1
|
Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z, Yang J, Zheng L. Toxicity of rare earth elements europium and samarium on zebrafish development and locomotor performance. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137213. [PMID: 39837035 DOI: 10.1016/j.jhazmat.2025.137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Rare earth elements are integral to modern technology, but their increasing environmental distribution due to anthropogenic activities poses potential health risks to humans. This study utilized zebrafish as a model to assess developmental and locomotor performance effects of europium and samarium. Exposure to Eu or Sm induced a reduction in heart rate, growth inhibition, and morphological deformities. RNA-Seq revealed gene expression alterations linked to critical biological processes and functions following Eu or Sm exposure. Impaired organogenesis in liver and exocrine pancreas, evident through fluorescence imaging, was confirmed transcriptionally. Exposure to Eu or Sm significantly impaired the burst and spontaneous swimming behaviors of zebrafish larvae, characterized by pronounced reductions in movement distance, frequency, and velocity. These observations indicate severe locomotor dysfunction in zebrafish exposed to Eu and Sm. The comprehensive downregulation of the oxidative phosphorylation pathway is likely a primary factor contributing to these motor impairments. Apoptosis induced by Eu and Sm, confirmed through acridine orange staining, was accompanied by the upregulation of the intrinsic apoptosis pathway. Our findings contribute critical insights into the health risks of rare earth elements, informing risk assessment and management strategies.
Collapse
Affiliation(s)
- Boyu Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Luning Sun
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Qing Zhang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mei Lin
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhilin Peng
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jue Yang
- School of public health, Brown University, Providence, RI, USA.
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China.
| |
Collapse
|
2
|
Wang YR, Chang SM, Lin JJ, Chen HC, Lee LT, Tsai DY, Lee SD, Lan CY, Chang CR, Chen CF, Ng CS. A comprehensive study of Z-DNA density and its evolutionary implications in birds. BMC Genomics 2024; 25:1123. [PMID: 39573987 PMCID: PMC11580473 DOI: 10.1186/s12864-024-11039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regulation. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, potentially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation. RESULTS In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all avian species compared to other genomic regions. A negative correlation was observed between Z-DNA density and developmental time in birds, suggesting that species with shorter developmental periods tend to have higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of development in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, and genome size, highlighting the complex interactions between genome architecture and phenotypic characteristics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid binding, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity. CONCLUSIONS This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regulation, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these associations and explore the molecular mechanisms by which Z-DNA influences avian biology.
Collapse
Affiliation(s)
- Yu-Ren Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shao-Ming Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Hsiao-Chian Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Marine Research Station, Academia Sinica, Yilan, 262204, Taiwan
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Lo-Tung Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dien-Yu Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Da Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Feng Chen
- Deparment of Animal Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan.
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
3
|
Bierhoff H, Barber AE, Blango MG. RNA:DNA triplexes: a mechanism for epigenetic communication between hosts and microbes? mBio 2024; 15:e0198224. [PMID: 39297713 PMCID: PMC11481859 DOI: 10.1128/mbio.01982-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Molecular communication between host and microbe is mediated by the transfer of many different classes of macromolecules. Recently, the trafficking of RNA molecules between organisms has gained prominence as an efficient way to manipulate gene expression via RNA interference (RNAi). Here, we posit a new epigenetic control mechanism based on triple helix (triplex) structures comprising nucleic acids from both host and microbe. Indeed, RNA:DNA triplexes are known to regulate gene expression in humans, but it is unknown whether interkingdom triplexes are formed either to manipulate host processes during pathogenesis or as a host defense response. We hypothesize that a fraction of the extracellular RNAs commonly released by microbes (e.g., bacteria, fungi, and protists) and their hosts form triplexes with the genome of the other species, thereby impacting chromatin conformation and gene expression. We invite the field to consider interkingdom triplexes as unexplored weaponry in the arms race between host and microbe.
Collapse
Affiliation(s)
- Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Amelia E. Barber
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Matthew G. Blango
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute ((Leibniz-HKI), Jena, Germany
| |
Collapse
|
4
|
Jena NR, Shukla PK. Structure and stability of different triplets involving artificial nucleobases: clues for the formation of semisynthetic triple helical DNA. Sci Rep 2023; 13:19246. [PMID: 37935822 PMCID: PMC10630353 DOI: 10.1038/s41598-023-46572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
A triple helical DNA can control gene expression, help in homologous recombination, induce mutations to facilitate DNA repair mechanisms, suppress oncogene formations, etc. However, the structure and function of semisynthetic triple helical DNA are not known. To understand this, various triplets formed between eight artificial nucleobases (P, Z, J, V, B, S, X, and K) and four natural DNA bases (G, C, A, and T) are studied herein by employing a reliable density functional theoretic (DFT) method. Initially, the triple helix-forming artificial nucleobases interacted with the duplex DNA containing GC and AT base pairs, and subsequently, triple helix-forming natural bases (G and C) interacted with artificial duplex DNA containing PZ, JV, BS, and XK base pairs. Among the different triplets formed in the first category, the C-JV triplet is found to be the most stable with a binding energy of about - 31 kcal/mol. Similarly, among the second category of triplets, the Z-GC and V-GC triplets are the most stable. Interestingly, Z-GC and V-GC are found to be isoenergetic with a binding energy of about - 30 kcal/mol. The C-JV, and Z-GC or V-GC triplets are about 12-14 kcal/mol more stable than the JV and GC base pairs respectively. Microsolvation of these triplets in 5 explicit water molecules further enhanced their stability by 16-21 kcal/mol. These results along with the consecutive stacking of the C-JV triplet (C-JV/C-JV) data indicate that the synthetic nucleobases can form stable semisynthetic triple helical DNA. However, consideration of a full-length DNA containing one or more semisynthetic bases or base pairs is necessary to understand the formation of semisynthetic DNA in living cells.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Dumna Airport Road, Khamaria, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silchar, Assam, 788 011, India
| |
Collapse
|
5
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Kohestani H, Wereszczynski J. The effects of RNA.DNA-DNA triple helices on nucleosome structures and dynamics. Biophys J 2023; 122:1229-1239. [PMID: 36798026 PMCID: PMC10111275 DOI: 10.1016/j.bpj.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Noncoding RNAs (ncRNAs) are an emerging epigenetic factor and have been recognized as playing a key role in many gene expression pathways. Structurally, binding of ncRNAs to isolated DNA is strongly dependent on sequence complementary and results in the formation of an RNA.DNA-DNA (RDD) triple helix. However, in vivo DNA is not isolated but is rather packed in chromatin fibers, the fundamental unit of which is the nucleosome. Biochemical experiments have shown that ncRNA binding to nucleosomal DNA is elevated at DNA entry and exit sites and is dependent on the presence of the H3 N-terminal tails. However, the structural and dynamical bases for these mechanisms remain unknown. Here, we have examined the mechanisms and effects of RDD formation in the context of the nucleosome using a series of all-atom molecular dynamics simulations. Results highlight the importance of DNA sequence on complex stability, elucidate the effects of the H3 tails on RDD structures, show how RDD formation impacts the structure and dynamics of the H3 tails, and show how RNA alters the local and global DNA double-helical structure. Together, our results suggest ncRNAs can modify nucleosome, and potentially higher-order chromatin, structures and dynamics as a means of exerting epigenetic control.
Collapse
Affiliation(s)
- Havva Kohestani
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Departments of Physics & Biology, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
8
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
9
|
Recognition of ATT Triplex and DNA:RNA Hybrid Structures by Benzothiazole Ligands. Biomolecules 2022; 12:biom12030374. [PMID: 35327566 PMCID: PMC8945811 DOI: 10.3390/biom12030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Interactions of an array of nucleic acid structures with a small series of benzothiazole ligands (bis-benzothiazolyl-pyridines—group 1, 2-thienyl/2-benzothienyl-substituted 6-(2-imidazolinyl)benzothiazoles—group 2, and three 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazoles—group 3) were screened by competition dialysis. Due to the involvement of DNA:RNA hybrids and triplex helices in many essential functions in cells, this study’s main aim is to detect benzothiazole-based moieties with selective binding or spectroscopic response to these nucleic structures compared to regular (non-hybrid) DNA and RNA duplexes and single-stranded forms. Complexes of nucleic acids and benzothiazoles, selected by this method, were characterized by UV/Vis, fluorescence and circular dichroism (CD) spectroscopy, isothermal titration calorimetry, and molecular modeling. Two compounds (1 and 6) from groups 1 and 2 demonstrated the highest affinities against 13 nucleic acid structures, while another compound (5) from group 2, despite lower affinities, yielded higher selectivity among studied compounds. Compound 1 significantly inhibited RNase H. Compound 6 could differentiate between B- (binding of 6 dimers inside minor groove) and A-type (intercalation) helices by an induced CD signal, while both 5 and 6 selectively stabilized ATT triplex in regard to AT duplex. Compound 3 induced strong condensation-like changes in CD spectra of AT-rich DNA sequences.
Collapse
|
10
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
11
|
Maldonado R, Schwartz U, Silberhorn E, Längst G. Nucleosomes Stabilize ssRNA-dsDNA Triple Helices in Human Cells. Mol Cell 2019; 73:1243-1254.e6. [PMID: 30770238 DOI: 10.1016/j.molcel.2019.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Chromatin-associated non-coding RNAs modulate the epigenetic landscape and its associated gene expression program. The formation of triple helices is one mechanism of sequence-specific targeting of RNA to chromatin. With this study, we show an important role of the nucleosome and its relative positioning to the triplex targeting site (TTS) in stabilizing RNA-DNA triplexes in vitro and in vivo. Triplex stabilization depends on the histone H3 tail and the location of the TTS close to the nucleosomal DNA entry-exit site. Genome-wide analysis of TTS-nucleosome arrangements revealed a defined chromatin organization with an enrichment of arrangements that allow triplex formation at active regulatory sites and accessible chromatin. We further developed a method to monitor nucleosome-RNA triplexes in vivo (TRIP-seq), revealing RNA binding to TTS sites adjacent to nucleosomes. Our data strongly support an activating role for RNA triplex-nucleosome complexes, pinpointing triplex-mediated epigenetic regulation in vivo.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Uwe Schwartz
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Elisabeth Silberhorn
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study. PLoS One 2019; 14:e0211651. [PMID: 30753192 PMCID: PMC6372149 DOI: 10.1371/journal.pone.0211651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.
Collapse
|
13
|
Hartono YD, Xu Y, Karshikoff A, Nilsson L, Villa A. Modeling p K Shift in DNA Triplexes Containing Locked Nucleic Acids. J Chem Inf Model 2018. [PMID: 29537270 DOI: 10.1021/acs.jcim.7b00741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protonation states for nucleic acid bases are difficult to assess experimentally. In the context of DNA triplex, the protonation state of cytidine in the third strand is particularly important, because it needs to be protonated in order to form Hoogsteen hydrogen bonds. A sugar modification, locked nucleic acid (LNA), is widely used in triplex forming oligonucleotides to target sites in the human genome. In this study, the parameters for LNA are developed in line with the CHARMM nucleic acid force field and validated toward the available structural experimental data. In conjunction, two computational methods were used to calculate the protonation state of the third strand cytidine in various DNA triplex environments: λ-dynamics and multiple pH regime. Both approaches predict p K of this cytidine shifted above physiological pH when cytidine is in the third strand in a triplex environment. Both methods show an upshift due to cytidine methylation, and a small downshift when the sugar configuration is locked. The predicted p K values for cytidine in DNA triplex environment can inform the design of better-binding oligonucleotides.
Collapse
Affiliation(s)
- Yossa Dwi Hartono
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - You Xu
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Andrey Karshikoff
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| |
Collapse
|
14
|
Maldonado R, Filarsky M, Grummt I, Längst G. Purine- and pyrimidine-triple-helix-forming oligonucleotides recognize qualitatively different target sites at the ribosomal DNA locus. RNA (NEW YORK, N.Y.) 2018; 24:371-380. [PMID: 29222118 PMCID: PMC5824356 DOI: 10.1261/rna.063800.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 05/04/2023]
Abstract
Triplexes are noncanonical DNA structures, which are functionally associated with regulation of gene expression through ncRNA targeting to chromatin. Based on the rules of Hoogsteen base-pairing, polypurine sequences of a duplex can potentially form triplex structures with single-stranded oligonucleotides. Prediction of triplex-forming sequences by bioinformatics analyses have revealed enrichment of potential triplex targeting sites (TTS) at regulatory elements, mainly in promoters and enhancers, suggesting a potential function of RNA-DNA triplexes in transcriptional regulation. Here, we have quantitatively evaluated the potential of different sequences of human and mouse ribosomal RNA genes (rDNA) to form triplexes at different salt and pH conditions. We show by biochemical and biophysical approaches that some of these predicted sequences form triplexes with high affinity, following the canonical rules for triplex formation. We further show that RNA triplex-forming oligos (TFOs) are more stable than their DNA counterpart, and point mutations strongly affect triplex formation. We further show differential sequence requirements of pyrimidine and purine TFO sequences for efficient binding, depending on the G-C content of the TTS. The unexpected sequence specificity, revealing distinct sequence requirements for purine and pyrimidine TFOs, shows that in addition to the Hoogsteen pairing rules, a sequence code and mutations have to be taken into account to predict genomic TTS.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Michael Filarsky
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jørgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 2017; 7:11043. [PMID: 28887512 PMCID: PMC5591256 DOI: 10.1038/s41598-017-09147-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
The anti-gene strategy is based on sequence-specific recognition of double-strand DNA by triplex forming (TFOs) or DNA strand invading oligonucleotides to modulate gene expression. To be efficient, the oligonucleotides (ONs) should target DNA selectively, with high affinity. Here we combined hybridization analysis and electrophoretic mobility shift assay with molecular dynamics (MD) simulations to better understand the underlying structural features of modified ONs in stabilizing duplex- and triplex structures. Particularly, we investigated the role played by the position and number of locked nucleic acid (LNA) substitutions in the ON when targeting a c-MYC or FXN (Frataxin) sequence. We found that LNA-containing single strand TFOs are conformationally pre-organized for major groove binding. Reduced content of LNA at consecutive positions at the 3'-end of a TFO destabilizes the triplex structure, whereas the presence of Twisted Intercalating Nucleic Acid (TINA) at the 3'-end of the TFO increases the rate and extent of triplex formation. A triplex-specific intercalating benzoquinoquinoxaline (BQQ) compound highly stabilizes LNA-containing triplex structures. Moreover, LNA-substitution in the duplex pyrimidine strand alters the double helix structure, affecting x-displacement, slide and twist favoring triplex formation through enhanced TFO major groove accommodation. Collectively, these findings should facilitate the design of potent anti-gene ONs.
Collapse
Affiliation(s)
- Y Vladimir Pabon-Martinez
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Sylvain Geny
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187-U 1196, CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Erik B Pedersen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
16
|
Hartono Y, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A. Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies. ACS OMEGA 2017; 2:2165-2177. [PMID: 30023656 PMCID: PMC6044803 DOI: 10.1021/acsomega.7b00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 06/08/2023]
Abstract
Pseudoisocytidine (ΨC) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ΨC tautomerization using λ-dynamics simulation, which takes into account transitions between states. We also performed in vitro binding experiments with sequences containing ΨC and furthermore characterized the structure of the formed triplex using molecular dynamics simulation. We found that the neighboring methylated or protonated cytidine promotes the formation of the favorable tautomer, whereas the neighboring thymine or locked nucleic acid has a poor effect, and consecutive ΨC has a negative influence. The deleterious effect of consecutive ΨC in a triplex formation was confirmed using in vitro binding experiments. Our findings contribute to improving the design of ΨC-containing triplex-forming oligonucleotides directed to target G-rich DNA sequences.
Collapse
Affiliation(s)
- Yossa
Dwi Hartono
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
- Division
of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Y. Vladimir Pabon-Martinez
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Arzu Uyar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Jesper Wengel
- Department
of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, 5230 Odense M, Denmark
| | - Karin E. Lundin
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Rula Zain
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
- Department
of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Lennart Nilsson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| |
Collapse
|
17
|
Lindahl V, Villa A, Hess B. Sequence dependency of canonical base pair opening in the DNA double helix. PLoS Comput Biol 2017; 13:e1005463. [PMID: 28369121 PMCID: PMC5393899 DOI: 10.1371/journal.pcbi.1005463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/17/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair. The DNA double helix, a molecule that stores biological information, has become an iconic image of biomedical research. In order to use or repair the information it carries, the bases that are stacked in the helix need to be chemically exposed. This can happen either by separating the two strands in the helix or by flipping out individual bases. Here, we focus on the latter process. Usually proteins are involved in interactions with bases, but it is still unclear if bases are pulled out actively by proteins or if they act on spontaneously flipped bases. Although experiments can detect base pair opening, it is difficult to detect which base moves in which direction. Here, we present results from molecular dynamics simulations using a recently developed sampling method which improves the statistics in the simulations by enhancing the probability of the base pair opening event. We observe differences in probability, modes and mechanism of opening that depend not only on the types of the bases in the pair, but also strongly on their neighbors. This provides essential information for understanding how DNA functions.
Collapse
Affiliation(s)
- Viveca Lindahl
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm and Uppsala, Stockholm, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Berk Hess
- Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm and Uppsala, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Geny S, Moreno PMD, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CIE. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016; 44:2007-19. [PMID: 26857548 PMCID: PMC4797291 DOI: 10.1093/nar/gkw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
Collapse
Affiliation(s)
- Sylvain Geny
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Abdirisaq J Isse
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Amro M El-Madani
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Chenguang Lou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Y Vladimir Pabon
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | - Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Per T Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik B Pedersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
19
|
Iacovelli F, Falconi M. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools. FEBS J 2015; 282:3298-310. [DOI: 10.1111/febs.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
| | - Mattia Falconi
- Department of Biology; University of Rome “Tor Vergata”; Italy
| |
Collapse
|
20
|
Seligmann H. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2440-6. [PMID: 25865623 DOI: 10.3109/19401736.2015.1033691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.
Collapse
Affiliation(s)
- Hervé Seligmann
- a Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMR 6236, Université d'Aix-Marseille , Marseille , France
| |
Collapse
|