1
|
Maguin P, Varble A, Modell JW, Marraffini LA. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Mol Cell 2022; 82:907-919.e7. [PMID: 35134339 PMCID: PMC8900293 DOI: 10.1016/j.molcel.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022]
Abstract
Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.
Collapse
Affiliation(s)
- Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Joshua W. Modell
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Present address: Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe St., PCTB 803, Baltimore, MD 21205, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.,Correspondence to:
| |
Collapse
|
2
|
Ramos C, Hernández-Tamayo R, López-Sanz M, Carrasco B, Serrano E, Alonso JC, Graumann PL, Ayora S. The RecD2 helicase balances RecA activities. Nucleic Acids Res 2022; 50:3432-3444. [PMID: 35234892 PMCID: PMC8989531 DOI: 10.1093/nar/gkac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.
Collapse
Affiliation(s)
- Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| |
Collapse
|
3
|
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol Rev 2021; 45:fuab031. [PMID: 34104956 PMCID: PMC8632786 DOI: 10.1093/femsre/fuab031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The arms race between (bacterio)phages and their hosts is a recognised hot spot for genome evolution. Indeed, phages and their components have historically paved the way for many molecular biology techniques and biotech applications. Further exploration into their complex lifestyles has revealed that phages are often parasitised by distinct types of hyperparasitic mobile genetic elements. These so-called phage satellites exploit phages to ensure their own propagation and horizontal transfer into new bacterial hosts, and their prevalence and peculiar lifestyle has caught the attention of many researchers. Here, we review the parasite-host dynamics of the known phage satellites, their genomic organisation and their hijacking mechanisms. Finally, we discuss how these elements can be repurposed for diverse biotech applications, kindling a new catalogue of exciting tools for microbiology and synthetic biology.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Steczkiewicz K, Prestel E, Bidnenko E, Szczepankowska AK. Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Front Microbiol 2021; 12:644622. [PMID: 33959107 PMCID: PMC8093625 DOI: 10.3389/fmicb.2021.644622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race.
Collapse
Affiliation(s)
| | - Eric Prestel
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
5
|
The gp44 Ejection Protein of Staphylococcus aureus Bacteriophage 80α Binds to the Ends of the Genome and Protects It from Degradation. Viruses 2020; 12:v12050563. [PMID: 32443723 PMCID: PMC7290940 DOI: 10.3390/v12050563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus pathogenicity islands (SaPIs), mobile genetic elements that carry virulence factor genes. Bacteriophage 80α encodes a minor capsid protein, gp44, between the genes for the portal protein and major capsid protein. Gp44 is essential for a productive infection by 80α but not for transduction of SaPIs or plasmids. We previously demonstrated that gp44 is an ejection protein that acts to promote progression to the lytic cycle upon infection and suggested that the protein might act as an anti-repressor of CI in the lytic–lysogenic switch. However, an 80α Δ44 mutant also exhibited a reduced rate of lysogeny. Here, we show that gp44 is a non-specific DNA binding protein with affinity for the blunt ends of linear DNA. Our data suggest a model in which gp44 promotes circularization of the genome after injection into the host cell, a key initial step both for lytic growth and for the establishment of lysogeny.
Collapse
|
6
|
Serrano E, Ramos C, Ayora S, Alonso JC. Viral SPP1 DNA is infectious in naturally competent Bacillus subtilis cells: inter- and intramolecular recombination pathways. Environ Microbiol 2020; 22:714-725. [PMID: 31876108 DOI: 10.1111/1462-2920.14908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
Abstract
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| |
Collapse
|
7
|
Ciges-Tomas JR, Alite C, Humphrey S, Donderis J, Bowring J, Salvatella X, Penadés JR, Marina A. The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature. Nat Commun 2019; 10:3676. [PMID: 31417084 PMCID: PMC6695447 DOI: 10.1038/s41467-019-11504-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
Stl is a master repressor encoded by Staphylococcus aureus pathogenicity islands (SaPIs) that maintains integration of these elements in the bacterial chromosome. After infection or induction of a resident helper phage, SaPIs are de-repressed by specific interactions of phage proteins with Stl. SaPIs have evolved a fascinating mechanism to ensure their promiscuous transfer by targeting structurally unrelated proteins performing identically conserved functions for the phage. Here we decipher the molecular mechanism of this elegant strategy by determining the structure of SaPIbov1 Stl alone and in complex with two structurally unrelated dUTPases from different S. aureus phages. Remarkably, SaPIbov1 Stl has evolved different domains implicated in DNA and partner recognition specificity. This work presents the solved structure of a SaPI repressor protein and the discovery of a modular repressor that acquires multispecificity through domain recruiting. Our results establish the mechanism that allows widespread dissemination of SaPIs in nature.
Collapse
Affiliation(s)
- J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - J Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain
| | - Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Xavier Salvatella
- ICREA and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08010, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, 46010, Spain.
| |
Collapse
|
8
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
9
|
Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, Fitzgerald JR, Penadés JR. Genome hypermobility by lateral transduction. Science 2018; 362:207-212. [PMID: 30309949 DOI: 10.1126/science.aat5867] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
Genetic transduction is a major evolutionary force that underlies bacterial adaptation. Here we report that the temperate bacteriophages of Staphylococcus aureus engage in a distinct form of transduction we term lateral transduction. Staphylococcal prophages do not follow the previously described excision-replication-packaging pathway but instead excise late in their lytic program. Here, DNA packaging initiates in situ from integrated prophages, and large metameric spans including several hundred kilobases of the S. aureus genome are packaged in phage heads at very high frequency. In situ replication before DNA packaging creates multiple prophage genomes so that lateral-transducing particles form during normal phage maturation, transforming parts of the S. aureus chromosome into hypermobile regions of gene transfer.
Collapse
Affiliation(s)
- John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore.
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Yin Ning Chiang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - Rodrigo Bacigalupe
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - Alfred Fillol-Salom
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Melissa Su Juan Chee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - José R Penadés
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. .,Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Spain.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Hutinet G, Besle A, Son O, McGovern S, Guerois R, Petit MA, Ochsenbein F, Lecointe F. Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein. Front Microbiol 2018; 9:743. [PMID: 29740405 PMCID: PMC5928155 DOI: 10.3389/fmicb.2018.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo, but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro, Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo, though Sak4 and its SSB are unable to promote strand exchange in vitro. Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Arthur Besle
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stephen McGovern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
11
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
12
|
Bowring J, Neamah MM, Donderis J, Mir-Sanchis I, Alite C, Ciges-Tomas JR, Maiques E, Medmedov I, Marina A, Penadés JR. Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer. eLife 2017; 6:26487. [PMID: 28826473 PMCID: PMC5779228 DOI: 10.7554/elife.26487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/07/2017] [Indexed: 11/15/2022] Open
Abstract
Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites. Many harmful microbes can produce different molecules that make them more effective in causing and spreading diseases. These molecules can also be obtained from ‘mobile genetic elements’ that can be transferred between bacteria within a population. Pathogenicity islands are one such type of mobile genetic element and are very common among bacteria known as staphylococci. They spread toxin-encoding genes between bacteria, including one that can lead to a condition called toxic shock syndrome in humans. Pathogenicity islands are normally found within the DNA of the bacteria, where they are deactivated by specific repressor proteins. However, in the presence of another type of mobile genetic element – the bacteriophages – the repressor proteins start to interact with specific proteins encoded by the bacteriophages. This allows the pathogenicity islands to become active and spread to other bacteria. Previous research has shown that in the bacterium known as Staphylococcus aureus, different pathogenicity islands have different repressors. Scientists therefore assumed that the repressors are only able to interact with certain bacteriophage proteins. However, since pathogenicity islands are widespread in nature, it could be possible that they use other ways to hijack the bacteriophage machinery to ensure their transfer. To test this hypothesis, Bowring et al. studied two types of pathogenicity islands in S. aureus and revealed that their two different repressors did not interact with specific bacteriophage proteins as previously hypothesized. Instead, each repressor could interact with multiple bacteriophage proteins that had a variety of different structures, including proteins from completely different bacteriophages. Bowring et al. also discovered that each of the analyzed repressor proteins did not actually recognize any specific shared structural features on the bacteriophage proteins, but rather evolved to target proteins that play the same role in various bacteriophages. This suggests the repressors target a specific process rather than a single protein. This strategy allows them to be transferred within the same species, but also between different ones. A next step will be to better understand how a repressor can recognize structurally unrelated proteins, and establish what evolutionary forces are driving this phenomenon. A deeper knowledge of how pathogenicity islands spread between staphylococci is vital to understand how these bacteria can become resistant to treatments such as antibiotics.
Collapse
Affiliation(s)
- Janine Bowring
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Jorge Donderis
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Christian Alite
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - J Rafael Ciges-Tomas
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Elisa Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain.,Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Iltyar Medmedov
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras, Valencia, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|