1
|
Mohanan G, Roy R, Malka-Mahieu H, Lamba S, Fabbri L, Kalia S, Biswas A, Martineau S, M Labbé C, Vagner S, Rajyaguru PI. Genotoxic stress triggers Scd6-dependent regulation of translation to modulate the DNA damage response. EMBO Rep 2025; 26:2715-2739. [PMID: 40275106 PMCID: PMC12116771 DOI: 10.1038/s44319-025-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
The role of mRNA translation and decay in the genotoxic stress response remains poorly explored. Here, we identify the role of yeast RGG motif-containing RNA binding protein Scd6 and its human ortholog LSM14A in genotoxic stress response. Scd6 localizes to cytoplasmic puncta upon cell treatment with various genotoxic agents. Scd6 genetically interacts with SRS2, a DNA helicase with an anti-recombination role in DNA damage repair under HU stress. Scd6 directly interacts with the SRS2 mRNA to repress its translation in cytoplasmic granules upon HU stress in an eIF4G1-independent manner. Scd6-SRS2 interaction is modulated by arginine methylation and the LSm-domain of Scd6, which acts as a cis-regulator of Scd6 arginine methylation. LSM14A regulates the translation of mRNAs encoding key NHEJ (Non-homologous end-joining) proteins such as RTEL1 (SRS2 functional homolog) and LIG4. NHEJ activity in yeast and mammalian cells is regulated by Scd6 and LSM14A, respectively. Overall, this report unveils the role of RNA binding proteins in regulating the translation of specific mRNAs coding for DNA damage response proteins upon genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Raju Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
- University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Malka-Mahieu
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Swati Lamba
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Sidhant Kalia
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Anusmita Biswas
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Céline M Labbé
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405, Orsay, France.
| | | |
Collapse
|
2
|
Huo J, Wei A, Guo N, Wang R, Bi X. The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance. Int J Mol Sci 2025; 26:3255. [PMID: 40244093 PMCID: PMC11989408 DOI: 10.3390/ijms26073255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one found in a canonical HMGB protein. Hmo1 has diverse functions in genome maintenance and gene regulation. It is implicated in DNA damage tolerance (DDT) that enables DNA replication to bypass lesions on the template. Hmo1 is believed to direct DNA lesions to the error-free template switching (TS) pathway of DDT and to aid in the formation of the key TS intermediate sister chromatid junction (SCJ), but the underlying mechanisms have yet to be resolved. In this work, we used genetic and molecular biology approaches to further investigate the role of Hmo1 in DDT. We found extensive functional interactions of Hmo1 with components of the genome integrity network in cellular response to the genotoxin methyl methanesulfonate (MMS), implicating Hmo1 in the execution or regulation of homology-directed DNA repair, replication-coupled chromatin assembly, and the DNA damage checkpoint. Notably, our data pointed to a role for Hmo1 in directing SCJ to the nuclease-mediated resolution pathway instead of the helicase/topoisomerase mediated dissolution pathway for processing/removal. They also suggested that Hmo1 modulates both the recycling of parental histones and the deposition of newly synthesized histones on nascent DNA at the replication fork to ensure proper chromatin formation. We found evidence that Hmo1 counteracts the function of histone H2A variant H2A.Z (Htz1 in yeast) in DDT possibly due to their opposing effects on DNA resection. We showed that Hmo1 promotes DNA negative supercoiling as a proxy of chromatin structure and MMS-induced DNA damage checkpoint signaling, which is independent of the CTD of Hmo1. Moreover, we obtained evidence indicating that whether the CTD of Hmo1 contributes to its function in DDT is dependent on the host's genetic background. Taken together, our findings demonstrated that Hmo1 can contribute to, or regulate, multiple processes of DDT via different mechanisms.
Collapse
Affiliation(s)
- Jinlong Huo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Anhui Wei
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- Institute of Frontier Medical Sciences, Jilin University, Changchun 130021, China
| | - Na Guo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruotong Wang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| | - Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; (J.H.); (A.W.); (N.G.); (R.W.)
| |
Collapse
|
3
|
Ashraf R, Polasek-Sedlackova H, Marini V, Prochazkova J, Hasanova Z, Zacpalova M, Boudova M, Krejci L. RECQ4-MUS81 interaction contributes to telomere maintenance with implications to Rothmund-Thomson syndrome. Nat Commun 2025; 16:1302. [PMID: 39900600 PMCID: PMC11791078 DOI: 10.1038/s41467-025-56518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Replication stress, particularly in hard-to-replicate regions such as telomeres and centromeres, leads to the accumulation of replication intermediates that must be processed to ensure proper chromosome segregation. In this study, we identify a critical role for the interaction between RECQ4 and MUS81 in managing such stress. We show that RECQ4 physically interacts with MUS81, targeting it to specific DNA substrates and enhancing its endonuclease activity. Loss of this interaction, results in significant chromosomal segregation defects, including the accumulation of micronuclei, anaphase bridges, and ultrafine bridges (UFBs). Our data further demonstrate that the RECQ4-MUS81 interaction plays an important role in ALT-positive cells, where MUS81 foci primarily colocalise with telomeres, highlighting its role in telomere maintenance. We also observe that a mutation associated with Rothmund-Thomson syndrome, which produces a truncated RECQ4 unable to interact with MUS81, recapitulates these chromosome instability phenotypes. This underscores the importance of RECQ4-MUS81 in safeguarding genome integrity and suggests potential implications for human disease. Our findings demonstrate the RECQ4-MUS81 interaction as a key mechanism in alleviating replication stress at hard-to-replicate regions and highlight its relevance in pathological conditions such as RTS.
Collapse
Affiliation(s)
- Raghib Ashraf
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Hana Polasek-Sedlackova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Jana Prochazkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Zdenka Hasanova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Michala Boudova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno, 62500, Czech Republic.
| |
Collapse
|
4
|
Sugiyama Y, Okada S, Daigaku Y, Kusumoto E, Ito T. Strategic targeting of Cas9 nickase induces large segmental duplications. CELL GENOMICS 2024; 4:100610. [PMID: 39053455 PMCID: PMC11406185 DOI: 10.1016/j.xgen.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Gene/segmental duplications play crucial roles in genome evolution and variation. Here, we introduce paired nicking-induced amplification (PNAmp) for their experimental induction. PNAmp strategically places two Cas9 nickases upstream and downstream of a replication origin on opposite strands. This configuration directs the sister replication forks initiated from the origin to break at the nicks, generating a pair of one-ended double-strand breaks. If homologous sequences flank the two break sites, then end resection converts them to single-stranded DNAs that readily anneal to drive duplication of the region bounded by the homologous sequences. PNAmp induces duplication of segments as large as ∼1 Mb with efficiencies exceeding 10% in the budding yeast Saccharomyces cerevisiae. Furthermore, appropriate splint DNAs allow PNAmp to duplicate/multiplicate even segments not bounded by homologous sequences. We also provide evidence for PNAmp in mammalian cells. Therefore, PNAmp provides a prototype method to induce structural variations by manipulating replication fork progression.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Emiko Kusumoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
5
|
Carreira R, Lama-Diaz T, Crugeiras M, Aguado F, Sebesta M, Krejci L, Blanco M. Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors. Nucleic Acids Res 2024; 52:7012-7030. [PMID: 38832625 PMCID: PMC11229367 DOI: 10.1093/nar/gkae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates. Here, we used a biochemical approach to show that the budding yeast SSEs Mus81 and Yen1 possess the ability to cleave the central recombination intermediate known as the displacement loop or D-loop. Moreover, we demonstrate that, consistently with previous genetic data, the simultaneous action of Mus81 and Yen1, followed by ligation, is sufficient to recreate the formation of a half-crossover precursor in vitro. Our results provide not only mechanistic explanation for the formation of a half-crossover, but also highlight the critical importance for precise regulation of these SSEs to prevent chromosomal rearrangements.
Collapse
Affiliation(s)
- Raquel Carreira
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Tomas Lama-Diaz
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Maria Crugeiras
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Marek Sebesta
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
6
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Hawks AL, Bergmann A, McCraw TJ, Mason JM. UBC13-mediated template switching promotes replication stress resistance in FBH1-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556280. [PMID: 37732269 PMCID: PMC10508767 DOI: 10.1101/2023.09.04.556280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The proper resolution of DNA damage during replication is essential for genome stability. FBH1, a UvrD, helicase plays crucial roles in the DNA damage response. FBH1 promotes double strand break formation and signaling in response to prolonged replication stress to initiate apoptosis. Human FBH1 regulates RAD51 to inhibit homologous recombination. A previous study suggested that mis-regulation of RAD51 may contribute to replication stress resistance in FBH1-deficient cells, but the underlying mechanism remains unknown. Here, we provide direct evidence that RAD51 promotes replication stress resistance in FBH1-deficient cells. We demonstrate inhibition of RAD51 using the small molecule, B02, partially rescues double strand break signaling in FBH1-deficient cells. We show that inhibition of only the strand exchange activity of RAD51 rescues double strand break signaling in FBH1 knockout cells. Finally, we show that depletion of UBC13, a E2 protein that promotes RAD51-dependent template switching, rescues double strand break formation and signaling sensitizing FBH1-deficient cells to replication stress. Our results suggest FBH1 regulates template switching to promote replication stress sensitivity.
Collapse
Affiliation(s)
- Alexandra L. Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Amy Bergmann
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Tyler J. McCraw
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Jennifer M. Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| |
Collapse
|
8
|
Marini V, Nikulenkov F, Samadder P, Juul S, Knudsen BR, Krejci L. MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links. BMC Biol 2023; 21:110. [PMID: 37194054 PMCID: PMC10189953 DOI: 10.1186/s12915-023-01614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Pounami Samadder
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic
| | - Sissel Juul
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/B07, Brno, 62500, Czech Republic.
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 60200, Czech Republic.
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/C04, Brno, 625 00, Czech Republic.
| |
Collapse
|
9
|
Phung HTT, Tran DH, Nguyen TX. The cruciform DNA-binding protein Crp1 stimulates the endonuclease activity of Mus81-Mms4 in Saccharomyces cerevisiae. FEBS Lett 2020; 594:4320-4337. [PMID: 32936932 DOI: 10.1002/1873-3468.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/07/2022]
Abstract
The Saccharomyces cerevisiae Mus81-Mms4 complex is a highly conserved DNA structure-specific endonuclease that plays essential roles in the processing of recombination intermediates that arise during the repair of stalled replication forks and double-stranded breaks. To identify novel factors functioning conjointly with Mus81-Mms4, we performed a biochemical screen and found that Crp1, a cruciform DNA-recognizing protein that specifically binds to DNA four-way junction structures, could stimulate the Mus81-Mms4 endonuclease. The specific protein interaction between Mus81-Mms4 and Crp1 was responsible for the stimulation observed. Multicopy expression of Crp1 could partially rescue the sensitivity to DNA-damaging agents of the sgs1∆mus81∆21-24N mutant. Our results provide insight into the functional role and interaction of Crp1 with other proteins involved in DNA repair.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Diem Hong Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ta Xuan Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
11
|
The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51. mBio 2018; 9:mBio.01192-18. [PMID: 30018112 PMCID: PMC6050964 DOI: 10.1128/mbio.01192-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homologous recombination (HR) is a mechanism that repairs a variety of DNA lesions. Under certain circumstances, however, HR can generate intermediates that can interfere with other cellular processes such as DNA transcription or replication. Cells have therefore developed pathways that abolish undesirable HR intermediates. The Saccharomyces cerevisiae yeast Srs2 helicase has a major role in one of these pathways. Srs2 also works during DNA replication and interacts with the clamp PCNA. The relative importance of Srs2’s helicase activity, Rad51 removal function, and PCNA interaction in genome stability remains unclear. We created a new SRS2 allele [srs2(1-850)] that lacks the whole C terminus, containing the interaction site for Rad51 and PCNA and interactions with many other proteins. Thus, the new allele encodes an Srs2 protein bearing only the activity of the DNA helicase. We find that the interactions of Srs2 with Rad51 and PCNA are dispensable for the main role of Srs2 in the repair of DNA damage in vegetative cells and for proper completion of meiosis. On the other hand, it has been shown that in cells impaired for the DNA damage tolerance (DDT) pathways, Srs2 generates toxic intermediates that lead to DNA damage sensitivity; we show that this negative Srs2 activity requires the C terminus of Srs2. Dissection of the genetic interactions of the srs2(1-850) allele suggest a role for Srs2’s helicase activity in sister chromatid cohesion. Our results also indicate that Srs2’s function becomes more central in diploid cells. Homologous recombination (HR) is a key mechanism that repairs damaged DNA. However, this process has to be tightly regulated; failure to regulate it can lead to genome instability. The Srs2 helicase is considered a regulator of HR; it was shown to be able to evict the recombinase Rad51 from DNA. Cells lacking Srs2 exhibit sensitivity to DNA-damaging agents, and in some cases, they display defects in DNA replication. The relative roles of the helicase and Rad51 removal activities of Srs2 in genome stability remain unclear. To address this question, we created a new Srs2 mutant which has only the DNA helicase domain. Our study shows that only the DNA helicase domain is needed to deal with DNA damage and assist in DNA replication during vegetative growth and in meiosis. Thus, our findings shift the view on the role of Srs2 in the maintenance of genome integrity.
Collapse
|
12
|
Phung HTT, Nguyen HLH, Vo ST, Nguyen DH, Le MV. Saccharomyces cerevisiae Mus81-Mms4 and Rad52 can cooperate in the resolution of recombination intermediates. Yeast 2018; 35:543-553. [PMID: 29738624 DOI: 10.1002/yea.3320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/26/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Mus81 is a well-conserved DNA structure-specific endonuclease which belongs to the XPF/Rad1 family of proteins that are involved in DNA nucleotide excision repair. Mus81 forms a heterodimer with a non-catalytic subunit, Mms4, in Saccharomyces cerevisiae (Eme1/EME1 in Schizosaccharomyces pombe and mammals). Recent evidence shows that Mus81 functions redundantly with Sgs1, a member of the ubiquitous RecQ family of DNA helicases, to process toxic recombinant intermediates. In budding yeast, homologous recombination is regulated by the Rad52 epistasis group of proteins, including Rad52, which stimulates the main steps of DNA sequence-homology searching. Mus81 was proven to act in the Rad52-dependent pathway. Here, we demonstrate that Rad52 and Mus81-Mms4 possesses a functional interaction; the presence of Rad52 significantly enhances the endonuclease activity of Mus81-Mms4 on a broad range of its preferred synthetic substrates. Furthermore, this functional interaction is demonstrated to be species specific. We fragmented Rad52 and found that the N-terminal fragment from the 86th to 169th amino acid residue, which belongs to DNA-binding and self-association domains, can stimulate Mus81-Mms4 endonuclease. These results strongly support the notion that Rad52 and Mus81-Mms4 collaborate and work jointly in processing of homologous recombination intermediates.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Hoa Luong Hieu Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Sang Thanh Vo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Dung Hoang Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| | - Minh Van Le
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh city, 700000, Vietnam
| |
Collapse
|
13
|
Phung HTT, Nguyen HLH, Nguyen DH. The possible function of Flp1 in homologous recombination repair in Saccharomyces cerevisiae. AIMS GENETICS 2018; 5:161-176. [PMID: 31435519 PMCID: PMC6698574 DOI: 10.3934/genet.2018.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/18/2018] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae Mus81 is a structure-selective endonuclease which constitutes an alternative pathway in parallel with the helicase-topoisomerase Sgs1-Top3-Rmi1 complex to resolve a number of DNA intermediates during DNA replication, repair, and homologous recombination. Previously, it was showed that the N-terminal region of Mus81 was required for its in vivo function in a redundant manner with Sgs1; mus81Δ120N mutant that lacks the first 120 amino acid residues at the N-terminus exhibited synthetic lethality in combination with the loss of SGS1. In this study, the physiologically important role of the N-terminal region of Mus81 in processing toxic intermediates was further investigated. We examined the cellular defect of sgs1Δmus81Δ100N cells and observed that although viable, the cells became very sensitive to DNA damaging agents. A single-copy suppressor screening to seek for a factor(s) that could rescue the drug sensitivity of sgs1Δmus81Δ100N cells was performed and revealed that Flp1, a site-specific recombinase 1 encoded on the 2-micron plasmid was a suppressor. Moreover, Flp1 overexpression could partially suppress the drug sensitivity of mus81Δ cells at 37 °C. Our findings suggest a possible function of Flp1 in coordination with Mus81 and Sgs1 to jointly resolve the branched-DNA structures generated in cells attempting to repair DNA damages.
Collapse
Affiliation(s)
- Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
| | | | - Dung Hoang Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
| |
Collapse
|
14
|
Wu F, Su SC, Tan GQ, Yan L, Li TY, Zhang HL, Yu JS, Wang BL. Mus81 knockdown sensitizes colon cancer cells to chemotherapeutic drugs by activating CHK1 pathway. Clin Res Hepatol Gastroenterol 2017; 41:592-601. [PMID: 28291626 DOI: 10.1016/j.clinre.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/11/2017] [Accepted: 01/30/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE The inhibition of Mus81, a critical DNA repair gene, is recently related to the chemosensitivity of several human cancer cells such as hepatocellular carcinoma (HCC) cells. However, the role of Mus81 knockdown in chemotherapy response of colon cancer cells remains largely unknown. METHODS AND MATERIALS The effects of Mus81 knockdown by lentivirus-mediated short hairpin RNA in sensitivity of HCT116 and LS180 colon cancer cell lines to four therapeutic drugs, including cisplatin (CDDP), were evaluated by MTT assay as well as a mouse model. Apoptosis and cell cycle distribution of HCT116 cell line was detected by flow cytometric analysis. Western blot was also employed to determine the expression of CHK1 pathway and apoptosis-related proteins in HCT116 cells and the xenograft mouse tumors. RESULTS Mus81 knockdown could significantly improve the chemosensitivity of colon cancer cells in vitro and in vivo, especially to CDDP. Mus81 knockdown also induced S phase arrest and elevated apoptosis in CDDP treated HCT116 cells through activating CHK1/CDC25A/CDK2 and CHK1/p53/Bax pathways, while these effects could be counteracted by CHK1 inhibition. CONCLUSION Mus81 knockdown improves the chemosensitivity of colon cancer cells by inducing S phase arrest and promoting apoptosis through activating CHK1 pathway.
Collapse
Affiliation(s)
- Fan Wu
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China.
| | - Shu-Chao Su
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Guo-Qian Tan
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Lun Yan
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Ting-Yue Li
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Hao-Lu Zhang
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Ji-Shang Yu
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| | - Bai-Lin Wang
- Guangzhou Red Cross Hospital, Medical College, Jinan University, General Surgery, Tongfu Roud 396, 510220 Guangzhou, China
| |
Collapse
|
15
|
Di Marco S, Hasanova Z, Kanagaraj R, Chappidi N, Altmannova V, Menon S, Sedlackova H, Langhoff J, Surendranath K, Hühn D, Bhowmick R, Marini V, Ferrari S, Hickson ID, Krejci L, Janscak P. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Mol Cell 2017; 66:658-671.e8. [PMID: 28575661 DOI: 10.1016/j.molcel.2017.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/14/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.
Collapse
Affiliation(s)
- Stefano Di Marco
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Zdenka Hasanova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
| | - Radhakrishnan Kanagaraj
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nagaraja Chappidi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Veronika Altmannova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, Brno 656 91, Czech Republic
| | - Shruti Menon
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hana Sedlackova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
| | - Jana Langhoff
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kalpana Surendranath
- Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Daniela Hühn
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Insitute Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Victoria Marini
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Insitute Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, Brno 656 91, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Nguyen JHG, Viterbo D, Anand RP, Verra L, Sloan L, Richard GF, Freudenreich CH. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats. Nucleic Acids Res 2017; 45:4519-4531. [PMID: 28175398 PMCID: PMC5416882 DOI: 10.1093/nar/gkx088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Trinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility. However, since Srs2 is a multifunctional protein with helicase activity and the ability to displace Rad51 recombinase, it was unclear which functions were required for its various protective roles. Here, using SRS2 separation-of-function alleles, we show that in the absence of Srs2 recruitment to PCNA or in helicase-deficient mutants, breakage at a CAG/CTG repeat increases. We conclude that Srs2 interaction with PCNA allows the helicase activity to unwind fork-blocking CAG/CTG hairpin structures to prevent breaks. Independently of PCNA binding, Srs2 also displaces Rad51 from nascent strands to prevent recombination-dependent repeat expansions and contractions. By 2D gel electrophoresis, we detect two different kinds of structured intermediates or joint molecules (JMs). Some JMs are Rad51-independent and exhibit properties of reversed forks, including being processed by the Exo1 nuclease. In addition, in a helicase-deficient mutant, Rad51-dependent JMs are detected, probably corresponding to recombination between sisters. These results clarify the many roles of Srs2 in facilitating replication through fork-blocking hairpin lesions.
Collapse
Affiliation(s)
| | - David Viterbo
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | - Ranjith P Anand
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Laura Sloan
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Guy-Franck Richard
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
17
|
Niu H, Klein HL. Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 2017; 17:fow111. [PMID: 28011904 DOI: 10.1093/femsyr/fow111] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae Srs2 DNA helicase has important roles in DNA replication, recombination and repair. In replication, Srs2 aids in repair of gaps by repair synthesis by preventing gaps from being used to initiate recombination. This is considered to be an anti-recombination role. In recombination, Srs2 plays both prorecombination and anti-recombination roles to promote the synthesis-dependent strand annealing recombination pathway and to inhibit gaps from initiating homologous recombination. In repair, the Srs2 helicase actively promotes gap repair through an interaction with the Exo1 nuclease to enlarge a gap for repair and to prevent Rad51 protein from accumulating on single-stranded DNA. Finally, Srs2 helicase can unwind hairpin-forming repeat sequences to promote replication and prevent repeat instability. The Srs2 activities can be controlled by phosphorylation, SUMO modification and interaction with key partners at DNA damage or lesions sites, which include PCNA and Rad51. These interactions can also limit DNA polymerase function during recombinational repair independent of the Srs2 translocase or helicase activity, further highlighting the importance of the Srs2 protein in regulating recombination. Here we review the myriad roles of Srs2 that have been documented in genome maintenance and distinguish between the translocase, helicase and additional functions of the Srs2 protein.
Collapse
Affiliation(s)
- Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M, Técher H, Baldi G, Shen R, Ciccia A, Pellegrini L, Krejci L, Costanzo V. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Mol Cell 2017; 67:867-881.e7. [PMID: 28757209 PMCID: PMC5594205 DOI: 10.1016/j.molcel.2017.07.001] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/14/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022]
Abstract
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Brca2 promotes Rad51 binding to replicating DNA, preventing fork gaps Stable Rad51 nucleofilaments directly protect DNA from Mre11-dependent degradation Smarcal1-dependent fork reversal triggers extensive Mre11-dependent DNA degradation Rad51 directly interacts with Pol α, promoting its function at stalled forks
Collapse
Affiliation(s)
- Arun Mouli Kolinjivadi
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Anna De Antoni
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Karina Zadorozhny
- Department of Biology, Masaryk University, Brno 625 00, Czech Republic
| | - Mairi Kilkenny
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Hervé Técher
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Giorgio Baldi
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Rong Shen
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luca Pellegrini
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 625 00, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Brno 625 00, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 656 91, Czech Republic.
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy.
| |
Collapse
|
19
|
STC2 as a novel mediator for Mus81-dependent proliferation and survival in hepatocellular carcinoma. Cancer Lett 2016; 388:177-186. [PMID: 27939696 DOI: 10.1016/j.canlet.2016.11.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Methyl methansulfonate and UV sensitive gene clone 81 (Mus81) is a critical DNA repair gene that has been implicated in development of several cancers including hepatocellular carcinoma (HCC). However, whether Mus81 can affect proliferation and survival of HCC remains unknown. In the present study, we demonstrated that the knockdown of Mus81 was associated with suppressed proliferation and elevated apoptosis of HCC cells in vitro and in vivo. Multilayered screenings, including DNA microarray, high content screen, and real-time PCR validation, identified STC2 as a proliferation-facilitating gene significantly down-regulated in HCC cells upon Mus81 knockdown. STC2 expression was also closely correlated to Mus81 expression in HCC tissues. More importantly, the restoration of STC2 expression recovered the compromised cell proliferation and survival in Mus81 depleted HCC cells. Furthermore, Mus81 knockdown was associated with the activation of APAF1, APC, and PTEN pathways and concurrent inhibition of MAPK pathway through decreasing STC2 expression. In conclusion, Mus81 knockdown suppresses proliferation and survival of HCC cells likely by downregulating STC2 expression, implicating Mus81 as a therapeutic target for HCC.
Collapse
|
20
|
Sebesta M, Urulangodi M, Stefanovie B, Szakal B, Pacesa M, Lisby M, Branzei D, Krejci L. Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 2016; 45:215-230. [PMID: 27694623 PMCID: PMC5224511 DOI: 10.1093/nar/gkw882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo. Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | | | - Barbora Stefanovie
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic.,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Martin Pacesa
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, IT-20139 Milan, Italy
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic .,Department of Biology, Masaryk University, Kamenice 5/A7, CZ-62500 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Pekarska 53, CZ-656 91 Brno, Czech Republic
| |
Collapse
|
21
|
Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes (Basel) 2016; 7:genes7080048. [PMID: 27548223 PMCID: PMC4999836 DOI: 10.3390/genes7080048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms.
Collapse
|
22
|
Talhaoui I, Bernal M, Mazón G. The nucleolytic resolution of recombination intermediates in yeast mitotic cells. FEMS Yeast Res 2016; 16:fow065. [PMID: 27509904 DOI: 10.1093/femsyr/fow065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
In mitotic cells, the repair of double-strand breaks by homologous recombination (HR) is important for genome integrity. HR requires the orchestration of a subset of pathways for timely removal of joint-molecule intermediates that would otherwise prevent segregation of chromosomes in mitosis. The use of nucleases to resolve recombination intermediates is important for chromosome segregation, but is hazardous because crossovers can result in loss of heterozygosity or chromosome rearrangements. Unregulated use of the nucleases involved in the resolution of recombination intermediates could also be a risk during replication. The yeast models (Saccharomyces cerevisae and Schizosaccharomyces pombe) have proven effective in determining the major nucleases involved in the processing of such intermediates: Mus81-Mms4 and Yen1. Mus81-Mms4 and Yen1 are regulated by the cell cycle in a gradual activation during G2/M to keep the crossing-over risk low while ensuring proper removal of HJ intermediates.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Manuel Bernal
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Gerard Mazón
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) UMR 8200 Genetic Stability and Oncogenesis, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
23
|
Keyamura K, Arai K, Hishida T. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 2016; 12:e1006136. [PMID: 27390022 PMCID: PMC4936719 DOI: 10.1371/journal.pgen.1006136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81–Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability. Homologous recombination (HR) is a DNA-repair mechanism that is generally considered error free because it uses an intact sister chromatid as a template. However, in diploid cells, HR can also occur between homologous chromosomes, which can lead to genomic instability through loss of heterozygosity. This alteration is often detected in genetic disorders and cancer, suggesting that tight control of this process is required to ensure genome stability. Yeast Srs2, conserved from bacteria to humans, plays multiple roles in the regulation of HR. We show here that a helicase-dead mutant of Srs2, srs2K41A, is lethal in diploid cells but not in haploid cells. Expression of Srs2K41A in diploid cells causes inter-homolog joint molecule intermediates to accumulate, and leads to gross chromosomal rearrangements. Moreover, srs2Δ mus81Δ double mutants have a severe diploid-specific growth defect with accumulation of inter-homolog joint molecules. These data demonstrate that Srs2 and Mus81-Mms4 participate in essential pathways preventing accumulation of inter-homolog recombination intermediates, thereby reducing the risk of genome instability.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kota Arai
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Kolesar P, Altmannova V, Silva S, Lisby M, Krejci L. Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 2016; 291:7594-607. [PMID: 26861880 DOI: 10.1074/jbc.m115.685891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Indexed: 11/06/2022] Open
Abstract
Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.
Collapse
Affiliation(s)
- Peter Kolesar
- From the Department of Biology and National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | - Sonia Silva
- the Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark, and
| | - Michael Lisby
- the Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark, and
| | - Lumir Krejci
- From the Department of Biology and National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic, the International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| |
Collapse
|
25
|
Wu F, Chen WJ, Yan L, Tan GQ, Li WT, Zhu XJ, Ge XC, Liu JW, Wang BL. Mus81 knockdown improves chemosensitivity of hepatocellular carcinoma cells by inducing S-phase arrest and promoting apoptosis through CHK1 pathway. Cancer Med 2015; 5:370-85. [PMID: 26714930 PMCID: PMC4735774 DOI: 10.1002/cam4.588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/10/2022] Open
Abstract
As a critical endonuclease in DNA repair, Mus81 is traditionally regarded as a tumor suppressor, but recently correlated with the sensitivity of mitomycin C and 5-fluorouracil in colon cancer and breast cancer cells. However, its role in chemosensitivity of other human malignancies still remains unknown. This study therefore aims to investigate the effects of Mus81 knockdown on the chemosensitivity of hepatocellular carcinoma (HCC), a usually chemorefractory tumor, and explore the underlying mechanisms. Mus81 expression in HepG2 and Bel-7402 HCC cell lines was depleted by lentivirus-mediated short hairpin RNA and the elevated sensitivity of these Mus81-inhibited HCC cells to therapeutic agents, especially to epirubicin (EPI), was evidenced by MTT assay and an HCC chemotherapy mouse model. Flow cytometric analysis also showed that Mus81 knockdown lead to an obvious S-phase arrest and an elevated apoptosis in EPI-treated HepG2 and Bel-7402 cells, which could be rescued by CHK1 inhibition. The activation of CHK1/CDC25A/CDK2 pathway was also demonstrated in Mus81-inhibited HepG2 cells and xenograft mouse tumors under EPI treatment. Meanwhile, the apoptosis of HepG2 cells in response to EPI was remarkably promoted by Mus81 knockdown through activating p53/Bax/Caspase-3 pathway under the controlling of CHK1. In addition, CHK2 inhibition slightly raised CHK1 activity, thereby enhancing the S-phase arrest and apoptosis induced by EPI in Mus81-suppressed HCC cells. In conclusion, Mus81 knockdown improves the chemosensitivity of HCC cells by inducing S-phase arrest and promoting apoptosis through CHK1 pathway, suggesting Mus81 as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Fan Wu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Wei-Jia Chen
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Lun Yan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Guo-Qian Tan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Wei-Tao Li
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Xuan-Jin Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Xiao-Chuan Ge
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Jian-Wei Liu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital /Fourth Affiliated Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, China
| |
Collapse
|