1
|
Yin D, Li F, Xia L, Wei T, Shan C, Zhang Z, Wei R. GLP-1 receptor agonists show no detrimental effect on sperm quality in mouse models and cell lines. Endocrine 2025:10.1007/s12020-025-04245-4. [PMID: 40347306 DOI: 10.1007/s12020-025-04245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/18/2025] [Indexed: 05/12/2025]
Abstract
PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) agonists exert multiple beneficial effects. However, their effects on reproduction system are controversial. Here, we aimed to investigate their effects on male reproduction and provide safety evidence for future clinical use. METHODS Male diabetic mice and aged mice were treated with liraglutide or vehicle, and sperm concentration and motility were assessed. The expression and location of GLP-1R in testicular tissues and in four testicular cell lines (spermatogonia, spermatocytes, Leydig cells, and Sertoli cells) were detected. Cauda epididymis and testicular cells were treated with liraglutide, semaglutide or vehicle, and sperm motility and cell proliferation were detected to determine the direct effect of GLP-1R agonists. Global Glp1r knockout mice were constructed, and testicular morphology, sperm concentration and motility were detected to confirm the effects of GLP-1R signaling on male reproduction. RESULTS Liraglutide significantly reduced blood glucose levels, but did not improve sperm parameters in diabetic mice. No significant differences were observed between liraglutide and control group in aged mice. GLP-1R was expressed in testicular tissues and all four cell lines, with the highest expression in Leydig cells. Liraglutide or semaglutide had no impacts on sperm count and motility in vitro, and had no effects on cell proliferation in four cell lines. The Glp1r knockout mice exhibited higher blood glucose levels and preserved normal testicular morphology, but their sperm concentration was higher than that in wildtype mice. CONCLUSION GLP-1R agonists have no detrimental effect on sperm concentration and motility in vivo and in vitro, while GLP-1R absence increase the sperm concentration.
Collapse
Affiliation(s)
- Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Chunhua Shan
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Wei C, Lu Y, Yi S, Liang Y, Meng L, Tan C, Du J, Lin G, Tan YQ, Gan X, Tu C, Qin Z. Novel mutations in ZMYND15 are associated with male infertility with oligozoospermia/azoospermia. J Assist Reprod Genet 2025:10.1007/s10815-025-03480-y. [PMID: 40240737 DOI: 10.1007/s10815-025-03480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE This study aimed to identify the genetic causes of male infertility associated with oligozoospermia/azoospermia in two unrelated Chinese families. METHODS Whole-exome sequencing (WES) and Sanger sequencing were performed on peripheral blood samples from three infertile individuals with reduced sperm counts. Semen analysis data were collected, and sperm morphology was evaluated using hematoxylin and eosin staining, along with transmission electron microscopy. Acidic aniline staining and fluorescence in situ hybridization (FISH) were employed to assess sperm nuclear maturity and chromosome aneuploidy. In vitro analyses were performed to determine the effect of the identified variants. RESULTS We identified two novel homozygous variants in ZMYND15: a frameshift variant (NM_001136046.3:c.828-2_833dupAGAGAGCT) in family 1 and a missense variant (c.2051 T > A:p.Met684Lys) in family 2. Both variants were absent in public databases, and the missense variant was predicted to be deleterious. In vitro analyses confirmed that the frameshift variants likely impact protein function. Abnormal sperm head morphologies, characterized by reduced chromatin condensation and nuclear aneuploidy, were frequently observed in ZMYND15 mutant individual. CONCLUSION Our findings reveal two novel ZMYND15 variants in three infertile patients with oligozoospermia/azoospermia, expanding the mutational spectrum of ZMYND15 and providing valuable insights for genetic counseling and the diagnosis in cases of male infertility.
Collapse
Affiliation(s)
- Chunjia Wei
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
| | - Yingchi Lu
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sibing Yi
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
| | - Yaoqiong Liang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
| | - Lanlan Meng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Chen Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
| | - Juan Du
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianyou Gan
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Chaofeng Tu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Science, Central South University, Changsha, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| | - Zailong Qin
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
3
|
Rajan JRS, Gill K, Chow E, Ashbrook DG, Williams RW, Zwicker JG, Goldowitz D. Investigating Motor Coordination Using BXD Recombinant Inbred Mice to Model the Genetic Underpinnings of Developmental Coordination Disorder. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70014. [PMID: 40071748 PMCID: PMC11898013 DOI: 10.1111/gbb.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity. We sought to correlate behavior in basic motor control tasks with the known genotypes of these reference populations of mice using quantitative trait locus (QTL) mapping. We used 12 BXD strains with an average of 16 mice per group to assess the onset of reflexes during the early neonatal stage of life and differences in motor coordination using the tests for open field, rotarod, and gait behaviors during the adolescent/young adulthood period. Results indicated significant variability between strains in when neonatal reflexes appeared and significant strain differences for all measures of motor coordination. Five strains (BXD15, BXD27, BXD28, BXD75, BXD86) struggled with sensorimotor coordination as seen in gait analysis, rotarod, and open field, similar to human presentation of DCD. We identified three significant quantitative trait loci for gait on proximal Chr 3, Chr 4, and distal Chr 6. Based on expression, function, and polymorphism within the mapped QTL intervals, seven candidate genes (Gpr63, Spata5, Trpc3, Cntn6, Chl1, Grm7, Ogg1) emerged. This study offers new insights into mouse motor behavior, which promises to be a first murine model to explore the genetics and neural correlates of DCD.
Collapse
Affiliation(s)
- Jeffy Rajan Soundara Rajan
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| | - Kamaldeep Gill
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Rehabilitation SciencesUniversity of British ColumbiaVancouverCanada
| | - Eric Chow
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - David G. Ashbrook
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jill G. Zwicker
- British Columbia Children's Hospital Research InstituteVancouverCanada
- Department of Occupational Science & Occupational TherapyUniversity of British ColumbiaVancouverCanada
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- British Columbia Children's Hospital Research InstituteVancouverCanada
| |
Collapse
|
4
|
Marino GB, Deng EZ, Clarke DJB, Diamant I, Resnick AC, Ma W, Wang P, Ma'ayan A. Protocol for using Multiomics2Targets to identify targets and driver kinases for cancer cohorts profiled with multi-omics assays. STAR Protoc 2024; 5:103457. [PMID: 39565691 PMCID: PMC11617449 DOI: 10.1016/j.xpro.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
The availability of multi-omics data applied to profile cancer cohorts is rapidly increasing. Here, we present a protocol for Multiomics2Targets, a computational pipeline that can identify driver cell signaling pathways, protein kinases, and cell-surface targets for immunotherapy. We describe steps for preparing the data, uploading files, and tuning parameters. We then detail procedures for running the workflow, visualizing the results, and exporting and sharing reports containing the analysis. For complete details on the use and execution of this protocol, please refer to Deng et al.1.
Collapse
Affiliation(s)
- Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ido Diamant
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Adam C Resnick
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Weiping Ma
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pei Wang
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
5
|
Stear BJ, Mohseni Ahooyi T, Simmons JA, Kollar C, Hartman L, Beigel K, Lahiri A, Vasisht S, Callahan TJ, Nemarich CM, Silverstein JC, Taylor DM. Petagraph: A large-scale unifying knowledge graph framework for integrating biomolecular and biomedical data. Sci Data 2024; 11:1338. [PMID: 39695169 PMCID: PMC11655564 DOI: 10.1038/s41597-024-04070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Over the past decade, there has been substantial growth in both the quantity and complexity of available biomedical data. In order to more efficiently harness this extensive data and alleviate challenges associated with integration of multi-omics data, we developed Petagraph, a biomedical knowledge graph that encompasses over 32 million nodes and 118 million relationships. Petagraph leverages more than 180 ontologies and standards in the Unified Biomedical Knowledge Graph (UBKG) to embed millions of quantitative genomics data points. Petagraph provides a cohesive data environment that enables users to efficiently analyze, annotate, and discern relationships within and across complex multi-omics datasets supported by UBKG's annotation scaffold. We demonstrate how queries on Petagraph can generate meaningful results across various research contexts and use cases.
Collapse
Affiliation(s)
- Benjamin J Stear
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J Alan Simmons
- Department of Biomedical Informatics, School of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Kollar
- Department of Biomedical Informatics, School of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Lance Hartman
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine Beigel
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aditya Lahiri
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shubha Vasisht
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Campus, New York, NY, USA
| | - Christopher M Nemarich
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, School of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics (DBHI), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman Medical School, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Shukla R, Singh TR. AlzGenPred - CatBoost-based gene classifier for predicting Alzheimer's disease using high-throughput sequencing data. Sci Rep 2024; 14:30294. [PMID: 39639110 PMCID: PMC11621786 DOI: 10.1038/s41598-024-82208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
AD is a progressive neurodegenerative disorder characterized by memory loss. Due to the advancement in next-generation sequencing, an enormous amount of AD-associated genomics data is available. However, the information about the involvement of these genes in AD association is still a research topic. Therefore, AlzGenPred is developed to identify the AD-associated genes using machine-learning. A total of 13,504 features derived from eight sequence-encoding schemes were generated and evaluated using 16 machine learning algorithms. Network-based features significantly outperformed sequence-based features, effectively distinguishing AD-associated genes. In contrast, sequence-based features failed to classify accurately. To improve performance, we generated 24 fused features (6020 D) from sequence-based encodings, increasing accuracy by 5-7% using a two-step lightGBM-based recursive feature selection method. However, accuracy remained below 70% even after hyperparameter tuning. Therefore, network-based features were used to generate the CatBoost-based ML method AlzGenPred with 96.55% accuracy and 98.99% AUROC. The developed method is tested on the AlzGene dataset where it showed 96.43% accuracy. Then the model was validated using the transcriptomics dataset. AlzGenPred provides a reliable and user-friendly tool for identifying potential AD biomarkers, accelerating biomarker discovery, and advancing our understanding of AD. It is available at https://www.bioinfoindia.org/alzgenpred/ and https://github.com/shuklarohit815/AlzGenPred .
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, 173234, H.P., India
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, 33613, FL, USA
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, 173234, H.P., India.
- Centre of Healthcare Technologies and Informatics (CEHTI), Jaypee University of Information Technology (JUIT), Waknaghat, Solan, 173234, H.P., India.
| |
Collapse
|
7
|
Brand CM, Kuang S, Gilbertson EN, McArthur E, Pollard KS, Webster TH, Capra JA. Sequence-Based Machine Learning Reveals 3D Genome Differences between Bonobos and Chimpanzees. Genome Biol Evol 2024; 16:evae210. [PMID: 39382451 PMCID: PMC11579661 DOI: 10.1093/gbe/evae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The 3D structure of the genome is an important mediator of gene expression. As phenotypic divergence is largely driven by gene regulatory variation, comparing genome 3D contacts across species can further understanding of the molecular basis of species differences. However, while experimental data on genome 3D contacts in humans are increasingly abundant, only a handful of 3D genome contact maps exist for other species. Here, we demonstrate that human experimental data can be used to close this data gap. We apply a machine learning model that predicts 3D genome contacts from DNA sequence to the genomes from 56 bonobos and chimpanzees and identify species-specific patterns of genome folding. We estimated 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows, of which ∼17% were substantially divergent in predicted genome contacts. Bonobos and chimpanzees diverged at 89 windows, overlapping genes associated with multiple traits implicated in Pan phenotypic divergence. We discovered 51 bonobo-specific variants that individually produce the observed bonobo contact pattern in bonobo-chimpanzee divergent windows. Our results demonstrate that machine learning methods can leverage human data to fill in data gaps across species, offering the first look at population-level 3D genome variation in nonhuman primates. We also identify loci where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Erin N Gilbertson
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Katherine S Pollard
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Alkhalil SS, Almanaa TN, Altamimi RA, Abdalla M, El-Arabey AA. Interactions between microbiota and uterine corpus endometrial cancer: A bioinformatic investigation of potential immunotherapy. PLoS One 2024; 19:e0312590. [PMID: 39475915 PMCID: PMC11524446 DOI: 10.1371/journal.pone.0312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Microorganisms in the gut and other niches may contribute to carcinogenesis while also altering cancer immune surveillance and therapeutic response. However, determining the impact of genetic variations and interplay with intestinal microbes' environment is difficult and unanswered. Here, we examined the frequency of thirteen mutant genes that caused aberrant gut in thirty different types of cancer using The Cancer Genomic Atlas (TCGA) database. Substantially, our findings show that all these mutated genes are quite frequent in uterine corpus endometrial cancer (UCEC). Further, these mutant genes are implicated in the infiltration of different subset of immune cells within the Tumor Microenvironment (TME) of UCEC patients. The top-ranking mutant genes that promote immune cell invasion into the TME of UCEC patients were PGLYRP2, OLFM4, and TLR5. In this regard, we used the same deconvolution of the TCGA database to analyze the microbiome that have a strong association with immune cells invasion with TME of UCEC patients. Several bacteria and viruses have been linked to the invasion of immune cells, such as B cell memory and T cell regulatory (Tregs), into the TME of UCEC patients. As a result, our findings pave the way for future research into generating novel immunizations against bacteria or viruses as immunotherapy for UCEC patients.
Collapse
Affiliation(s)
- Samia S. Alkhalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raghad A. Altamimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jinan, China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Uribe C, Nery MF, Zavala K, Mardones GA, Riadi G, Opazo JC. Evolution of ion channels in cetaceans: a natural experiment in the tree of life. Sci Rep 2024; 14:17024. [PMID: 39043711 PMCID: PMC11266680 DOI: 10.1038/s41598-024-66082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.
Collapse
Affiliation(s)
- Cristóbal Uribe
- Department of Bioinformatics, Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Mariana F Nery
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Cidade Universitária, Campinas, Brazil
| | - Kattina Zavala
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Gonzalo A Mardones
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Integrative Biology Group, Valdivia, Chile
| | - Gonzalo Riadi
- Department of Bioinformatics, Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, CBSM, University of Talca, Talca, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
10
|
Xu Y, Wang Y, Ma S. SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer. CELL REPORTS METHODS 2024; 4:100813. [PMID: 38971150 PMCID: PMC11294836 DOI: 10.1016/j.crmeth.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.
Collapse
Affiliation(s)
- Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Gill K, Rajan JRS, Chow E, Ashbrook DG, Williams RW, Zwicker JG, Goldowitz D. Developmental coordination disorder: What can we learn from RI mice using motor learning tasks and QTL analysis. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12859. [PMID: 37553802 PMCID: PMC10733574 DOI: 10.1111/gbb.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder of unknown etiology that affects one in 20 children. There is an indication that DCD has an underlying genetic component due to its high heritability. Therefore, we explored the use of a recombinant inbred family of mice known as the BXD panel to understand the genetic basis of complex traits (i.e., motor learning) through identification of quantitative trait loci (QTLs). The overall aim of this study was to utilize the QTL approach to evaluate the genome-to-phenome correlation in BXD strains of mice in order to better understand the human presentation of DCD. Results of this current study confirm differences in motor learning in selected BXD strains and strains with altered cerebellar volume. Five strains - BXD15, BXD27, BXD28, BXD75, and BXD86 - exhibited the most DCD-like phenotype when compared with other BXD strains of interest. Results indicate that BXD15 and BXD75 struggled primarily with gross motor skills, BXD28 primarily had difficulties with fine motor skills, and BXD27 and BXD86 strains struggled with both fine and gross motor skills. The functional roles of genes within significant QTLs were assessed in relation to DCD-like behavior. Only Rab3a (Ras-related protein Rab-3A) emerged as a high likelihood candidate gene for the horizontal ladder rung task. This gene is associated with brain and skeletal muscle development, but lacked nonsynonymous polymorphisms. This study along with Gill et al. (same issue) is the first studies to specifically examine the genetic linkage of DCD using BXD strains of mice.
Collapse
Affiliation(s)
- Kamaldeep Gill
- Rehabilitation Sciences, University of British ColumbiaVancouverBritish ColumbiaCanada
- British Columbia Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| | - Jeffy Rajan Soundara Rajan
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsDepartment of Medical Genetics, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Eric Chow
- British Columbia Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsDepartment of Medical Genetics, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - David G. Ashbrook
- Department of GeneticsGenomics and Informatics, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Robert W. Williams
- Department of GeneticsGenomics and Informatics, University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jill G. Zwicker
- British Columbia Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Department of Occupational Science & Occupational TherapyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PediatricsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Daniel Goldowitz
- British Columbia Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Molecular Medicine and TherapeuticsDepartment of Medical Genetics, University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
12
|
Brand CM, Kuang S, Gilbertson EN, McArthur E, Pollard KS, Webster TH, Capra JA. Sequence-based machine learning reveals 3D genome differences between bonobos and chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564272. [PMID: 37961120 PMCID: PMC10634871 DOI: 10.1101/2023.10.26.564272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Phenotypic divergence between closely related species, including bonobos and chimpanzees (genus Pan), is largely driven by variation in gene regulation. The 3D structure of the genome mediates gene expression; however, genome folding differences in Pan are not well understood. Here, we apply machine learning to predict genome-wide 3D genome contact maps from DNA sequence for 56 bonobos and chimpanzees, encompassing all five extant lineages. We use a pairwise approach to estimate 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows. While most pairs were similar, ∼17% were predicted to be substantially divergent in genome folding. The most dissimilar maps were largely driven by single individuals with rare variants that produce unique 3D genome folding in a region. We also identified 89 genomic windows where bonobo and chimpanzee contact maps substantially diverged, including several windows harboring genes associated with traits implicated in Pan phenotypic divergence. We used in silico mutagenesis to identify 51 3D-modifying variants in these bonobo-chimpanzee divergent windows, finding that 34 or 66.67% induce genome folding changes via CTCF binding motif disruption. Our results reveal 3D genome variation at the population-level and identify genomic regions where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
| | - Erin N Gilbertson
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Katherine S Pollard
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | | | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
- Biomedical Informatics Graduate Program, University of California San Francisco, San Francisco, CA
| |
Collapse
|
13
|
Gershoni M, Braun T, Hauser R, Barda S, Lehavi O, Malcov M, Frumkin T, Kalma Y, Pietrokovski S, Arama E, Kleiman SE. A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure. HGG ADVANCES 2023; 4:100189. [PMID: 37124137 PMCID: PMC10133878 DOI: 10.1016/j.xhgg.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Quantitative and qualitative spermatogenic impairments are major causes of men's infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis.
Collapse
Affiliation(s)
- Moran Gershoni
- ARO-The Volcani Center Institute of Animal Science, Bet Dagan, Israel
- Corresponding author
| | - Tslil Braun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimi Barda
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mira Malcov
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tsvia Frumkin
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Sandra E. Kleiman
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Corresponding author
| |
Collapse
|
14
|
Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, et alKiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, Alberici F, Delbarba E, Florczak M, Krata N, Mucha K, Pączek L, Niemczyk S, Moszczuk B, Pańczyk-Tomaszewska M, Mizerska-Wasiak M, Perkowska-Ptasińska A, Bączkowska T, Durlik M, Pawlaczyk K, Sikora P, Zaniew M, Kaminska D, Krajewska M, Kuzmiuk-Glembin I, Heleniak Z, Bullo-Piontecka B, Liberek T, Dębska-Slizien A, Hryszko T, Materna-Kiryluk A, Miklaszewska M, Szczepańska M, Dyga K, Machura E, Siniewicz-Luzeńczyk K, Pawlak-Bratkowska M, Tkaczyk M, Runowski D, Kwella N, Drożdż D, Habura I, Kronenberg F, Prikhodina L, van Heel D, Fontaine B, Cotsapas C, Wijmenga C, Franke A, Annese V, Gregersen PK, Parameswaran S, Weirauch M, Kottyan L, Harley JB, Suzuki H, Narita I, Goto S, Lee H, Kim DK, Kim YS, Park JH, Cho B, Choi M, Van Wijk A, Huerta A, Ars E, Ballarin J, Lundberg S, Vogt B, Mani LY, Caliskan Y, Barratt J, Abeygunaratne T, Kalra PA, Gale DP, Panzer U, Rauen T, Floege J, Schlosser P, Ekici AB, Eckardt KU, Chen N, Xie J, Lifton RP, Loos RJF, Kenny EE, Ionita-Laza I, Köttgen A, Julian BA, Novak J, Scolari F, Zhang H, Gharavi AG. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet 2023; 55:1091-1105. [PMID: 37337107 PMCID: PMC11824687 DOI: 10.1038/s41588-023-01422-x] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. Here we performed a genome-wide association study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls across 17 international cohorts. We defined 30 genome-wide significant risk loci explaining 11% of disease risk. A total of 16 loci were new, including TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci were enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in mice. We also observed a positive genetic correlation between IgAN and serum IgA levels. High polygenic score for IgAN was associated with earlier onset of kidney failure. In a comprehensive functional annotation analysis of candidate causal genes, we observed convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| | - Elena Sanchez-Rodriguez
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Francesca Zanoni
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lili Liu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Nikol Mladkova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Atlas Khan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Maddalena Marasa
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jun Y Zhang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia Balderes
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA
| | - Andrew S Bomback
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Pietro A Canetta
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Gerald B Appel
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jai Radhakrishnan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Hernan Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Daniel C Cattran
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Heather Reich
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - York Pei
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Pietro Ravani
- Division of Nephrology, Department of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Dita Maixnerova
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Vladimir Tesar
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Benedicte Stengel
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Marie Metzger
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Guillaume Canaud
- Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Nicolas Maillard
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | - Francois Berthoux
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | | | - Evangeline Pillebout
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Renato Monteiro
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Children's Foundation Research Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - William Smoyer
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Mahan
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Al-Akash Samhar
- Division of Pediatric Nephrology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Guillermo Hidalgo
- Division of Pediatric Nephrology, Department of Pediatrics, HMH Hackensack University Medical Center, Hackensack, NJ, USA
| | - Alejandro Quiroga
- Division of Pediatric Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Patricia Weng
- Division of Pediatric Nephrology, Mattel Children's Hospital, Los Angeles, CA, USA
| | - Raji Sreedharan
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Selewski
- Division of Pediatric Nephrology, Mott Children's Hospital, Ann Arbor, MI, USA
| | - Keefe Davis
- Division of Pediatric Nephrology, Department of Pediatrics, The Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Mahmoud Kallash
- Division of Pediatric Nephrology, SUNY Buffalo, Buffalo, NY, USA
| | - Tetyana L Vasylyeva
- Division of Pediatric Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle Rheault
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Aftab Chishti
- Division of Pediatric Nephrology, University of Kentucky, Lexington, KY, USA
| | - Daniel Ranch
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Scott E Wenderfer
- Division of Pediatric Nephrology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Dmitry Samsonov
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Donna J Claes
- Division of Pediatric Nephrology, Department of Pediatrics, New York Medical College, New York City, NY, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medical College, New York City, NY, USA
| | | | - Maria Stangou
- The Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Judit Nagy
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Tibor Kovacs
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Barlassina
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Daniele Cusi
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | | | | | | | - Emanuela Boer
- Division of Nephrology and Dialysis, Gorizia Hospital, Gorizia, Italy
| | - Luisa Bono
- Nephrology and Dialysis, A.R.N.A.S. Civico and Benfratelli, Palermo, Italy
| | - Giuliano Boscutti
- Nephrology, Dialysis and Renal Transplant Unit, S. Maria della Misericordia Hospital, ASUFC, Udine, Italy
| | - Gianluca Caridi
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Francesca Lugani
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - GianMarco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Rosanna Coppo
- Regina Margherita Children's Hospital, Torino, Italy
| | - Licia Peruzzi
- Regina Margherita Children's Hospital, Torino, Italy
| | | | | | | | | | - Giovanni Frasca
- Division of Nephrology, Dialysis and Renal Transplantation, Riuniti Hospital, Ancona, Italy
| | | | - Maurizio Garozzo
- Unità Operativa di Nefrologia e Dialisi, Ospedale di Acireale, Acireale, Italy
| | - Adele Mitrotti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Riccardo Magistroni
- Department of Surgical, Medical, Dental, Oncologic and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Magnano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Piergiorgio Messa
- Nephrology Dialysis and Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Renzo Mignani
- Azienda Unità Sanitaria Locale Rimini, Rimini, Italy
| | - Antonello Pani
- Department of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | | | - Dario Roccatello
- Nephrology and Dialysis Unit, G. Bosco Hub Hospital (ERK-net Member) and University of Torino, Torino, Italy
| | - Maurizio Salvadori
- Division of Nephrology and Renal Transplantation, Carreggi Hospital, Florence, Italy
| | - Erica Salvi
- Renal Division, DMCO (Dipartimento di Medicina, Chirurgia e Odontoiatria), San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Silvana Savoldi
- Unit of Nephrology and Dialysis, ASL TO4-Consultorio Cirié, Turin, Italy
| | | | | | - Claudia Izzi
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Federico Alberici
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Elisa Delbarba
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Michał Florczak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Disease, Nephrology and Dialysotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Moszczuk
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Teresa Bączkowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan Medical University, Poznan, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Dorota Kaminska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Izabella Kuzmiuk-Glembin
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bullo-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Liberek
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Dębska-Slizien
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Dyga
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Edyta Machura
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Siniewicz-Luzeńczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Monika Pawlak-Bratkowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Dariusz Runowski
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Norbert Kwella
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Ireneusz Habura
- Department of Nephrology, Karol Marcinkowski Hospital, Zielona Góra, Poland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Larisa Prikhodina
- Division of Inherited and Acquired Kidney Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - David van Heel
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bertrand Fontaine
- Sorbonne University, INSERM, Center of Research in Myology, Institute of Myology, University Hospital Pitie-Salpetriere, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service of Neuro-Myology, University Hospital Pitie-Salpetriere, Paris, France
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale University, New Haven, CT, USA
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vito Annese
- CBP American Hospital, Dubai, United Arab Emirates
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, North Shore LIJ Health System, New York City, NY, USA
| | | | - Matthew Weirauch
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Kottyan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John B Harley
- US Department of Veterans Affairs Medical Center and Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, USA
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hajeong Lee
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - BeLong Cho
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
- Institute on Aging, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ans Van Wijk
- Amsterdam University Medical Centre, VU University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Ana Huerta
- Hospital Universitario Puerta del Hierro Majadahonda, REDINREN, IISCIII, Madrid, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Jose Ballarin
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Sigrid Lundberg
- Department of Nephrology, Danderyd University Hospital, and Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasar Caliskan
- Division of Nephrology, Saint Louis University, Saint Louis, MO, USA
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester, Leicester, UK
| | | | | | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | | | - Thomas Rauen
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York City, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York City, NY, USA
- Center for Population Genomic Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Bruce A Julian
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Francesco Scolari
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Ali G Gharavi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| |
Collapse
|
15
|
Wang W, Su L, Meng L, He J, Tan C, Yi D, Cheng D, Zhang H, Lu G, Du J, Lin G, Zhang Q, Tu C, Tan YQ. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia. Hum Reprod 2023:7165695. [PMID: 37192818 DOI: 10.1093/humrep/dead095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia? SUMMARY ANSWER We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility. WHAT IS KNOWN ALREADY KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest. STUDY DESIGN, SIZE, DURATION We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells. LIMITATIONS, REASONS FOR CAUTION The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to report a likely causal relationship between KCTD19 deficiency and male infertility, confirming the critical role of KCTD19 in human reproduction. Additionally, this study provided evidence for the poor ICSI clinical outcomes in individuals with biallelic KCTD19 variants, which may guide clinical treatment strategies. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Developmental Program of China (2022YFC2702604 to Y.-Q.T.), the National Natural Science Foundation of China (81971447 and 82171608 to Y.-Q.T., 82101961 to C.T.), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y.-Q.T.), a Hunan Provincial Grant for Innovative Province Construction (2019SK4012), and the China Postdoctoral Science Foundation (2022M721124 to W.W.). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Weili Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lilan Su
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lanlan Meng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Jiaxin He
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Chen Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Duo Yi
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Huan Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Juan Du
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qianjun Zhang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Horvathova K, Modrackova N, Splichal I, Splichalova A, Amin A, Ingribelli E, Killer J, Doskocil I, Pechar R, Kodesova T, Vlkova E. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms 2023; 11:microorganisms11041007. [PMID: 37110429 PMCID: PMC10146858 DOI: 10.3390/microorganisms11041007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.
Collapse
Affiliation(s)
- Kristyna Horvathova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eugenio Ingribelli
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Tereza Kodesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
17
|
Tang SB, Zhang TT, Yin S, Shen W, Luo SM, Zhao Y, Zhang CL, Klinger FG, Sun QY, Ge ZJ. Inheritance of perturbed methylation and metabolism caused by uterine malnutrition via oocytes. BMC Biol 2023; 21:43. [PMID: 36829148 PMCID: PMC9960220 DOI: 10.1186/s12915-023-01545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.
Collapse
Affiliation(s)
- Shou-Bin Tang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Ting-Ting Zhang
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China ,grid.414011.10000 0004 1808 090XReproductive Medicine Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, 450003 People’s Republic of China
| | - Shen Yin
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Wei Shen
- grid.412608.90000 0000 9526 6338College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Shi-Ming Luo
- grid.413405.70000 0004 1808 0686Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317 People’s Republic of China
| | - Yong Zhao
- grid.464332.4State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Cui-Lian Zhang
- grid.414011.10000 0004 1808 090XReproductive Medicine Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, 450003 People’s Republic of China
| | - Francesca Gioia Klinger
- grid.512346.7Histology and Embryology, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
18
|
Exosomes induce neurogenesis of pluripotent P19 cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10512-6. [PMID: 36811747 PMCID: PMC10366297 DOI: 10.1007/s12015-023-10512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Exosomes play a role in tissue/organ development and differentiation. Retinoic acid induces differentiation of P19 cells (UD-P19) to P19 neurons (P19N) that behave like cortical neurons and express characteristic neuronal genes such as NMDA receptor subunits. Here we report P19N exosome-mediated differentiation of UD-P19 to P19N. Both UD-P19 and P19N released exosomes with characteristic exosome morphology, size, and common protein markers. P19N internalized significantly higher number of Dil-P19N exosomes as compared to UD-P19 with accumulation in the perinuclear region. Continuous exposure of UD-P19 to P19N exosomes for six days induced formation of small-sized embryoid bodies that differentiated into MAP2-/GluN2B-positive neurons recapitulating RA-induction of neurogenesis. Incubation with UD-P19 exosomes for six days did not affect UD-P19. Small RNA-seq identified enrichment of P19N exosomes with pro-neurogenic non-coding RNAs (ncRNAs) such as miR-9, let-7, MALAT1 and depleted with ncRNAs involved in maintenance of stem cell characteristics. UD-P19 exosomes were rich with ncRNAs required for maintenance of stemness. P19N exosomes provide an alternative method to genetic modifications for cellular differentiation of neurons. Our novel findings on exosomes-mediated differentiation of UD-P19 to P19 neurons provide tools to study pathways directing neuron development/differentiation and develop novel therapeutic strategies in neuroscience.
Collapse
|
19
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
20
|
Nacif CL, Bastos DL, Mello B, Lazar A, Hingst-Zaher E, Geise L, Bonvicino CR. Hidden diversity of the genus Trinomys (Rodentia: Echimyidae): phylogenetic and populational structure analyses uncover putative new lineages. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Trinomys, one of the most species-rich spiny rat genera in Brazil, is widely distributed in Caatinga, Cerrado and Atlantic Forest biomes, and currently includes ten recognized species, three of which are polytypic. Although some studies employing molecular data have been conducted to better characterize phylogenetic relationships among species, 19 nominal taxa have been suggested, implying considerable incongruence regarding species boundaries. We addressed this incongruence by intensively sampling all species across the geographic distribution of the genus. In addition to publicly available data, we generated 182 mt-Cytb gene sequences, and employed phylogenetic and computational species delimitation methods to obtain a clearer picture of the genus diversity. Moreover, we evaluated populational diversity within each accepted species, considering their geographical distribution and a timescale for the evolution of the genus. Beyond confirming the general patterns described for the evolution of the group, this new analysis suggests that Trinomys is comprised of at least 16 evolutionary lineages, 13 of them recognized as species or subspecies, and three never before characterized. This study highlights the importance of increased sample sizes and computational species delimitation methods in uncovering hidden diversity in Trinomys.
Collapse
Affiliation(s)
- Camila Leitão Nacif
- Graduate Genetics Program, Institute of Biology, Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ) , 21941-617, Rio de Janeiro, RJ , Brazil
| | - Diogo Lisbôa Bastos
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense (UFF) , Niterói, RJ , Brazil
| | - Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro , Brazil
| | - Ana Lazar
- National Museum, Department of Vertebrates, Sector of Mastozoology, Universidade Federal do Rio de Janeiro (UFRJ) , 20940-040, Rio de Janeiro, RJ , Brazil
| | - Erika Hingst-Zaher
- Museu Biológico, Instituto Butantan , Avenida Vital Brazil, 1500, São Paulo , Brazil
| | - Lena Geise
- Laboratory of Mastozoology, Department of Zoology, Institute of Biology, Universidade do Estado do Rio de Janeiro (UERJ) , Rua São Francisco Xavier 524, 220559-900, Rio de Janeiro, RJ , Brazil
| | - Cibele Rodrigues Bonvicino
- Division of Genetics, National Cancer Institute (INCA) , Rua André Cavalcanti , 37, 4° andar, 20231-050, Rio de Janeiro, RJ , Brazil
| |
Collapse
|
21
|
Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, Morikawa M, Inada T, Ishizuka K, Torii Y, Nakamura Y, Tanaka S, Imaeda M, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Ogawa N, Iritani S, Hayashi Y, Lo T, Otgonbayar G, Furuta S, Iwata N, Ikeda M, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Itokawa M, Arai M, Miyashita M, Toriumi K, Ohi K, Shioiri T, Kitaichi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Sasaki T, Tochigi M, Nishimura F, Yamasue H, Kuwabara H, Wakuda T, Kato TA, Kanba S, Horikawa H, Usami M, Kodaira M, Watanabe K, Yoshikawa T, Toyota T, Yokoyama S, Munesue T, Kimura R, Funabiki Y, Kosaka H, Jung M, Kasai K, Ikegame T, Jinde S, Numata S, Kinoshita M, Kato T, Kakiuchi C, Yamakawa K, Suzuki T, Hashimoto N, Ishikawa S, Yamagata B, Nio S, Murai T, Son S, Kunii Y, Yabe H, Inagaki M, Goto YI, Okumura Y, Ito T, Arioka Y, Mori D, Ozaki N. Cross-Disorder Analysis of Genic and Regulatory Copy Number Variations in Bipolar Disorder, Schizophrenia, and Autism Spectrum Disorder. Biol Psychiatry 2022; 92:362-374. [PMID: 35667888 DOI: 10.1016/j.biopsych.2022.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS In genic CNVs, we found an increased burden of smaller (<100 kb) exonic deletions in BD, which contrasted with the highest burden of larger (>500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25-0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disorders, National Institute of Mental Health National Center of Neurology and Psychiatry, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- National Hospital Organization Higashi Owari National Hospital, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Integrated Health Sciences, Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Okehazama Hospital Brain Research Institute, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan; Department of Psychiatry, Takatsuki Hospital, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Japan Depression Center, Tokyo, Japan; Kyushu University, Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Horikawa Hospital, Kurume, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Mental Health, Aiiku Clinic, Tokyo, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Kyoto University, Kyoto, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Cognitive Science Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Hokkaido, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masumi Inagaki
- Department of Pediatrics, Tottori Prefecture Rehabilitation Center, Tottori, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuto Okumura
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Ito
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
22
|
Panda G, Mishra N, Sharma D, Kutum R, Bhoyar RC, Jain A, Imran M, Senthilvel V, Divakar MK, Mishra A, Garg P, Banerjee P, Sivasubbu S, Scaria V, Ray A. Comprehensive Assessment of Indian Variations in the Druggable Kinome Landscape Highlights Distinct Insights at the Sequence, Structure and Pharmacogenomic Stratum. Front Pharmacol 2022; 13:858345. [PMID: 35865963 PMCID: PMC9294532 DOI: 10.3389/fphar.2022.858345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
India confines more than 17% of the world’s population and has a diverse genetic makeup with several clinically relevant rare mutations belonging to many sub-group which are undervalued in global sequencing datasets like the 1000 Genome data (1KG) containing limited samples for Indian ethnicity. Such databases are critical for the pharmaceutical and drug development industry where diversity plays a crucial role in identifying genetic disposition towards adverse drug reactions. A qualitative and comparative sequence and structural study utilizing variant information present in the recently published, largest curated Indian genome database (IndiGen) and the 1000 Genome data was performed for variants belonging to the kinase coding genes, the second most targeted group of drug targets. The sequence-level analysis identified similarities and differences among different populations based on the nsSNVs and amino acid exchange frequencies whereas a comparative structural analysis of IndiGen variants was performed with pathogenic variants reported in UniProtKB Humsavar data. The influence of these variations on structural features of the protein, such as structural stability, solvent accessibility, hydrophobicity, and the hydrogen-bond network was investigated. In-silico screening of the known drugs to these Indian variation-containing proteins reveals critical differences imparted in the strength of binding due to the variations present in the Indian population. In conclusion, this study constitutes a comprehensive investigation into the understanding of common variations present in the second largest population in the world and investigating its implications in the sequence, structural and pharmacogenomic landscape. The preliminary investigation reported in this paper, supporting the screening and detection of ADRs specific to the Indian population could aid in the development of techniques for pre-clinical and post-market screening of drug-related adverse events in the Indian population.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| | - Neha Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| | - Disha Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rintu Kutum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Ashoka University, Sonipat, India
| | - Rahul C. Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhinav Jain
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohamed Imran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Vigneshwar Senthilvel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohit Kumar Divakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anushree Mishra
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Parth Garg
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| | - Priyanka Banerjee
- Institute for Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Sridhar Sivasubbu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
- *Correspondence: Arjun Ray,
| |
Collapse
|
23
|
Yates T, Lain A, Campbell J, FitzPatrick DR, Simpson TI. Creation and evaluation of full-text literature-derived, feature-weighted disease models of genetically determined developmental disorders. Database (Oxford) 2022; 2022:baac038. [PMID: 35670729 PMCID: PMC9216525 DOI: 10.1093/database/baac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
There are >2500 different genetically determined developmental disorders (DD), which, as a group, show very high levels of both locus and allelic heterogeneity. This has led to the wide-spread use of evidence-based filtering of genome-wide sequence data as a diagnostic tool in DD. Determining whether the association of a filtered variant at a specific locus is a plausible explanation of the phenotype in the proband is crucial and commonly requires extensive manual literature review by both clinical scientists and clinicians. Access to a database of weighted clinical features extracted from rigorously curated literature would increase the efficiency of this process and facilitate the development of robust phenotypic similarity metrics. However, given the large and rapidly increasing volume of published information, conventional biocuration approaches are becoming impractical. Here, we present a scalable, automated method for the extraction of categorical phenotypic descriptors from the full-text literature. Papers identified through literature review were downloaded and parsed using the Cadmus custom retrieval package. Human Phenotype Ontology terms were extracted using MetaMap, with 76-84% precision and 65-73% recall. Mean terms per paper increased from 9 in title + abstract, to 68 using full text. We demonstrate that these literature-derived disease models plausibly reflect true disease expressivity more accurately than widely used manually curated models, through comparison with prospectively gathered data from the Deciphering Developmental Disorders study. The area under the curve for receiver operating characteristic (ROC) curves increased by 5-10% through the use of literature-derived models. This work shows that scalable automated literature curation increases performance and adds weight to the need for this strategy to be integrated into informatic variant analysis pipelines. Database URL: https://doi.org/10.1093/database/baac038.
Collapse
Affiliation(s)
- T.M Yates
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
- Transforming Genetic Medicine Initiative, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - A Lain
- Institute for Adaptive and Neural Computation, Informatics Forum, The University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - J Campbell
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XF, UK
| | - D R FitzPatrick
- MRC Human Genetics Unit, Western General Hospital, Institute of Genetics and Cancer, The University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
- Transforming Genetic Medicine Initiative, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XF, UK
| | - T I Simpson
- Institute for Adaptive and Neural Computation, Informatics Forum, The University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XF, UK
| |
Collapse
|
24
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Wang W, Meng L, He J, Su L, Li Y, Tan C, Xu X, Nie H, Zhang H, Du J, Lu G, Luo M, Lin G, Tu C, Tan YQ. Bi-allelic variants in SHOC1 cause non-obstructive azoospermia with meiosis arrest in humans and mice. Mol Hum Reprod 2022; 28:6575911. [PMID: 35485979 DOI: 10.1093/molehr/gaac015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Meiosis is pivotal to gametogenesis and fertility. Meiotic recombination is a mandatory process that ensures faithful chromosome segregation and generates genetic diversity in gametes. Non-obstructive azoospermia (NOA) caused by meiotic arrest is a common cause of male infertility and has many genetic origins, including chromosome abnormalities, Y chromosome microdeletion and monogenic mutations. However, the genetic causes of the majority of NOA cases remain to be elucidated. Here, we report our findings of three Shortage in chiasmata 1 (SHOC1) bi-allelic variants in three NOA patients, of which two are homozygous for the same loss-of-function variant (c.231_232del: p. L78Sfs*9), and one is heterozygous for two different missense variants (c.1978G>A: p.A660T; c.4274G>A: p.R1425H). Testicular biopsy of one patient revealed impairment of spermatocyte maturation. Both germ-cell-specific and general Shoc1-knockout mice exhibited similar male infertility phenotypes. Subsequent analysis revealed comprehensive defects in homologous pairing and synapsis along with abnormal expression of DMC1, RAD51 and RPA2 in Shoc1-defective spermatocyte spreads. These findings imply that SHOC1 may have a presynaptic function during meiotic recombination apart from its previously identified role in crossover formation. Overall, our results provide strong evidence for the clinical relevance of SHOC1 mutations in patients with NOA and contribute to a deeper mechanistic understanding of the role of SHOC1 during meiotic recombination.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Jiaxin He
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lilan Su
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xilin Xu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics, Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Chinain.,College of Life Sciences, Hunan Normal University, Changsha, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha, China
| |
Collapse
|
26
|
Powell G, Long H, Zolkiewski L, Dumbell R, Mallon AM, Lindgren CM, Simon MM. Modelling the genetic aetiology of complex disease: human-mouse conservation of noncoding features and disease-associated loci. Biol Lett 2022; 18:20210630. [PMID: 35317627 PMCID: PMC8941414 DOI: 10.1098/rsbl.2021.0630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding the genetic aetiology of loci associated with a disease is crucial for developing preventative measures and effective treatments. Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, the utility of mouse models is limited in part by evolutionary divergence in transcription regulation for pathways of interest. Here, we summarize the alignment of genomic (exonic and multi-cell regulatory) annotations alongside Mendelian and complex disease-associated variant sites between humans and mice. Our results highlight the importance of understanding evolutionary divergence in transcription regulation when interpreting functional studies using mice as models for human disease variants.
Collapse
Affiliation(s)
- George Powell
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Helen Long
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Louisa Zolkiewski
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Rebecca Dumbell
- Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Ann-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.,Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michelle M Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Oxfordshire OX11 0RD, UK
| |
Collapse
|
27
|
Lee JH. Invertebrate Model Organisms as a Platform to Investigate Rare Human Neurological Diseases. Exp Neurobiol 2022; 31:1-16. [PMID: 35256540 PMCID: PMC8907251 DOI: 10.5607/en22003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Patients suffering from rare human diseases often go through a painful journey for finding a definite molecular diagnosis prerequisite of appropriate cures. With a novel variant isolated from a single patient, determination of its pathogenicity to end such "diagnostic odyssey" requires multi-step processes involving experts in diverse areas of interest, including clinicians, bioinformaticians and research scientists. Recent efforts in building large-scale genomic databases and in silico prediction platforms have facilitated identification of potentially pathogenic variants causative of rare human diseases of a Mendelian basis. However, the functional significance of individual variants remains elusive in many cases, thus requiring incorporation of versatile and rapid model organism (MO)-based platforms for functional analyses. In this review, the current scope of rare disease research is briefly discussed. In addition, an overview of invertebrate MOs for their key features relevant to rare neurological diseases is provided, with the characteristics of two representative invertebrate MOs, Drosophila melanogaster and Caenorhabditis elegans, as well as the challenges against them. Finally, recently developed research networks integrating these MOs in collaborative research are portraited with an array of bioinformatical analyses embedded. A comprehensive survey of MO-based research activities provided in this review will help us to design a wellstructured analysis of candidate genes or potentially pathogenic variants for their roles in rare neurological diseases in future.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Oral Pathology & Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.,Dental Life Science Institute, Pusan National University, Yangsan 50612, Korea.,Periodontal Disease Signaling Network Research Center, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
28
|
miRNA-Profiling in Ejaculated and Epididymal Pig Spermatozoa and Their Relation to Fertility after Artificial Insemination. BIOLOGY 2022; 11:biology11020236. [PMID: 35205102 PMCID: PMC8869492 DOI: 10.3390/biology11020236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The present study searched for the presence and abundance of porcine spermatozoa small RNA sequences (microRNAs) that have the potential to alter gene expression patterns. Four different sperm sources were compared: spermatozoa from three different sections of the ejaculate and from the caudal epididymis, also classed as spermatozoa from higher (HF) or lower (LF) fertility boars. Sperm miRNAs were compared using high-output small RNA sequencing. We identified five sperm miRNAs not previously reported in pigs. Differences in abundance of four miRNAs known to affect the expression of genes with key roles in fertility were related to boar fertility. These miRNAs could be used as fertility markers in artificial insemination programs. Abstract MicroRNAs (miRNAs) are short non-coding RNAs (20–25 nucleotides in length) capable of regulating gene expression by binding -fully or partially- to the 3’-UTR of target messenger RNA (mRNA). To date, several studies have investigated the role of sperm miRNAs in spermatogenesis and their remaining presence toward fertilization and early embryo development. However, little is known about the miRNA cargo in the different sperm sources and their possible implications in boar fertility. Here, we characterized the differential abundance of miRNAs in spermatozoa from the terminal segment of the epididymis and three different fractions of the pig ejaculate (sperm-peak, sperm-rich, and post-sperm rich) comparing breeding boars with higher (HF) and lower (LF) fertility after artificial insemination (AI) using high-output small RNA sequencing. We identified five sperm miRNAs that, to our knowledge, have not been previously reported in pigs (mir-10386, mir-10390, mir-6516, mir-9788-1, and mir-9788-2). Additionally, four miRNAs (mir-1285, mir-92a, mir-34c, mir-30), were differentially expressed among spermatozoa sourced from ejaculate fractions and the cauda epididymis, and also different abundance was found between HF and LF groups in mir-182, mir-1285, mir-191, and mir-96. These miRNAs target genes with key roles in fertility, sperm survival, immune tolerance, or cell cycle regulation, among others. Linking the current findings with the expression of specific sperm proteins would help predict fertility in future AI-sires.
Collapse
|
29
|
Horvath S, Haghani A, Peng S, Hales EN, Zoller JA, Raj K, Larison B, Robeck TR, Petersen JL, Bellone RR, Finno CJ. DNA methylation aging and transcriptomic studies in horses. Nat Commun 2022; 13:40. [PMID: 35013267 PMCID: PMC8748428 DOI: 10.1038/s41467-021-27754-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy's zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Erin N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, FL, USA
| | | | - Rebecca R Bellone
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
- Veterinary Genetics Laboratory, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
30
|
Kowalczyk A, Chikina M, Clark N. Complementary evolution of coding and noncoding sequence underlies mammalian hairlessness. eLife 2022; 11:76911. [PMID: 36342464 PMCID: PMC9803358 DOI: 10.7554/elife.76911] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Body hair is a defining mammalian characteristic, but several mammals, such as whales, naked mole-rats, and humans, have notably less hair. To find the genetic basis of reduced hair quantity, we used our evolutionary-rates-based method, RERconverge, to identify coding and noncoding sequences that evolve at significantly different rates in so-called hairless mammals compared to hairy mammals. Using RERconverge, we performed a genome-wide scan over 62 mammal species using 19,149 genes and 343,598 conserved noncoding regions. In addition to detecting known and potential novel hair-related genes, we also discovered hundreds of putative hair-related regulatory elements. Computational investigation revealed that genes and their associated noncoding regions show different evolutionary patterns and influence different aspects of hair growth and development. Many genes under accelerated evolution are associated with the structure of the hair shaft itself, while evolutionary rate shifts in noncoding regions also included the dermal papilla and matrix regions of the hair follicle that contribute to hair growth and cycling. Genes that were top ranked for coding sequence acceleration included known hair and skin genes KRT2, KRT35, PKP1, and PTPRM that surprisingly showed no signals of evolutionary rate shifts in nearby noncoding regions. Conversely, accelerated noncoding regions are most strongly enriched near regulatory hair-related genes and microRNAs, such as mir205, ELF3, and FOXC1, that themselves do not show rate shifts in their protein-coding sequences. Such dichotomy highlights the interplay between the evolution of protein sequence and regulatory sequence to contribute to the emergence of a convergent phenotype.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Carnegie Mellon-University of Pittsburgh PhD Program in Computational BiologyPittsburghUnited States,Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Maria Chikina
- Department of Computational Biology, University of PittsburghPittsburghUnited States
| | - Nathan Clark
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
31
|
Pathogenic variations in Germ Cell Nuclear Acidic Peptidase (GCNA) are associated with human male infertility. Eur J Hum Genet 2021; 29:1781-1788. [PMID: 34413498 PMCID: PMC8632907 DOI: 10.1038/s41431-021-00946-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Infertility affects one in six couples, half of which are caused by a male factor. Male infertility can be caused by both, qualitative and quantitative defects, leading to Oligo- astheno-terato-zoospermia (OAT; impairment in ejaculate sperm cell concentration, motility and morphology). Azoospermia defined as complete absence of sperm cells in the ejaculation. While hundreds of genes are involved in spermatogenesis the genetic etiology of men's infertility remains incomplete.We identified a hemizygous stop gain pathogenic variation (PV) in the X-linked Germ Cell Nuclear Acidic Peptidase (GCNA), in an Azoospermic patient by exome sequencing. Assessment of the prevalence of pathogenic variations in this gene in infertile males by exome sequence data of 11 additional unrelated patients identified a probable hemizygous causative missense PV in GCNA in a severe OAT patient. Expression of GCNA in the patients' testes biopsies and the stage of spermatogonial developmental arrest were determined by immunofluorescence and immunohistochemistry. The Azoospermic patient presented spermatogenic maturation arrest with an almost complete absence of early and late primary spermatocytes and thus the complete absence of sperm. GCNA is critical for genome integrity and its loss results in genomic instability and infertility in Drosophila, C. elegans, zebrafish, and mouse. PVs in GCNA appear to be incompatible with male fertility in humans as well: A stop-gain PV caused Azoospermia and a missense PV caused severe OAT with very low fertilization rates and no pregnancy in numerous IVF treatments.
Collapse
|
32
|
Merico D, Pasternak Y, Zarrei M, Higginbotham EJ, Thiruvahindrapuram B, Scott O, Willett-Pachul J, Grunebaum E, Upton J, Atkinson A, Kim VHD, Aliyev E, Fakhro K, Scherer SW, Roifman CM. Homozygous duplication identified by whole genome sequencing causes LRBA deficiency. NPJ Genom Med 2021; 6:96. [PMID: 34795304 PMCID: PMC8602677 DOI: 10.1038/s41525-021-00263-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
In more than one-third of primary immunodeficiency (PID) patients, extensive genetic analysis including whole-exome sequencing (WES) fails to identify the genetic defect. Whole-genome sequencing (WGS) is able to detect variants missed by other genomics platforms, enabling the molecular diagnosis of otherwise unresolved cases. Here, we report two siblings, offspring of consanguineous parents, who experienced similar severe events encompassing early onset of colitis, lymphoproliferation, and hypogammaglobulinemia, typical of lipopolysaccharide-responsive and beige-like anchor (LRBA) or cytotoxic T lymphocyte antigen 4 (CTLA4) deficiencies. Gene-panel sequencing, comparative genomic hybridization (CGH) array, and WES failed to reveal a genetic aberration in relevant genes. WGS of these patients detected a 12.3 kb homozygous tandem duplication that was absent in control cohorts and is predicted to disrupt the reading frame of the LRBA gene. The variant was validated by PCR and Sanger sequencing, demonstrating the presence of the junction between the reference and the tandem-duplicated sequence. Droplet digital PCR (ddPCR) further confirmed the copy number in the unaffected parents (CN = 3, heterozygous) and affected siblings (CN = 4, homozygous), confirming the expected segregation pattern. In cases of suspected inherited immunodeficiency, WGS may reveal a mutation when other methods such as microarray and WES analysis failed to detect an aberration.
Collapse
Affiliation(s)
- Daniele Merico
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 0A4 ON Canada ,Deep Genomics Inc., Toronto, M5G 1M1 ON Canada
| | - Yehonatan Pasternak
- Canadian Center for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Toronto, M5G1X8 ON Canada ,grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Mehdi Zarrei
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 0A4 ON Canada
| | - Edward J. Higginbotham
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 0A4 ON Canada
| | - Bhooma Thiruvahindrapuram
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 0A4 ON Canada
| | - Ori Scott
- Canadian Center for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Toronto, M5G1X8 ON Canada ,grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Jessica Willett-Pachul
- grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada
| | - Eyal Grunebaum
- grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Julia Upton
- grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Adelle Atkinson
- grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Vy H. D. Kim
- grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| | - Elbay Aliyev
- grid.467063.00000 0004 0397 4222Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Khalid Fakhro
- grid.467063.00000 0004 0397 4222Department of Human Genetics, Sidra Medicine, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Genetic Medicine, Weill-Cornell Medical College, Doha, Qatar
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, M5G 0A4 ON Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8 ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre, University of Toronto, Toronto, M5G 0A4 ON Canada
| | - Chaim M. Roifman
- Canadian Center for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Toronto, M5G1X8 ON Canada ,grid.42327.300000 0004 0473 9646Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, Toronto, M5G 1×8 ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto, Toronto, M5S 1A8 ON Canada
| |
Collapse
|
33
|
Ringwald M, Richardson JE, Baldarelli RM, Blake JA, Kadin JA, Smith C, Bult CJ. Mouse Genome Informatics (MGI): latest news from MGD and GXD. Mamm Genome 2021; 33:4-18. [PMID: 34698891 PMCID: PMC8913530 DOI: 10.1007/s00335-021-09921-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022]
Abstract
The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI's mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI's two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org .
Collapse
|
34
|
ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun 2021; 12:4974. [PMID: 34404802 PMCID: PMC8371122 DOI: 10.1038/s41467-021-25239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. Here, we identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the ‘ELMO1 interactome’ in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. Osteoporosis and bone fractures affect millions of patients worldwide and are often due to increased bone resorption. Here the authors identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ promoting the bone resorption function of osteoclasts.
Collapse
|
35
|
Shan M, Ji X, Janssen K, Silverman IM, Humenik J, Garcia BA, Liebhaber SA, Gregory BD. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis. Life Sci Alliance 2021; 4:4/9/e202000659. [PMID: 34315813 PMCID: PMC8321672 DOI: 10.26508/lsa.202000659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Two features of eukaryotic RNA molecules that regulate their post-transcriptional fates are RNA secondary structure and RNA-binding protein (RBP) interaction sites. However, a comprehensive global overview of the dynamic nature of these sequence features during erythropoiesis has never been obtained. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approach to reveal the global landscape of RNA secondary structure and RBP-RNA interaction sites and the dynamics of these features during this important developmental process. We identify dynamic patterns of RNA secondary structure and RBP binding throughout the process and determine a set of corresponding protein-bound sequence motifs along with their dynamic structural and RBP-binding contexts. Finally, using these dynamically bound sequences, we identify a number of RBPs that have known and putative key functions in post-transcriptional regulation during mammalian erythropoiesis. In total, this global analysis reveals new post-transcriptional regulators of mammalian blood cell development.
Collapse
Affiliation(s)
- Mengge Shan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Kevin Janssen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ben A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA .,Department of Medicine, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA .,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| |
Collapse
|
36
|
Das B, Mitra P. Protein Interaction Network-based Deep Learning Framework for Identifying Disease-Associated Human Proteins. J Mol Biol 2021; 433:167149. [PMID: 34271012 DOI: 10.1016/j.jmb.2021.167149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Infectious diseases in humans appear to be one of the most primary public health issues. Identification of novel disease-associated proteins will furnish an efficient recognition of the novel therapeutic targets. Here, we develop a Graph Convolutional Network (GCN)-based model called PINDeL to identify the disease-associated host proteins by integrating the human Protein Locality Graph and its corresponding topological features. Because of the amalgamation of GCN with the protein interaction network, PINDeL achieves the highest accuracy of 83.45% while AUROC and AUPRC values are 0.90 and 0.88, respectively. With high accuracy, recall, F1-score, specificity, AUROC, and AUPRC, PINDeL outperforms other existing machine-learning and deep-learning techniques for disease gene/protein identification in humans. Application of PINDeL on an independent dataset of 24320 proteins, which are not used for training, validation, or testing purposes, predicts 6448 new disease-protein associations of which we verify 3196 disease-proteins through experimental evidence like disease ontology, Gene Ontology, and KEGG pathway enrichment analyses. Our investigation informs that experimentally-verified 748 proteins are indeed responsible for pathogen-host protein interactions of which 22 disease-proteins share their association with multiple diseases such as cancer, aging, chem-dependency, pharmacogenomics, normal variation, infection, and immune-related diseases. This unique Graph Convolution Network-based prediction model is of utmost use in large-scale disease-protein association prediction and hence, will provide crucial insights on disease pathogenesis and will further aid in developing novel therapeutics.
Collapse
Affiliation(s)
- Barnali Das
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur 721302, India.
| |
Collapse
|
37
|
Pembroke WG, Hartl CL, Geschwind DH. Evolutionary conservation and divergence of the human brain transcriptome. Genome Biol 2021; 22:52. [PMID: 33514394 PMCID: PMC7844938 DOI: 10.1186/s13059-020-02257-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mouse models have allowed for the direct interrogation of genetic effects on molecular, physiological, and behavioral brain phenotypes. However, it is unknown to what extent neurological or psychiatric traits may be human- or primate-specific and therefore which components can be faithfully recapitulated in mouse models. Results We compare conservation of co-expression in 116 independent data sets derived from human, mouse, and non-human primate representing more than 15,000 total samples. We observe greater changes occurring on the human lineage than mouse, and substantial regional variation that highlights cerebral cortex as the most diverged region. Glia, notably microglia, astrocytes, and oligodendrocytes are the most divergent cell type, three times more on average than neurons. We show that cis-regulatory sequence divergence explains a significant fraction of co-expression divergence. Moreover, protein coding sequence constraint parallels co-expression conservation, such that genes with loss of function intolerance are enriched in neuronal, rather than glial modules. We identify dozens of human neuropsychiatric and neurodegenerative disease risk genes, such as COMT, PSEN-1, LRRK2, SHANK3, and SNCA, with highly divergent co-expression between mouse and human and show that 3D human brain organoids recapitulate in vivo co-expression modules representing several human cell types. Conclusions We identify robust co-expression modules reflecting whole-brain and regional patterns of gene expression. Compared with those that represent basic metabolic processes, cell-type-specific modules, most prominently glial modules, are the most divergent between species. These data and analyses serve as a foundational resource to guide human disease modeling and its interpretation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-020-02257-z.
Collapse
Affiliation(s)
- William G Pembroke
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Christopher L Hartl
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Marakhonov AV, Přechová M, Konovalov FA, Filatova AY, Zamkova MA, Kanivets IV, Solonichenko VG, Semenova NA, Zinchenko RA, Treisman R, Skoblov MY. Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia. Clin Genet 2021; 99:673-683. [PMID: 33463715 PMCID: PMC8629116 DOI: 10.1111/cge.13926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Abstract
A young boy with multifocal epilepsy with infantile spasms and hypsarrhythmia with minimal organic lesions of brain structures underwent DNA diagnosis using whole‐exome sequencing. A heterozygous amino‐acid substitution p.L519R in a PHACTR1 gene was identified. PHACTR1 belongs to a protein family of G‐actin binding protein phosphatase 1 (PP1) cofactors and was not previously associated with a human disease. The missense single nucleotide variant in the proband was shown to occur de novo in the paternal allele. The mutation was shown in vitro to reduce the affinity of PHACTR1 for G‐actin, and to increase its propensity to form complexes with the catalytic subunit of PP1. These properties are associated with altered subcellular localization of PHACTR1 and increased ability to induce cytoskeletal rearrangements. Although the molecular role of the PHACTR1 in neuronal excitability and differentiation remains to be defined, PHACTR1 has been previously shown to be involved in Slack channelopathy pathogenesis, consistent with our findings. We conclude that this activating mutation in PHACTR1 causes a severe type of sporadic multifocal epilepsy in the patient.
Collapse
Affiliation(s)
- Andrey V Marakhonov
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Magdalena Přechová
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Signalling and Transcription Laboratory, Francis Crick Institute, London, UK
| | | | - Alexandra Yu Filatova
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Maria A Zamkova
- Laboratory of Regulatory Mechanisms in Immunity, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Ilya V Kanivets
- Laboratory of Molecular Pathology, Genomed Ltd., Moscow, Russia.,Medical Genetic Centre, Filatov Moscow Pediatric Clinical Hospital, Moscow, Russia
| | | | - Natalia A Semenova
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| | - Rena A Zinchenko
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia.,N.A. Semashko National Research Institute of Public Health, Moscow, Russia
| | - Richard Treisman
- Signalling and Transcription Laboratory, Francis Crick Institute, London, UK
| | - Mikhail Yu Skoblov
- Laboratory of Genetic Epidemiology, Laboratory of Functional Genomics, Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
39
|
Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Sci Rep 2021; 11:2012. [PMID: 33479312 PMCID: PMC7820276 DOI: 10.1038/s41598-021-81244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.
Collapse
|
40
|
Bi-allelic BRWD1 variants cause male infertility with asthenoteratozoospermia and likely primary ciliary dyskinesia. Hum Genet 2021; 140:761-773. [PMID: 33389130 DOI: 10.1007/s00439-020-02241-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Genetics-associated asthenoteratozoospermia is often seen in patients with multiple morphological abnormalities of the sperm flagella (MMAF). Although 24 causative genes have been identified, these explain only approximately half of patients with MMAF. Since sperm flagella and motile cilia (especially respiratory cilia) have similar axonemal structures, many patients with MMAF also exhibit respiratory symptoms, such as recurrent airway infection, chronic sinusitis, and bronchiectasis, which are frequently associated with primary ciliary dyskinesia (PCD), another recessive disorder. Here, exome sequencing was conducted to evaluate the genetic cause in 53 patients with MMAF and classic PCD/PCD-like symptoms. Two homozygous missense variants and a compound-heterozygous variant in the BRWD1 gene were identified in three unrelated individuals. BRWD1 staining was detected in the whole flagella and respiratory cilia of normal controls but was absent in BRWD1-mutated individuals. Transmission electron microscopy and immunostaining demonstrated that BRWD1 deficiency in human affected respiratory cilia and sperm flagella differently, as the absence of outer and inner dynein arms in sperm flagellum and respiratory cilia, while with a decreased number and outer doublet microtubule defects of respiratory cilia. To our knowledge, this is the first report of a BRWD1-variant-related disease in humans, manifesting as an autosomal recessive form of MMAF and PCD/PCD-like symptoms. Our data provide a basis for further exploring the molecular mechanism of BRWD1 gene during spermatogenesis and ciliogenesis.
Collapse
|
41
|
Wanner NM, Colwell M, Drown C, Faulk C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:890-900. [PMID: 32579259 PMCID: PMC7765463 DOI: 10.1002/em.22396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 05/15/2023]
Abstract
Use of cannabidiol (CBD), the most abundant non-psychoactive compound found in cannabis (Cannabis sativa), has recently increased as a result of widespread availability of CBD-containing products. CBD is FDA-approved for the treatment of epilepsy and exhibits anxiolytic, antipsychotic, prosocial, and other behavioral effects in animal studies and clinical trials, however, the underlying mechanisms governing these phenotypes are still being elucidated. The epigenome, particularly DNA methylation, is responsive to environmental input and can govern persistent patterns of gene regulation affecting phenotype across the life course. In order to understand the epigenomic activity of cannabidiol exposure in the adult brain, 12-week-old male wild-type a/a Agouti viable yellow (Avy ) mice were exposed to either 20 mg/kg CBD or vehicle daily by oral administration for 14 days. Hippocampal tissue was collected and reduced-representation bisulfite sequencing (RRBS) was performed. Analyses revealed 3,323 differentially methylated loci (DMLs) in CBD-exposed animals with a small skew toward global hypomethylation. Genes for cell adhesion and migration, dendritic spine development, and excitatory postsynaptic potential were found to be enriched in a gene ontology term analysis of DML-containing genes, and disease ontology enrichment revealed an overrepresentation of DMLs in gene sets associated with autism spectrum disorder, schizophrenia, and other phenotypes. These results suggest that the epigenome may be a key substrate for CBD's behavioral effects and provides a wealth of gene regulatory information for further study.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine
| | | | - Chelsea Drown
- Department of Animal Science, University of Minnesota
| | | |
Collapse
|
42
|
Williams EE, Dassios T, Murthy V, Greenough A. Anatomical deadspace during resuscitation of infants with congenital diaphragmatic hernia. Early Hum Dev 2020; 149:105150. [PMID: 32777695 DOI: 10.1016/j.earlhumdev.2020.105150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) has a high mortality and morbidity related to pulmonary hypoplasia. AIMS To test the hypothesis that CDH infants who survived would have a greater anatomical deadspace reflecting less severe pulmonary hypoplasia. Furthermore, infants with CDH who had undergone feto-tracheal occlusion (FETO) would have a greater anatomical deadspace. STUDY DESIGN Infants were studied during resuscitation in the delivery suite. They were all intubated immediately at delivery, given a neuromuscular blocking agent and underwent respiratory monitoring. The anatomical deadspace was calculated from volumetric capnography measurements. SUBJECTS Thirty infants born at 32 weeks of gestation or greater and diagnosed antenatally with a CDH were studied. Eleven had undergone FETO and overall five died. OUTCOME MEASURES Anatomical deadspace (VdANA) and survival to discharge. RESULTS The median (IQR) gestational age of the infants was 38.1 (35.2-39.3) weeks and birthweight 2.8 (2.3-3.3) kg. The anatomical deadspace was higher in those infants who survived (2.9 (2.8-3.3) mls/kg) compared to those who died (2.2 (2.1-2.7) mls/kg; p = 0.003) and was higher in those who had undergone FETO (3.0 (2.8-3.8) mls/kg) compared to those who had not (2.8 (2.4-3.0) mls/kg; p = 0.032). In predicting survival to discharge, the anatomical deadspace had an AUC of 0.90 (p = 0.006). CONCLUSIONS CDH infants who survived had a larger anatomical deadspace than those who died suggesting they had less lung hypoplasia. In addition, infants who had undergone FETO had greater anatomical deadspace possibly reflecting distension of the conducting airways.
Collapse
Affiliation(s)
- Emma E Williams
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, SE5 9RS, United Kingdom
| | - Theodore Dassios
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, SE5 9RS, United Kingdom; Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom.
| | - Vadivelam Murthy
- Neonatal Intensive Care Centre, The Royal London Hospital-Barts Health NHS Foundation Trust, London E1 11B, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, SE5 9RS, United Kingdom; Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London, SE1 9RT, United Kingdom; NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust, King's College London, SE1 9RT, United Kingdom
| |
Collapse
|
43
|
Nakamura H, Doi T, Puri P, Friedmacher F. Transgenic animal models of congenital diaphragmatic hernia: a comprehensive overview of candidate genes and signaling pathways. Pediatr Surg Int 2020; 36:991-997. [PMID: 32591848 PMCID: PMC7385019 DOI: 10.1007/s00383-020-04705-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by incomplete formation of the diaphragm. Because CDH herniation occurs at the same time as preacinar airway branching, normal lung development becomes severely disrupted, resulting almost invariably in pulmonary hypoplasia. Despite various research efforts over the past decades, the pathogenesis of CDH and associated lung hypoplasia remains poorly understood. With the advent of molecular techniques, transgenic animal models of CDH have generated a large number of candidate genes, thus providing a novel basis for future research and treatment. This review article offers a comprehensive overview of genes and signaling pathways implicated in CDH etiology, whilst also discussing strengths and limitations of transgenic animal models in relation to the human condition.
Collapse
Affiliation(s)
- Hiroki Nakamura
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Takashi Doi
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Beacon Hospital, University College Dublin, Dublin, Ireland
| | - Florian Friedmacher
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
44
|
Readhead B, Haure-Mirande JV, Mastroeni D, Audrain M, Fanutza T, Kim SH, Blitzer RD, Gandy S, Dudley JT, Ehrlich ME. miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease. Acta Neuropathol 2020; 140:295-315. [PMID: 32666270 PMCID: PMC8414561 DOI: 10.1007/s00401-020-02185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aβ deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid β peptide (Aβ).
Collapse
Affiliation(s)
- Ben Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tomas Fanutza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soong H Kim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alzheimer's Disease Research Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, 10029, USA
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY, 10468, USA
| | - Joel T Dudley
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Michelle E Ehrlich
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
45
|
Edris Sharif Rahmani, Azarpara H, Abazari MF, Mohajeri MR, Nasimi M, Ghorbani R, Azizpour A, Rahimi H. Novel Mutation C.7348C>T in NF1 Gene Identified by Whole-Exome Sequencing in Patient with Overlapping Clinical Symptoms of Neurofibromatosis Type 1 and Bannayan–Riley–Ruvalcaba Syndrome. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Gershoni M, Hauser R, Barda S, Lehavi O, Arama E, Pietrokovski S, Kleiman SE. A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest. Hum Reprod 2020; 34:666-671. [PMID: 30838384 DOI: 10.1093/humrep/dez016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Are there genetic variants that can be used for the clinical evaluation of azoospermic men? SUMMARY ANSWER A novel homozygous frame-shift mutation in the MEIOB gene was identified in three azoospermic patients from two different families. WHAT IS KNOWN ALREADY Up to 1% of all men have complete absence of sperm in the semen, a condition known as azoospermia. There are very few tools for determining the etiology of azoospermia and the likelihood of sperm cells in the testis. The MEIOB gene codes for a single-strand DNA binding protein required for DNA double-strand breaks repair during meiosis. MEIOB appears to be exclusively expressed in human and mouse testis, and MeioB knockout mice are azoospermic due to meiotic arrest. STUDY DESIGN, SIZE, DURATION Two brothers with non-obstructive azoospermia (NOA) underwent whole-exome sequencing followed by comprehensive bioinformatics analyses. Candidate variations were further screened in infertile and fertile men, as well as in public and local reference databases. PARTICIPANTS/MATERIALS, SETTING, METHODS This study included 159 infertile and 77 fertile men. The exomes of two Arab men were completely sequenced. In addition, 213 other men of the same Arab ethnicity (136 infertile and 77 fertile men) underwent restriction fragment length polymorphism (RFLP) screening, as did 21 NOA men, of other ethnicities, with testicular impairment of spermatocyte arrest. All of the infertile men underwent Y-chromosome microdeletion and CFTR gene mutation assessments. Comprehensive bioinformatics analyses were designed to uncover candidate mutations associated with azoospermia. MAIN RESULTS AND THE ROLE OF CHANCE A novel homozygous frame-shift mutation in the MEIOB gene was identified in two brothers of Arab ethnicity. This frame-shift is predicted to result in a truncated MEIOB protein, which lacks the conserved C-terminal DNA binding domain. RFLP screening of the mutation in 157 infertile men, including 112 NOA patients of Arab ethnicity, identified an additional unrelated NOA patient with the same homozygous mutation and a similar testicular impairment. This mutation was not found in available public databases (n > 160 000), nor in the 77 proven fertile men, nor in our database of local Israeli population variations derived from exome and genome sequencing data (n = 500). LIMITATIONS, REASONS FOR CAUTION We have thus far screened for only two specific MEIOB probable pathogenic mutations in a relatively small local cohort. Therefore, the relative incidence of MEIOB mutations in azoospermia should be further assessed in larger and diverse cohorts in order to determine the efficiency of MEIOB sequence screening for clinical evaluations. WIDER IMPLICATIONS OF THE FINDINGS The relatively high incidence of likely NOA-causing mutations in MEIOB that was found in our cohort supports the idea that a complete screening of this gene might be beneficial for clinical evaluation of NOA patients. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by a grant to EA from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC grant agreement (616088). There are no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Moran Gershoni
- ARO-The Volcani Center, Institute of Animal Science, Bet Dagan, Israel.,Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimi Barda
- Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra E Kleiman
- Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Fried NT, Chamessian A, Zylka MJ, Abdus-Saboor I. Improving pain assessment in mice and rats with advanced videography and computational approaches. Pain 2020; 161:1420-1424. [PMID: 32102021 PMCID: PMC7302333 DOI: 10.1097/j.pain.0000000000001843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Nathan T. Fried
- Department of Biology, Rutgers University-Camden, Camden, NJ, United States
| | - Alexander Chamessian
- Departments of Neurology and
- Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark J. Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
48
|
Kerr CH, Skinnider MA, Andrews DDT, Madero AM, Chan QWT, Stacey RG, Stoynov N, Jan E, Foster LJ. Dynamic rewiring of the human interactome by interferon signaling. Genome Biol 2020; 21:140. [PMID: 32539747 PMCID: PMC7294662 DOI: 10.1186/s13059-020-02050-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The type I interferon (IFN) response is an ancient pathway that protects cells against viral pathogens by inducing the transcription of hundreds of IFN-stimulated genes. Comprehensive catalogs of IFN-stimulated genes have been established across species and cell types by transcriptomic and biochemical approaches, but their antiviral mechanisms remain incompletely characterized. Here, we apply a combination of quantitative proteomic approaches to describe the effects of IFN signaling on the human proteome, and apply protein correlation profiling to map IFN-induced rearrangements in the human protein-protein interaction network. RESULTS We identify > 26,000 protein interactions in IFN-stimulated and unstimulated cells, many of which involve proteins associated with human disease and are observed exclusively within the IFN-stimulated network. Differential network analysis reveals interaction rewiring across a surprisingly broad spectrum of cellular pathways in the antiviral response. We identify IFN-dependent protein-protein interactions mediating novel regulatory mechanisms at the transcriptional and translational levels, with one such interaction modulating the transcriptional activity of STAT1. Moreover, we reveal IFN-dependent changes in ribosomal composition that act to buffer IFN-stimulated gene protein synthesis. CONCLUSIONS Our map of the IFN interactome provides a global view of the complex cellular networks activated during the antiviral response, placing IFN-stimulated genes in a functional context, and serves as a framework to understand how these networks are dysregulated in autoimmune or inflammatory disease.
Collapse
Affiliation(s)
- Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Current Address: Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Daniel D T Andrews
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angel M Madero
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
49
|
Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. Mouse Genome Database (MGD) 2019. Nucleic Acids Res 2020; 47:D801-D806. [PMID: 30407599 PMCID: PMC6323923 DOI: 10.1093/nar/gky1056] [Citation(s) in RCA: 503] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism genetic and genome resource for the laboratory mouse. MGD is the authoritative source for biological reference data sets related to mouse genes, gene functions, phenotypes, and mouse models of human disease. MGD is the primary outlet for official gene, allele and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. In this report we describe significant enhancements to MGD, including two new graphical user interfaces: (i) the Multi Genome Viewer for exploring the genomes of multiple mouse strains and (ii) the Phenotype-Gene Expression matrix which was developed in collaboration with the Gene Expression Database (GXD) and allows researchers to compare gene expression and phenotype annotations for mouse genes. Other recent improvements include enhanced efficiency of our literature curation processes and the incorporation of Transcriptional Start Site (TSS) annotations from RIKEN's FANTOM 5 initiative.
Collapse
Affiliation(s)
- Carol J Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Judith A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cynthia L Smith
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - James A Kadin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
50
|
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581:434-443. [PMID: 32461654 PMCID: PMC7334197 DOI: 10.1038/s41586-020-2308-7] [Citation(s) in RCA: 6119] [Impact Index Per Article: 1223.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/26/2020] [Indexed: 12/04/2022]
Abstract
Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
Collapse
Affiliation(s)
- Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| | - Laurent C Francioli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Tiao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Beryl B Cummings
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Jessica Alföldi
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Qingbo Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Ryan L Collins
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea Ganna
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Daniel P Birnbaum
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Laura D Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Rhodes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London and Barts Health NHS Trust, London, UK
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eleanor G Seaby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jack A Kosmicki
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Raymond K Walters
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine Tashman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yossi Farjoun
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Banks
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy Poterba
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arcturus Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cotton Seed
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Trust, London, UK
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma Pierce-Hoffman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Zachary Zappala
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Vertex Pharmaceuticals Inc, Boston, MA, USA
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eric Vallabh Minikel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - James S Ware
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Trust, London, UK
| | - Christopher Vittal
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Irina M Armean
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Louis Bergelson
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristian Cibulskis
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Miguel Covarrubias
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey Donnelly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Ferriera
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey Gabriel
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeff Gentry
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault Jeandet
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Kaplan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ruchi Munshi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sam Novod
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikelle Petrillo
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Roazen
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Andrea Saltzman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly Schleicher
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jose Soto
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathleen Tibbetts
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Tolonen
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gordon Wade
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|