp.2017.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 11/28/2022]
Abstract
Methamphetamine (METH) and modafinil are psychostimulants with different long-term cognitive profiles: METH is addictive and leads to cognitive decline, whereas modafinil has little abuse liability and is a cognitive enhancer. Increasing evidence implicates epigenetic mechanisms of gene regulation behind the lasting changes that drugs of abuse and other psychotropic compounds induce in the brain, like the control of gene expression by histones 3 and 4 tails acetylation (H3ac and H4ac) and DNA cytosine methylation (5-mC). Mice were treated with a seven-day repeated METH, modafinil or vehicle protocol and evaluated in the novel object recognition (NOR) test or sacrificed 4days after last injection for molecular assays. We evaluated total H3ac, H4ac and 5-mC levels in the medial prefrontal cortex (mPFC), H3ac and H4ac promotor enrichment (ChIP) and mRNA expression (RT-PCR) of neurotransmitter systems involved in arousal, wakefulness and cognitive control, like dopaminergic (Drd1 and Drd2), α-adrenergic (Adra1a and Adra1b), orexinergic (Hcrtr1 and Hcrtr2), histaminergic (Hrh1 and Hrh3) and glutamatergic (AMPA Gria1 and NMDA Grin1) receptors. Repeated METH and modafinil treatment elicited different cognitive outcomes in the NOR test, where modafinil-treated mice performed as controls and METH-treated mice showed impaired recognition memory. METH-treated mice also showed i) decreased levels of total H3ac and H4ac, and increased levels of 5-mC, ii) decreased H3ac enrichment at promoters of Drd2, Hcrtr1/2, Hrh1 and Grin1, and increased H4ac enrichment at Drd1, Hrh1 and Grin1, iii) increased mRNA of Drd1a, Grin1 and Gria1. Modafinil-treated mice shared none of these effects and showed increased H3ac enrichment and mRNA expression at Adra1b. Modafinil and METH showed similar effects linked to decreased H3ac in Hrh3, increased H4ac in Hcrtr1, and decreased mRNA expression of Hcrtr2. The specific METH-induced epigenetic and transcriptional changes described here may be related to the long-term cognitive decline effects of the drug and its detrimental effects on mPFC function. The lack of similar epigenetic effects of chronic modafinil administration supports this notion.
Collapse
Affiliation(s)
- Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America
| | - Natalia Gomez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Oscar V. Torres
- Department of Behavioral Sciences, San Diego Mesa College, San Diego, California, United States of America
| | - Máximo H. Sosa
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Bernardi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Francisco J. Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edgar García-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jean-Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, Maryland, United States of America.,Corresponding authors: Veronica Bisagno, Ph.D. Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, piso 5, C1113-Buenos Aires, Argentina. Phone: (+54-11) 4961-6784, Fax: (+54-11) 4963-8593. Jean-Lud Cadet, MD
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Jing Y, Liu Z, Tian G, Bao X, Ishibashi T, Li XD. Site-Specific Installation of Succinyl Lysine Analog into Histones Reveals the Effect of H2BK34 Succinylation on Nucleosome Dynamics. Cell Chem Biol 2018; 25:166-174.e7. [DOI: 10.1016/j.chembiol.2017.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/19/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
|
46
|
Culkin J, de Bruin L, Tompitak M, Phillips R, Schiessel H. The role of DNA sequence in nucleosome breathing. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:106. [PMID: 29185124 PMCID: PMC7001874 DOI: 10.1140/epje/i2017-11596-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
Roughly 3/4 of human genomes are sequestered by nucleosomes, DNA spools with a protein core, dictating a broad range of biological processes, ranging from gene regulation, recombination, and replication, to chromosome condensation. Nucleosomes are dynamical structures and temporarily expose wrapped DNA through spontaneous unspooling from either end, a process called site exposure or nucleosome breathing. Here we ask how this process is influenced by the mechanical properties of the wrapped DNA, which is known to depend on the underlying base pair sequence. Using a coarse-grained nucleosome model we calculate the accessibility profiles for site exposure. We find that the process is very sensitive to sequence effects, so that evolution could potentially tune the accessibility of nucleosomal DNA and would only need a small number of mutations to do so.
Collapse
Affiliation(s)
- Jamie Culkin
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Lennart de Bruin
- Laboratory for Computation and Visualization in Mathematics and Mechanics, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA
| | - Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.
| |
Collapse
|
47
|
Lehmann K, Zhang R, Schwarz N, Gansen A, Mücke N, Langowski J, Toth K. Effects of charge-modifying mutations in histone H2A α3-domain on nucleosome stability assessed by single-pair FRET and MD simulations. Sci Rep 2017; 7:13303. [PMID: 29038501 PMCID: PMC5643395 DOI: 10.1038/s41598-017-13416-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleosomes are important for chromatin compaction and gene regulation; their integrity depends crucially on the structural properties of the histone tails. Recent all-atom molecular dynamics simulations revealed that removal of the N-terminal tails of histone H3, known to destabilize nucleosomes, causes a rearrangement of two arginines of histone H2A, namely R81 and R88 by altering the electrostatic environment of the H2A α3 domain. Whether this rearrangement is the cause or the effect of decreased stability, is unclear. Here, we emulate the altered electrostatic environment that was found after H3 tail clipping through charge-modifying mutations to decouple its impact on intranucleosomal interactions from that of the histone tails. Förster resonance energy transfer experiments on recombinant nucleosomes and all-atom molecular dynamics simulations reveal a compensatory role of those amino acids in nucleosome stability. The simulations indicate a weakened interface between H2A-H2B dimers and the (H3-H4)2 tetramer, as well as between dimers and DNA. These findings agree with the experimental observations of position and charge dependent decreased nucleosome stability induced by the introduced mutations. This work highlights the importance of the H2A α3 domain and suggests allosteric effects between this domain and the outer DNA gyre as well as the H3 N-terminal tail.
Collapse
Affiliation(s)
- Kathrin Lehmann
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany.
| | - Ruihan Zhang
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany.,Key laboratory of medicinal chemistry for natural resources, Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Nathalie Schwarz
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany
| | - Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany
| | - Katalin Toth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, D-69120, Germany.
| |
Collapse
|
48
|
Golla U, Swagatika S, Chauhan S, Tomar RS. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget 2017; 8:98426-98454. [PMID: 29228701 PMCID: PMC5716741 DOI: 10.18632/oncotarget.21416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019. We also demonstrated that KP1019 modulates the effects of TOR (target of rapamycin) signaling pathway and induces accumulation of neutral lipids (lipid droplets) in both yeast and HeLa cells. Interestingly, KP1019-mediated effects were found augmented with metal ions (Al3+/Ca2+/Cd2+/Cu2+/Mn2+/Na+/Zn2+), and neutralized by Fe2+, antioxidants, osmotic stabilizer, and ethanolamine. Additionally, our comprehensive screening of yeast histone H3/H4 mutant library revealed several histone residues that could significantly modulate the KP1019-induced toxicity. Altogether, our findings in both the yeast and HeLa cells provide molecular insights into mechanisms of action of KP1019 and various factors (chemical/genetic/epigenetic) that can alter the therapeutic efficiency of this clinically important anticancer drug.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| |
Collapse
|
49
|
Hetey S, Boros-Oláh B, Kuik-Rózsa T, Li Q, Karányi Z, Szabó Z, Roszik J, Szalóki N, Vámosi G, Tóth K, Székvölgyi L. Biophysical characterization of histone H3.3 K27M point mutation. Biochem Biophys Res Commun 2017. [PMID: 28647357 DOI: 10.1016/j.bbrc.2017.06.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysine 27 to methionine (K27 M) mutation of the histone variant H3.3 drives the formation of an aggressive glioblastoma multiforme tumor in infants. Here we analyzed how the methionine substitution alters the stability of H3.3 nucleosomes in vitro and modifies its kinetic properties in live cells. We also determined whether the presence of mutant nucleosomes perturbed the mobility of the PRC2 subunit Ezh2 (enhancer-of-zeste homolog 2). We found that K27 M nucleosomes maintained the wild-type molecular architecture both at the level of bulk histones and single nucleosomes and followed similar diffusion kinetics to wild-type histones in live cells. Nevertheless, we observed a remarkable differential recovery of Ezh2 in response to transcriptional stress that was accompanied by a faster diffusion rate of the mobile fraction of Ezh2 and a significantly increased immobile fraction, suggesting tighter chromatin binding of Ezh2 upon transcription inhibition. The differential recovery of Ezh2 was dependent on transcription, however, it was independent from K27 M mutation status. These biophysical characteristics shed more light on the mechanism of histone H3.3 K27M in glioma genesis in relation to the kinetic properties of Ezh2.
Collapse
Affiliation(s)
- Szabolcs Hetey
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Beáta Boros-Oláh
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Tímea Kuik-Rózsa
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Qiuzhen Li
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Zsolt Karányi
- Department of Internal Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Zoltán Szabó
- Department of Internal Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Jason Roszik
- Departments of Melanoma Medical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Nikoletta Szalóki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen 4032, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Katalin Tóth
- DKFZ, Biophysics of Macromolecules, D-69120 Heidelberg, Germany
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
50
|
Zhu J, Wang J, Chen X, Tsompana M, Gaile D, Buck M, Ren X. A time-series analysis of altered histone H3 acetylation and gene expression during the course of MMAIII-induced malignant transformation of urinary bladder cells. Carcinogenesis 2017; 38:378-390. [PMID: 28182198 DOI: 10.1093/carcin/bgx011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have shown that chronic exposure to low doses of monomethylarsonous acid (MMAIII) causes global histone acetylation dysregulation in urothelial cells (UROtsa cells) during the course of malignant transformation. To reveal the relationship between altered histone acetylation patterns and aberrant gene expression, more specifically, the carcinogenic relevance of these alterations, we performed a time-course analysis of the binding patterns of histone 3 lysine 18 acetylation (H3K18ac) across the genome and generated global gene-expression profiles from this UROtsa cell malignant transformation model. We showed that H3K18ac, one of the most significantly upregulated histone acetylation sites following MMAIII exposure, was enriched at gene promoter-specific regions across the genome and that MMAIII-induced upregulation of H3K18ac led to an altered binding pattern in a large number of genes that was most significant during the critical window for MMAIII-induced UROtsa cells' malignant transformation. Some genes identified as having a differential binding pattern with H3K18ac, acted as upstream regulators of critical gene networks with known functions in tumor development and progression. The altered H3K18ac binding patterns not only led to changes in expression of these directly affected upstream regulators but also resulted in gene-expression changes in their regulated networks. Collectively, our data suggest that MMAIII-induced alteration of histone acetylation patterns in UROtsa cells led to a time- and malignant stage-dependent aberrant gene-expression pattern, and that some gene regulatory networks were altered in accordance with their roles in carcinogenesis, probably contributing to MMAIII-induced urothelial cell malignant transformation and carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Epidemiology and Environmental Health
| | | | - Xushen Chen
- Department of Epidemiology and Environmental Health
| | | | | | | | - Xuefeng Ren
- Department of Epidemiology and Environmental Health.,Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY, USA
| |
Collapse
|