1
|
Pepler MAD, Mulholland EL, Montague FR, Elliot MA. Defining the networks that connect RNase III and RNase J-mediated regulation of primary and specialized metabolism in Streptomyces venezuelae. J Bacteriol 2025:e0002425. [PMID: 40227046 DOI: 10.1128/jb.00024-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
RNA metabolism involves coordinating RNA synthesis with RNA processing and degradation. Ribonucleases play fundamental roles within the cell, contributing to the cleavage, modification, and degradation of RNA molecules, with these actions ensuring appropriate gene regulation and cellular homeostasis. Here, we employed RNA sequencing to explore the impact of RNase III and RNase J on the transcriptome of Streptomyces venezuelae. Differential expression analysis comparing wild-type and RNase mutant strains at distinct developmental stages revealed significant changes in transcript abundance, particularly in pathways related to multicellular development, nutrient acquisition, and specialized metabolism. Both RNase mutants exhibited dysregulation of the BldD regulon, including altered expression of many cyclic-di-GMP-associated enzymes. We also observed precocious chloramphenicol production in these RNase mutants and found that in the RNase III mutant, this was associated with PhoP-mediated regulation. We further found that RNase III directly targeted members of the PhoP regulon, suggesting a link between RNA metabolism and a regulator that bridges primary and specialized metabolism. We connected RNase J function with translation through the observation that RNase J directly targets multiple ribosomal protein transcripts for degradation. These findings establish distinct but complementary roles for RNase III and RNase J in coordinating the gene expression dynamics critical for S. venezuelae development and specialized metabolism. IMPORTANCE RNA processing and metabolism are mediated by ribonucleases and are fundamental processes in all cells. In the morphologically complex and metabolically sophisticated Streptomyces bacteria, RNase III and RNase J influence both development and metabolism through poorly understood mechanisms. Here, we show that both ribonucleases are required for the proper expression of the BldD developmental pathway and contribute to the control of chloramphenicol production, with an interesting connection to phosphate regulation for RNase III. Additionally, we show that both RNases have the potential to impact translation through distinct mechanisms and can function cooperatively in degrading specific transcripts. This study advances our understanding of RNases in Streptomyces biology by providing insight into distinct contributions made by these enzymes and the intriguing interplay between them.
Collapse
Affiliation(s)
- Meghan A D Pepler
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Emma L Mulholland
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Freddie R Montague
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Shapiro DM, Deshpande S, Eghtesadi SA, Zhong M, Fontes CM, Fiflis D, Rohm D, Min J, Kaur T, Peng J, Ney M, Su J, Dai Y, Asokan A, Gersbach CA, Chilkoti A. Synthetic biomolecular condensates enhance translation from a target mRNA in living cells. Nat Chem 2025; 17:448-456. [PMID: 39929988 DOI: 10.1038/s41557-024-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/27/2024] [Indexed: 02/21/2025]
Abstract
Biomolecular condensates composed of proteins and RNA are one approach by which cells regulate post-transcriptional gene expression. Their formation typically involves the phase separation of intrinsically disordered proteins with a target mRNA, sequestering the mRNA into a liquid condensate. This sequestration regulates gene expression by modulating translation or facilitating RNA processing. Here we engineer synthetic condensates using a fusion of an RNA-binding protein, the human Pumilio2 homology domain (Pum2), and a synthetic intrinsically disordered protein, an elastin-like polypeptide (ELP), that can bind and sequester a target mRNA transcript. In protocells, sequestration of a target mRNA largely limits its translation. Conversely, in Escherichia coli, sequestration of the same target mRNA increases its translation. We characterize the Pum2-ELP condensate system using microscopy, biophysical and biochemical assays, and RNA sequencing. This approach enables the modulation of cell function via the formation of synthetic biomolecular condensates that regulate the expression of a target protein.
Collapse
Affiliation(s)
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Miranda Zhong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - David Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Junseon Min
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taranpreet Kaur
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joanna Peng
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jonathan Su
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Qureshi NS, Duss O. Tracking transcription-translation coupling in real time. Nature 2025; 637:487-495. [PMID: 39633055 PMCID: PMC11711091 DOI: 10.1038/s41586-024-08308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled1-4. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process5-10, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory. Here we reconstitute a complete and active transcription-translation system and develop multi-colour single-molecule fluorescence microscopy experiments to directly and simultaneously track transcription elongation, translation elongation and the physical and functional coupling between the ribosome and the RNAP in real time. Our data show that physical coupling between ribosome and RNAP can occur over hundreds of nucleotides of intervening mRNA by mRNA looping, a process facilitated by NusG. We detect active transcription elongation during mRNA looping and show that NusA-paused RNAPs can be activated by the ribosome by long-range physical coupling. Conversely, the ribosome slows down while colliding with the RNAP. We hereby provide an alternative explanation for how the ribosome can efficiently rescue RNAP from frequent pausing without requiring collisions by a closely trailing ribosome. Overall, our dynamic data mechanistically highlight an example of how two central macromolecular machineries, the ribosome and RNAP, can physically and functionally cooperate to optimize gene expression.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Gilliot PA, Gorochowski TE. Transfer learning for cross-context prediction of protein expression from 5'UTR sequence. Nucleic Acids Res 2024; 52:e58. [PMID: 38864396 PMCID: PMC11260469 DOI: 10.1093/nar/gkae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Model-guided DNA sequence design can accelerate the reprogramming of living cells. It allows us to engineer more complex biological systems by removing the need to physically assemble and test each potential design. While mechanistic models of gene expression have seen some success in supporting this goal, data-centric, deep learning-based approaches often provide more accurate predictions. This accuracy, however, comes at a cost - a lack of generalization across genetic and experimental contexts that has limited their wider use outside the context in which they were trained. Here, we address this issue by demonstrating how a simple transfer learning procedure can effectively tune a pre-trained deep learning model to predict protein translation rate from 5' untranslated region (5'UTR) sequence for diverse contexts in Escherichia coli using a small number of new measurements. This allows for important model features learnt from expensive massively parallel reporter assays to be easily transferred to new settings. By releasing our trained deep learning model and complementary calibration procedure, this study acts as a starting point for continually refined model-based sequence design that builds on previous knowledge and future experimental efforts.
Collapse
Affiliation(s)
- Pierre-Aurélien Gilliot
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
5
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
6
|
Webster MW, Chauvier A, Rahil H, Graziadei A, Charles K, Takacs M, Saint-André C, Rappsilber J, Walter NG, Weixlbaumer A. Molecular basis of mRNA delivery to the bacterial ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585789. [PMID: 38562847 PMCID: PMC10983998 DOI: 10.1101/2024.03.19.585789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein synthesis begins with the formation of a ribosome-mRNA complex. In bacteria, the 30S ribosomal subunit is recruited to many mRNAs through base pairing with the Shine Dalgarno (SD) sequence and RNA binding by ribosomal protein bS1. Translation can initiate on nascent mRNAs and RNA polymerase (RNAP) can promote recruitment of the pioneering 30S subunit. Here we examined ribosome recruitment to nascent mRNAs using cryo-EM, single-molecule fluorescence co-localization, and in-cell crosslinking mass spectrometry. We show that bS1 delivers the mRNA to the ribosome for SD duplex formation and 30S subunit activation. Additionally, bS1 mediates the stimulation of translation initiation by RNAP. Together, our work provides a mechanistic framework for how the SD duplex, ribosomal proteins and RNAP cooperate in 30S recruitment to mRNAs and establish transcription-translation coupling.
Collapse
Affiliation(s)
- Michael W. Webster
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huma Rahil
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Kristine Charles
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France
- Université de Strasbourg, 67404 Illkirch Cedex, France
- CNRS UMR7104, 67404 Illkirch Cedex, France
- INSERM U1258, 67404 Illkirch Cedex, France
| |
Collapse
|
7
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
8
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
9
|
Zhang W, Ren D, Li Z, Yue L, Whitman WB, Dong X, Li J. Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon. Nucleic Acids Res 2023; 51:7851-7867. [PMID: 37439380 PMCID: PMC10450193 DOI: 10.1093/nar/gkad575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | | | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
10
|
Wang X, N MPA, Jeon HJ, He J, Lim HM. Identification of a Rho-Dependent Termination Site In Vivo Using Synthetic Small RNA. Microbiol Spectr 2023; 11:e0395022. [PMID: 36651730 PMCID: PMC9927376 DOI: 10.1128/spectrum.03950-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Rho promotes Rho-dependent termination (RDT) at the Rho-dependent terminator, producing a variable-length region without secondary structure at the 3' end of mRNA. Determining the exact RDT site in vivo is challenging, because the 3' end of mRNA is rapidly removed after RDT by 3'-to-5' exonuclease processing. Here, we applied synthetic small RNA (sysRNA) to identify the RDT region in vivo by exploiting its complementary base-pairing ability to target mRNA. Through the combined analyses of rapid amplification of cDNA 3' ends, primer extension, and capillary electrophoresis, we could precisely map and quantify mRNA 3' ends. We found that complementary double-stranded RNA (dsRNA) formed between sysRNA and mRNA was efficiently cleaved by RNase III in the middle of the dsRNA region. The formation of dsRNA appeared to protect the cleaved RNA 3' ends from rapid degradation by 3'-to-5' exonuclease, thereby stabilizing the mRNA 3' end. We further verified that the signal intensity at the 3' end was positively correlated with the amount of mRNA. By constructing a series of sysRNAs with close target sites and comparing the difference in signal intensity at the 3' end of wild-type and Rho-impaired strains, we finally identified a region of increased mRNA expression within the 21-bp range, which was determined as the RDT region. Our results demonstrated the ability to use sysRNA as a novel tool to identify RDT regions in vivo and expand the range of applications of sysRNA. IMPORTANCE sysRNA, which was formerly widely employed, has steadily lost popularity as more novel techniques for suppressing gene expression come into existence because of issues such as unstable inhibition effect and low inhibition efficiency. However, it remains an interesting topic as a regulatory tool due to its ease of design and low metabolic burden on cells. Here, for the first time, we discovered a new method to identify RDT regions in vivo using sysRNA. This new feature is important because since the discovery of the Rho protein in 1969, specific identification of RDT sites in vivo has been difficult due to the rapid processing of RNA 3' ends by exonucleases, and sysRNA might provide a new approach to address this challenge.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Li X, Chou T. Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling. Biophys J 2023; 122:254-266. [PMID: 36199250 PMCID: PMC9822797 DOI: 10.1016/j.bpj.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Under certain cellular conditions, transcription and mRNA translation in prokaryotes appear to be "coupled," in which the formation of mRNA transcript and production of its associated protein are temporally correlated. Such transcription-translation coupling (TTC) has been evoked as a mechanism that speeds up the overall process, provides protection against premature termination, and/or regulates the timing of transcript and protein formation. What molecular mechanisms underlie ribosome-RNAP coupling and how they can perform these functions have not been explicitly modeled. We develop and analyze a continuous-time stochastic model that incorporates ribosome and RNAP elongation rates, initiation and termination rates, RNAP pausing, and direct ribosome and RNAP interactions (exclusion and binding). Our model predicts how distributions of delay times depend on these molecular features of transcription and translation. We also propose additional measures for TTC: a direct ribosome-RNAP binding probability and the fraction of time the translation-transcription process is "protected" from attack by transcription-terminating proteins. These metrics quantify different aspects of TTC and differentially depend on parameters of known molecular processes. We use our metrics to reveal how and when our model can exhibit either acceleration or deceleration of transcription, as well as protection from termination. Our detailed mechanistic model provides a basis for designing new experimental assays that can better elucidate the mechanisms of TTC.
Collapse
Affiliation(s)
- Xiangting Li
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| | - Tom Chou
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California; Department of Mathematics, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Abstract
In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.
Collapse
Affiliation(s)
- Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, California, USA;
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA;
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
13
|
Lennon SR, Batey RT. Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches. J Mol Biol 2022; 434:167585. [PMID: 35427633 PMCID: PMC9474592 DOI: 10.1016/j.jmb.2022.167585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Riboswitches are an outstanding example of genetic regulation mediated by RNA conformational switching. In these non-coding RNA elements, the occupancy status of a ligand-binding domain governs the mRNA's decision to form one of two mutually exclusive structures in the downstream expression platform. Temporal constraints upon the function of many riboswitches, requiring folding of complex architectures and conformational switching in a limited co-transcriptional timeframe, make them ideal model systems for studying these processes. In this review, we focus on the mechanism of ligand-directed conformational changes in one of the most widely distributed riboswitches in bacteria: the cobalamin family. We describe the architectural features of cobalamin riboswitches whose structures have been determined by x-ray crystallography, which suggest a direct physical role of cobalamin in effecting the regulatory switch. Next, we discuss a series of experimental approaches applied to several model cobalamin riboswitches that interrogate these structural models. As folding is central to riboswitch function, we consider the differences in folding landscapes experienced by RNAs that are produced in vitro and those that are allowed to fold co-transcriptionally. Finally, we highlight a set of studies that reveal the difficulties of studying cobalamin riboswitches outside the context of transcription and that co-transcriptional approaches are essential for developing a more accurate picture of their structure-function relationships in these switches. This understanding will be essential for future advancements in the use of small-molecule guided RNA switches in a range of applications such as biosensors, RNA imaging tools, and nucleic acid-based therapies.
Collapse
Affiliation(s)
- Shelby R Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
14
|
Bharti R, Siebert D, Blombach B, Grimm DG. Systematic analysis of the underlying genomic architecture for transcriptional-translational coupling in prokaryotes. NAR Genom Bioinform 2022; 4:lqac074. [PMID: 36186922 PMCID: PMC9514032 DOI: 10.1093/nargab/lqac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
Transcriptional-translational coupling is accepted to be a fundamental mechanism of gene expression in prokaryotes and therefore has been analyzed in detail. However, the underlying genomic architecture of the expression machinery has not been well investigated so far. In this study, we established a bioinformatics pipeline to systematically investigated >1800 bacterial genomes for the abundance of transcriptional and translational associated genes clustered in distinct gene cassettes. We identified three highly frequent cassettes containing transcriptional and translational genes, i.e. rplk-nusG (gene cassette 1; in 553 genomes), rpoA-rplQ-rpsD-rpsK-rpsM (gene cassette 2; in 656 genomes) and nusA-infB (gene cassette 3; in 877 genomes). Interestingly, each of the three cassettes harbors a gene (nusG, rpsD and nusA) encoding a protein which links transcription and translation in bacteria. The analyses suggest an enrichment of these cassettes in pathogenic bacterial phyla with >70% for cassette 3 (i.e. Neisseria, Salmonella and Escherichia) and >50% for cassette 1 (i.e. Treponema, Prevotella, Leptospira and Fusobacterium) and cassette 2 (i.e. Helicobacter, Campylobacter, Treponema and Prevotella). These insights form the basis to analyze the transcriptional regulatory mechanisms orchestrating transcriptional-translational coupling and might open novel avenues for future biotechnological approaches.
Collapse
Affiliation(s)
- Richa Bharti
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Petersgasse 18, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Petersgasse 18, 94315 Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
| | - Daniel Siebert
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Microbial Biotechnology, Uferstraße 53, 94315 Straubing, Germany
| | - Bastian Blombach
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Microbial Biotechnology, Uferstraße 53, 94315 Straubing, Germany
| | - Dominik G Grimm
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Petersgasse 18, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Petersgasse 18, 94315 Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
- Technical University of Munich, Department of Informatics, Boltzmannstr. 3, 85748 Garching, Germany
| |
Collapse
|
15
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
N MPA, Lim HM. An in vitro Assay of mRNA 3' end Using the E. coli Cell-free Expression System. Bio Protoc 2022; 12:e4333. [PMID: 35340297 PMCID: PMC8899560 DOI: 10.21769/bioprotoc.4333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2023] Open
Abstract
At the end of about 80% of the operon in Escherichia coli, translation termination decouples transcription, leading to Rho-dependent transcription termination (RDT). However, no in vitro or in vivo assay system has proven to be good enough to see the 3' end of the mRNA generated by RDT. Here, we present a cell-free assay system that could provide detailed information on the 3' end of a transcript RNA generated by RDT. Our protocol shows how to extract transcript RNA generated by transcription reactions from a cell-free extract, followed by an RNA oligomer ligation to the 3' end of a transcript RNA of interest. The 3' end of the RNA is amplified using RT-PCR. Its genetic location can be determined using a gene-specific primer extension reaction. The 3' ends of mRNA can be visualized and quantified by polyacrylamide gel electrophoresis. One significant advantage of a cell-free assay system is that factors involved in the generation of the 3' end, such as proteins and sRNA, can be directly assayed by exogenously adding factor(s) to the reaction. Graphic abstract: An illustration of the experimental methodology.
Collapse
Affiliation(s)
- Monford Paul Abishek N
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heon M. Lim
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
17
|
Bailey EJ, Gottesman ME, Gonzalez RL. NusG-mediated Coupling of Transcription and Translation Enhances Gene Expression by Suppressing RNA Polymerase Backtracking. J Mol Biol 2022; 434:167330. [PMID: 34710399 PMCID: PMC9833396 DOI: 10.1016/j.jmb.2021.167330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 02/01/2023]
Abstract
In bacteria, transcription is coupled to, and can be regulated by, translation. Although recent structural studies suggest that the N-utilization substance G (NusG) transcription factor can serve as a direct, physical link between the transcribing RNA polymerase (RNAP) and the lead ribosome, mechanistic studies investigating the potential role of NusG in mediating transcription-translation coupling are lacking. Here, we report development of a cellular extract- and reporter gene-based, in vitro biochemical system that supports transcription-translation coupling as well as the use of this system to study the role of NusG in coupling. Our findings show that NusG is required for coupling and that the enhanced gene expression that results from coupling is dependent on the ability of NusG to directly interact with the lead ribosome. Moreover, we provide strong evidence that NusG-mediated coupling enhances gene expression through a mechanism in which the lead ribosome that is tethered to the RNAP by NusG suppresses spontaneous backtracking of the RNAP on its DNA template that would otherwise inhibit transcription.
Collapse
Affiliation(s)
- Elizabeth J. Bailey
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA,Current Address: Center for Research on Learning and Teaching in Engineering, University of Michigan, 2609 Draper Drive, Ann Arbor, MI 48109, USA
| | - Max E. Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032, USA,To whom correspondence should be addressed: Max E. Gottesman, Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032 USA Tel.: (212) 305-6900; Fax: (212) 305-1468; and Ruben L. Gonzalez, Jr., Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA, Tel.: (212) 854-1096; Fax: (212) 932-1289;
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA,To whom correspondence should be addressed: Max E. Gottesman, Department of Microbiology and Immunology, Columbia University Medical Center, 701 West 168 Street, New York, NY 10032 USA Tel.: (212) 305-6900; Fax: (212) 305-1468; and Ruben L. Gonzalez, Jr., Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA, Tel.: (212) 854-1096; Fax: (212) 932-1289;
| |
Collapse
|
18
|
Jeon HJ, Lee Y, N MPA, Wang X, Chattoraj DK, Lim HM. sRNA-mediated regulation of gal mRNA in E. coli: Involvement of transcript cleavage by RNase E together with Rho-dependent transcription termination. PLoS Genet 2021; 17:e1009878. [PMID: 34710092 PMCID: PMC8577784 DOI: 10.1371/journal.pgen.1009878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) bind to target mRNAs and regulate their translation and/or stability. In the polycistronic galETKM operon of Escherichia coli, binding of the Spot 42 sRNA to the operon transcript leads to the generation of galET mRNA. The mechanism of this regulation has remained unclear. We show that sRNA-mRNA base pairing at the beginning of the galK gene leads to both transcription termination and transcript cleavage within galK, and generates galET mRNAs with two different 3'-OH ends. Transcription termination requires Rho, and transcript cleavage requires the endonuclease RNase E. The sRNA-mRNA base-paired segments required for generating the two galET species are different, indicating different sequence requirements for the two events. The use of two targets in an mRNA, each of which causes a different outcome, appears to be a novel mode of action for a sRNA. Considering the prevalence of potential sRNA targets at cistron junctions, the generation of new mRNA species by the mechanisms reported here might be a widespread mode of bacterial gene regulation.
Collapse
Affiliation(s)
- Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yonho Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Dhruba K. Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Webster MW, Weixlbaumer A. Macromolecular assemblies supporting transcription-translation coupling. Transcription 2021; 12:103-125. [PMID: 34570660 DOI: 10.1080/21541264.2021.1981713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Coordination between the molecular machineries that synthesize and decode prokaryotic mRNAs is an important layer of gene expression control known as transcription-translation coupling. While it has long been known that translation can regulate transcription and vice-versa, recent structural and biochemical work has shed light on the underlying mechanistic basis. Complexes of RNA polymerase linked to a trailing ribosome (expressomes) have been structurally characterized in a variety of states at near-atomic resolution, and also directly visualized in cells. These data are complemented by recent biochemical and biophysical analyses of transcription-translation systems and the individual components within them. Here, we review our improved understanding of the molecular basis of transcription-translation coupling. These insights are discussed in relation to our evolving understanding of the role of coupling in cells.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| |
Collapse
|
20
|
Rombouts S, Nollmann M. RNA imaging in bacteria. FEMS Microbiol Rev 2021; 45:5917984. [PMID: 33016325 DOI: 10.1093/femsre/fuaa051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
The spatiotemporal regulation of gene expression plays an essential role in many biological processes. Recently, several imaging-based RNA labeling and detection methods, both in fixed and live cells, were developed and now enable the study of transcript abundance, localization and dynamics. Here, we review the main single-cell techniques for RNA visualization with fluorescence microscopy and describe their applications in bacteria.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
21
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cook TB, Jacobson TB, Venkataraman MV, Hofstetter H, Amador-Noguez D, Thomas MG, Pfleger BF. Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A. Metab Eng 2021; 67:112-124. [PMID: 34175462 DOI: 10.1016/j.ymben.2021.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022]
Abstract
Polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) comprise biosynthetic pathways that provide access to diverse, often bioactive natural products. Metabolic engineering can improve production metrics to support characterization and drug-development studies, but often native hosts are difficult to genetically manipulate and/or culture. For this reason, heterologous expression is a common strategy for natural product discovery and characterization. Many bacteria have been developed to express heterologous biosynthetic gene clusters (BGCs) for producing polyketides and nonribosomal peptides. In this article, we describe tools for using Pseudomonas putida, a Gram-negative soil bacterium, as a heterologous host for producing natural products. Pseudomonads are known to produce many natural products, but P. putida production titers have been inconsistent in the literature and often low compared to other hosts. In recent years, synthetic biology tools for engineering P. putida have greatly improved, but their application towards production of natural products is limited. To demonstrate the potential of P. putida as a heterologous host, we introduced BGCs encoding the synthesis of prodigiosin and glidobactin A, two bioactive natural products synthesized from a combination of PKS and NRPS enzymology. Engineered strains exhibited robust production of both compounds after a single chromosomal integration of the corresponding BGC. Next, we took advantage of a set of genome-editing tools to increase titers by modifying transcription and translation of the BGCs and increasing the availability of auxiliary proteins required for PKS and NRPS activity. Lastly, we discovered genetic modifications to P. putida that affect natural product synthesis, including a strategy for removing a carbon sink that improves product titers. These efforts resulted in production strains capable of producing 1.1 g/L prodigiosin and 470 mg/L glidobactin A.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maya V Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
23
|
Novel role of CAP1 in regulation RNA polymerase II-mediated transcription elongation depends on its actin-depolymerization activity in nucleoplasm. Oncogene 2021; 40:3492-3509. [PMID: 33911205 DOI: 10.1038/s41388-021-01789-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Lung cancer is one of the most intractable diseases with high incidence and mortality worldwide. Adenylate cyclase-associated protein 1 (CAP1), a well-known actin depolymerization factor, is recently reported to be an oncogene accelerating cancer cell proliferation. However, the physiological significance of CAP1 in lung cancer is incompletely understood and the novel functions of CAP1 in transcriptional regulation remain unknown. Here we found that CAP1 was highly expressed in lung cancer tissues and cells, which was also negatively associated with prognosis in lung cancer patients. Moreover, CAP1 promoted A549 cells proliferation by promoting protein synthesis to accelerate cell cycle progression. Mechanistically, we revealed that CAP1 facilitated cyclin-dependent kinase 9 (CDK9)-mediated RNA polymerases (Pol) II-Ser2 phosphorylation and subsequent transcription elongation, and CAP1 performed its function in this progress depending on its actin-depolymerization activity in nucleoplasm. Furthermore, our in vivo findings confirmed that CAP1-promoted A549 xenograft tumor growth was associated with CDK9-mediated Pol II-Ser2 phosphorylation. Our study elucidates a novel role of CAP1 in modulating transcription by promoting polymerase II phosphorylation and suggests that CAP1 is a newly identified biomarker for lung cancer treatment and prognosis prediction.
Collapse
|
24
|
A translational riboswitch coordinates nascent transcription-translation coupling. Proc Natl Acad Sci U S A 2021; 118:2023426118. [PMID: 33850018 DOI: 10.1073/pnas.2023426118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial messenger RNA (mRNA) synthesis by RNA polymerase (RNAP) and first-round translation by the ribosome are often coupled to regulate gene expression, yet how coupling is established and maintained is ill understood. Here, we develop biochemical and single-molecule fluorescence approaches to probe the dynamics of RNAP-ribosome interactions on an mRNA with a translational preQ1-sensing riboswitch in its 5' untranslated region. Binding of preQ1 leads to the occlusion of the ribosome binding site (RBS), inhibiting translation initiation. We demonstrate that RNAP poised within the mRNA leader region promotes ribosomal 30S subunit binding, antagonizing preQ1-induced RBS occlusion, and that the RNAP-30S bridging transcription factors NusG and RfaH distinctly enhance 30S recruitment and retention, respectively. We further find that, while 30S-mRNA interaction significantly impedes RNAP in the absence of translation, an actively translating ribosome promotes productive transcription. A model emerges wherein mRNA structure and transcription factors coordinate to dynamically modulate the efficiency of transcription-translation coupling.
Collapse
|
25
|
Tian T, Li S, Lang P, Zhao D, Zeng J. Full-length ribosome density prediction by a multi-input and multi-output model. PLoS Comput Biol 2021; 17:e1008842. [PMID: 33770074 PMCID: PMC8026034 DOI: 10.1371/journal.pcbi.1008842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/07/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Translation elongation is regulated by a series of complicated mechanisms in both prokaryotes and eukaryotes. Although recent advance in ribosome profiling techniques has enabled one to capture the genome-wide ribosome footprints along transcripts at codon resolution, the regulatory codes of elongation dynamics are still not fully understood. Most of the existing computational approaches for modeling translation elongation from ribosome profiling data mainly focus on local contextual patterns, while ignoring the continuity of the elongation process and relations between ribosome densities of remote codons. Modeling the translation elongation process in full-length coding sequence (CDS) level has not been studied to the best of our knowledge. In this paper, we developed a deep learning based approach with a multi-input and multi-output framework, named RiboMIMO, for modeling the ribosome density distributions of full-length mRNA CDS regions. Through considering the underlying correlations in translation efficiency among neighboring and remote codons and extracting hidden features from the input full-length coding sequence, RiboMIMO can greatly outperform the state-of-the-art baseline approaches and accurately predict the ribosome density distributions along the whole mRNA CDS regions. In addition, RiboMIMO explores the contributions of individual input codons to the predictions of output ribosome densities, which thus can help reveal important biological factors influencing the translation elongation process. The analyses, based on our interpretable metric named codon impact score, not only identified several patterns consistent with the previously-published literatures, but also for the first time (to the best of our knowledge) revealed that the codons located at a long distance from the ribosomal A site may also have an association on the translation elongation rate. This finding of long-range impact on translation elongation velocity may shed new light on the regulatory mechanisms of protein synthesis. Overall, these results indicated that RiboMIMO can provide a useful tool for studying the regulation of translation elongation in the range of full-length CDS. Translation elongation is a process in which amino acids are linked into proteins by ribosomes in cells. Translation elongation rates along the mRNAs are not constant, and are regulated by a series of mechanisms, such as codon rarity and mRNA stability. In this study, we modeled the translation elongation process at a full-length coding sequence level and developed a deep learning based approach to predict the translation elongation rates from mRNA sequences, through extracting the regulatory codes of elongation rates from the contextual sequences. The analyses, based on our interpretable metric named codon impact score, for the first time (to the best of our knowledge), revealed that in addition to the neighboring codons of the ribosomal A sites, the remote codons may also have an important impact on the translation elongation rates. This new finding may stimulate additional experiments and shed light on the regulatory mechanisms of protein synthesis.
Collapse
Affiliation(s)
- Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Peng Lang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- * E-mail: (DZ); (JZ)
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- * E-mail: (DZ); (JZ)
| |
Collapse
|
26
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Lee Y, Lee N, Hwang S, Kim K, Kim W, Kim J, Cho S, Palsson BO, Cho BK. System-level understanding of gene expression and regulation for engineering secondary metabolite production in Streptomyces. ACTA ACUST UNITED AC 2020; 47:739-752. [DOI: 10.1007/s10295-020-02298-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Abstract
The gram-positive bacterium, Streptomyces, is noticed for its ability to produce a wide array of pharmaceutically active compounds through secondary metabolism. To discover novel bioactive secondary metabolites and increase the production, Streptomyces species have been extensively studied for the past decades. Among the cellular components, RNA molecules play important roles as the messengers for gene expression and diverse regulations taking place at the RNA level. Thus, the analysis of RNA-level regulation is critical to understanding the regulation of Streptomyces’ metabolism and secondary metabolite production. A dramatic advance in Streptomyces research was made recently, by exploiting high-throughput technology to systematically understand RNA levels. In this review, we describe the current status of the system-wide investigation of Streptomyces in terms of RNA, toward expansion of its genetic potential for secondary metabolite synthesis.
Collapse
Affiliation(s)
- Yongjae Lee
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Namil Lee
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Soonkyu Hwang
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Kangsan Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Woori Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Jihun Kim
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Suhyung Cho
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
| | - Bernhard O Palsson
- grid.266100.3 0000 0001 2107 4242 Department of Bioengineering University of California San Diego 92093 La Jolla CA USA
- grid.266100.3 0000 0001 2107 4242 Department of Pediatrics University of California San Diego 92093 La Jolla CA USA
- grid.5170.3 0000 0001 2181 8870 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark 2800 Lyngby Denmark
| | - Byung-Kwan Cho
- grid.37172.30 0000 0001 2292 0500 Department of Biological Sciences and KI for the BioCentury Korea Advanced Institute of Science and Technology 34141 Daejeon Republic of Korea
- Intelligent Synthetic Biology Center 34141 Daejeon Republic of Korea
| |
Collapse
|
29
|
Johnson GE, Lalanne JB, Peters ML, Li GW. Functionally uncoupled transcription-translation in Bacillus subtilis. Nature 2020; 585:124-128. [PMID: 32848247 PMCID: PMC7483943 DOI: 10.1038/s41586-020-2638-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/22/2020] [Indexed: 11/10/2022]
Abstract
Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3-11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription-translation coupling-together with its broad functional consequences-is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this 'runaway transcription' creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP-ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.
Collapse
Affiliation(s)
- Grace E Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle L Peters
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
30
|
Washburn RS, Zuber PK, Sun M, Hashem Y, Shen B, Li W, Harvey S, Acosta Reyes FJ, Gottesman ME, Knauer SH, Frank J. Escherichia coli NusG Links the Lead Ribosome with the Transcription Elongation Complex. iScience 2020; 23:101352. [PMID: 32726726 PMCID: PMC7390762 DOI: 10.1016/j.isci.2020.101352] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
It has been known for more than 50 years that transcription and translation are physically coupled in bacteria, but whether or not this coupling may be mediated by the two-domain protein N-utilization substance (Nus) G in Escherichia coli is still heavily debated. Here, we combine integrative structural biology and functional analyses to provide conclusive evidence that NusG can physically link transcription with translation by contacting both RNA polymerase and the ribosome. We present a cryo-electron microscopy structure of a NusG:70S ribosome complex and nuclear magnetic resonance spectroscopy data revealing simultaneous binding of NusG to RNAP and the intact 70S ribosome, providing the first direct structural evidence for NusG-mediated coupling. Furthermore, in vivo reporter assays show that recruitment of NusG occurs late in transcription and strongly depends on translation. Thus, our data suggest that coupling occurs initially via direct RNAP:ribosome contacts and is then mediated by NusG.
Collapse
Affiliation(s)
- Robert S Washburn
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Philipp K Zuber
- Biochemistry IV - Biopolymers, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Sho Harvey
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Francisco J Acosta Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Max E Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Stefan H Knauer
- Biochemistry IV - Biopolymers, University of Bayreuth, 95447 Bayreuth, Germany.
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
31
|
Webster MW, Takacs M, Zhu C, Vidmar V, Eduljee A, Abdelkareem M, Weixlbaumer A. Structural basis of transcription-translation coupling and collision in bacteria. Science 2020; 369:1355-1359. [DOI: 10.1126/science.abb5036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023]
Abstract
Prokaryotic messenger RNAs (mRNAs) are translated as they are transcribed. The lead ribosome potentially contacts RNA polymerase (RNAP) and forms a supramolecular complex known as the expressome. The basis of expressome assembly and its consequences for transcription and translation are poorly understood. Here, we present a series of structures representing uncoupled, coupled, and collided expressome states determined by cryo–electron microscopy. A bridge between the ribosome and RNAP can be formed by the transcription factor NusG, which stabilizes an otherwise-variable interaction interface. Shortening of the intervening mRNA causes a substantial rearrangement that aligns the ribosome entrance channel to the RNAP exit channel. In this collided complex, NusG linkage is no longer possible. These structures reveal mechanisms of coordination between transcription and translation and provide a framework for future study.
Collapse
Affiliation(s)
- Michael William Webster
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Chengjin Zhu
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Vita Vidmar
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Ayesha Eduljee
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Mo’men Abdelkareem
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CNRS UMR7104, 67404 Illkirch, France
- INSERM U1258, 67404 Illkirch, France
| |
Collapse
|
32
|
Wang C, Molodtsov V, Firlar E, Kaelber JT, Blaha G, Su M, Ebright RH. Structural basis of transcription-translation coupling. Science 2020; 369:1359-1365. [PMID: 32820061 DOI: 10.1126/science.abb5317] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
In bacteria, transcription and translation are coupled processes in which the movement of RNA polymerase (RNAP)-synthesizing messenger RNA (mRNA) is coordinated with the movement of the first ribosome-translating mRNA. Coupling is modulated by the transcription factors NusG (which is thought to bridge RNAP and the ribosome) and NusA. Here, we report cryo-electron microscopy structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A, previously termed "expressome"). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.
Collapse
Affiliation(s)
- Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Emre Firlar
- Rutgers New Jersey CryoEM/CryoET Core Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jason T Kaelber
- Rutgers New Jersey CryoEM/CryoET Core Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI,48109, USA.
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Abstract
Our findings demonstrate conclusively that low abundance and upregulated transcripts are preferentially translated, potentially by environment-specific translation systems with distinct ribosomal protein composition. We show that a complex interplay of transcriptional and posttranscriptional regulation underlies the conditional and modular regulatory programs that generate ribosomes of distinct protein composition. The modular regulation of ribosomal proteins with other transcription, translation, and metabolic genes is generalizable to bacterial and eukaryotic microbes. These findings are relevant to how microorganisms adapt to unfavorable environments when they transition from active growth to quiescence by generating proteins from upregulated transcripts that are in considerably lower abundance relative to transcripts associated with the previous physiological state. Selective translation of transcripts by distinct ribosomes could form the basis for adaptive evolution to new environments through a modular regulation of the translational systems. When organisms encounter an unfavorable environment, they transition to a physiologically distinct, quiescent state wherein abundant transcripts from the previous active growth state continue to persist, albeit their active transcription is downregulated. In order to generate proteins for the new quiescent physiological state, we hypothesized that the translation machinery must selectively translate upregulated transcripts in an intracellular milieu crowded with considerably higher abundance transcripts from the previous active growth state. Here, we have analyzed genome-wide changes in the transcriptome (RNA sequencing [RNA-seq]), changes in translational regulation and efficiency by ribosome profiling across all transcripts (ribosome profiling [Ribo-seq]), and protein level changes in assembled ribosomal proteins (sequential window acquisition of all theoretical mass spectra [SWATH-MS]) to investigate the interplay of transcriptional and translational regulation in Halobacterium salinarum as it transitions from active growth to quiescence. We have discovered that interplay of regulatory processes at different levels of information processing generates condition-specific ribosomal complexes to translate preferentially pools of low abundance and upregulated transcripts. Through analysis of the gene regulatory network architecture of H. salinarum, Escherichia coli, and Saccharomyces cerevisiae, we demonstrate that this conditional, modular organization of regulatory programs governing translational systems is a generalized feature across all domains of life. IMPORTANCE Our findings demonstrate conclusively that low abundance and upregulated transcripts are preferentially translated, potentially by environment-specific translation systems with distinct ribosomal protein composition. We show that a complex interplay of transcriptional and posttranscriptional regulation underlies the conditional and modular regulatory programs that generate ribosomes of distinct protein composition. The modular regulation of ribosomal proteins with other transcription, translation, and metabolic genes is generalizable to bacterial and eukaryotic microbes. These findings are relevant to how microorganisms adapt to unfavorable environments when they transition from active growth to quiescence by generating proteins from upregulated transcripts that are in considerably lower abundance relative to transcripts associated with the previous physiological state. Selective translation of transcripts by distinct ribosomes could form the basis for adaptive evolution to new environments through a modular regulation of the translational systems.
Collapse
|
34
|
Gonzalez RL. RNA Polymerase and the Ribosome: In Touch or out of Touch? J Mol Biol 2020; 432:3987-3988. [PMID: 32450082 DOI: 10.1016/j.jmb.2020.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
36
|
Chen M, Fredrick K. RNA Polymerase's Relationship with the Ribosome: Not So Physical, Most of the Time. J Mol Biol 2020; 432:3981-3986. [PMID: 32198117 DOI: 10.1016/j.jmb.2020.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023]
Abstract
In bacteria, the rates of transcription elongation and translation elongation are coordinated, changing together in response to growth conditions. It has been proposed that this is due to physical coupling of RNA polymerase and the lead ribosome on nascent mRNA, an interaction important for preventing premature transcription termination by Rho factor. Recent studies challenge this view and provide evidence that coordination is indirect, mediated in Escherichia coli by the alarmone (p)ppGpp. Here, we discuss these new findings and how they shape our understanding of the functional relationship between RNA polymerase and the ribosome as well as the basis of transcriptional polarity.
Collapse
Affiliation(s)
- Menglin Chen
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, 484 W. 12(th) Ave, Columbus, OH, 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, 484 W. 12(th) Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
37
|
Zhu M, Mori M, Hwa T, Dai X. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat Microbiol 2019; 4:2347-2356. [PMID: 31451774 PMCID: PMC6903697 DOI: 10.1038/s41564-019-0543-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022]
Abstract
Tight coordination between transcription and translation is crucial to maintaining the integrity of gene expression in bacteria, yet how bacteria manage to coordinate these two processes remains unclear. Possible direct physical coupling between the RNA polymerase and ribosome has been thoroughly investigated in recent years. Here, we quantitatively characterize the transcriptional kinetics of Escherichia coli under different growth conditions. Transcriptional and translational elongation remain coordinated under various nutrient conditions, as previously reported. However, transcriptional elongation was not affected under antibiotics that slowed down translational elongation. This result was also found by introducing nonsense mutation that completely dissociated transcription from translation. Our data thus provide direct evidence that translation is not required to maintain the speed of transcriptional elongation. In cases where transcription and translation are dissociated, our study provides quantitative characterization of the resulting process of premature transcriptional termination (PTT). PTT-mediated polarity caused by translation-targeting antibiotics substantially affected the coordinated expression of genes in several long operons, contributing to the key physiological effects of these antibiotics. Our results also suggest a model in which the coordination between transcriptional and translational elongation under normal growth conditions is implemented by guanosine tetraphosphate.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA.
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, China.
| |
Collapse
|
38
|
Yang S, Kim S, Kim DK, Jeon An H, Bae Son J, Hedén Gynnå A, Ki Lee N. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli. Nat Commun 2019; 10:5131. [PMID: 31719538 PMCID: PMC6851099 DOI: 10.1038/s41467-019-13152-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022] Open
Abstract
Transcription by RNA polymerase (RNAP) is coupled with translation in bacteria. Here, we observe the dynamics of transcription and subcellular localization of a specific gene locus (encoding a non-membrane protein) in living E. coli cells at subdiffraction-limit resolution. The movement of the gene locus to the nucleoid periphery correlates with transcription, driven by either E. coli RNAP or T7 RNAP, and the effect is potentiated by translation.
Collapse
Affiliation(s)
- Sora Yang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Seunghyeon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong-Kyun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hyeong Jeon An
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jung Bae Son
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Arvid Hedén Gynnå
- Department of Cell and Molecular Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
39
|
Abstract
The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se. Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis, have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis. We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism.
Collapse
|
40
|
Abstract
Bacteria frequently encounter low concentrations of antibiotics. Active antibiotics are commonly detected in soil and water at concentrations much below lethal concentration. Although sub-MICs of antibiotics do not kill bacteria, they can have a major impact on bacterial populations by contributing to the development of antibiotic resistance through mutations in originally sensitive bacteria or acquisition of DNA from resistant bacteria. It was shown that concentrations as low as 100-fold below the MIC can actually lead to the selection of antibiotic-resistant cells. We seek to understand how bacterial cells react to such antibiotic concentrations using E. coli, the Gram-negative bacterial paradigm, and V. cholerae, the causative agent of cholera. Our findings shed light on the processes triggered at the DNA level by antibiotics targeting translation, how damage occurs, and what the bacterial strategies are to respond to such DNA damage. We have previously identified Vibrio cholerae mutants in which the stress response to subinhibitory concentrations of aminoglycoside is altered. One gene identified, VC1636, encodes a putative DNA/RNA helicase, recently named RadD in Escherichia coli. Here we combined extensive genetic characterization and high-throughput approaches in order to identify partners and molecular mechanisms involving RadD. We show that double-strand DNA breaks (DSBs) are formed upon subinhibitory tobramycin treatment in the absence of radD and recBCD and that formation of these DSBs can be overcome by RNase H1 overexpression. Loss of RNase H1, or of the transcription-translation coupling factor EF-P, is lethal in the radD deletion mutant. We propose that R-loops are formed upon sublethal aminoglycoside treatment, leading to the formation of DSBs that can be repaired by the RecBCD homologous recombination pathway, and that RadD counteracts such R-loop accumulation. We discuss how R-loops that can occur upon translation-transcription uncoupling could be the link between tobramycin treatment and DNA break formation.
Collapse
|
41
|
Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. Key Concepts and Challenges in Archaeal Transcription. J Mol Biol 2019; 431:4184-4201. [PMID: 31260691 DOI: 10.1016/j.jmb.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
Transcription is enabled by RNA polymerase and general factors that allow its progress through the transcription cycle by facilitating initiation, elongation and termination. The transitions between specific stages of the transcription cycle provide opportunities for the global and gene-specific regulation of gene expression. The exact mechanisms and the extent to which the different steps of transcription are exploited for regulation vary between the domains of life, individual species and transcription units. However, a surprising degree of conservation is apparent. Similar key steps in the transcription cycle can be targeted by homologous or unrelated factors providing insights into the mechanisms of RNAP and the evolution of the transcription machinery. Archaea are bona fide prokaryotes but employ a eukaryote-like transcription system to express the information of bacteria-like genomes. Thus, archaea provide the means not only to study transcription mechanisms of interesting model systems but also to test key concepts of regulation in this arena. In this review, we discuss key principles of archaeal transcription, new questions that still await experimental investigation, and how novel integrative approaches hold great promise to fill this gap in our knowledge.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| | - Dorota Matelska
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
42
|
Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling. Int J Mol Sci 2019; 20:ijms20102595. [PMID: 31137816 PMCID: PMC6566652 DOI: 10.3390/ijms20102595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.
Collapse
|
43
|
Abstract
In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In every cell from bacteria to mammals, NusG-like proteins bind transcribing RNA polymerase to modulate the rate of nascent RNA synthesis and to coordinate it with numerous cotranscriptional processes that ultimately determine the transcript fate. Housekeeping NusG factors regulate expression of the bulk of the genome, whereas their highly specialized paralogs control just a few targets. In Escherichia coli, NusG stimulates silencing of horizontally acquired genes, while its paralog RfaH counters NusG action by activating a subset of these genes. Acting alone or as part of regulatory complexes, NusG factors can promote uninterrupted RNA synthesis, bring about transcription pausing or premature termination, modulate RNA processing, and facilitate translation. Recent structural and mechanistic studies of NusG homologs from all domains of life reveal molecular details of multifaceted interactions that underpin their unexpectedly diverse regulatory roles. NusG proteins share conserved binding sites on RNA polymerase and many effects on the transcription elongation complex but differ in their mechanisms of recruitment, interactions with nucleic acids and secondary partners, and regulatory outcomes. Strikingly, some can alternate between autoinhibited and activated states that possess dramatically different secondary structures to achieve exquisite target specificity.
Collapse
|
44
|
Ben-Zvi T, Pushkarev A, Seri H, Elgrably-Weiss M, Papenfort K, Altuvia S. mRNA dynamics and alternative conformations adopted under low and high arginine concentrations control polyamine biosynthesis in Salmonella. PLoS Genet 2019; 15:e1007646. [PMID: 30742606 PMCID: PMC6386406 DOI: 10.1371/journal.pgen.1007646] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 01/21/2023] Open
Abstract
Putrescine belongs to the large group of polyamines, an essential class of metabolites that exists throughout all kingdoms of life. The Salmonella speF gene encodes an inducible ornithine decarboxylase that produces putrescine from ornithine. Putrescine can be also synthesized from arginine in a parallel metabolic pathway. Here, we show that speF expression is controlled at multiple levels through regulatory elements contained in a long leader sequence. At the heart of this regulation is a short open reading frame, orf34, which is required for speF production. Translation of orf34 interferes with Rho-dependent transcription termination and helps to unfold an inhibitory RNA structure sequestering speF ribosome-binding site. Two consecutive arginine codons in the conserved domain of orf34 provide a third level of speF regulation. Uninterrupted translation of orf34 under conditions of high arginine allows the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosome pausing at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is resistant to RNase G. Thus, the rate of ribosome progression during translation of the upstream ORF influences the dynamics of speF mRNA folding and putrescine production. The identification of orf34 and its regulatory functions provides evidence for the evolutionary conservation of ornithine decarboxylase regulatory elements and putrescine production. Polyamines are widely distributed in nature, they bind nucleic acids and proteins and although their exact mechanism of action is not clear, their effect on fundamental cellular functions is well documented. The canonical biosynthesis pathway of polyamines is conserved and begins with speF encoding ornithine decarboxylase, an inducible enzyme that produces putrescine from ornithine. Putrescine can also be produced from arginine in an alternative metabolic pathway. Here, we show that the rate of ribosome progression during translation of a short ORF (ORF34) upstream of speF influences the dynamics of speF mRNA folding and thus putrescine production. Uninterrupted translation of orf34 carrying two consecutive arginine codons, under conditions of high arginine, results in the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosomes slow-down at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is unsusceptible to RNase G and thus results in putrescine production. The study of Salmonella speF regulation provides evidence that, despite variations in the mechanistic details, RNA-based regulation of putrescine biosynthesis and ornithine decarboxylase is conserved from bacteria to mammals.
Collapse
Affiliation(s)
- Tamar Ben-Zvi
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Alina Pushkarev
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hemda Seri
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kai Papenfort
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
45
|
Bacterial ribosome heterogeneity: Changes in ribosomal protein composition during transition into stationary growth phase. Biochimie 2019; 156:169-180. [DOI: 10.1016/j.biochi.2018.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
46
|
The Structural and Functional Organization of Ribosomal Compartment in the Cell: A Mystery or a Reality? Trends Biochem Sci 2018; 43:938-950. [PMID: 30337135 DOI: 10.1016/j.tibs.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/23/2022]
Abstract
Great progress has been made toward solving the atomic structure of the ribosome, which is the main biosynthetic machine in cells, but we still do not have a full picture of exactly how cellular ribosomes function. Based on the analysis of crystallographic and electron microscopy data, we propose a basic model of the structural organization of ribosomes into a compartment. This compartment is regularly formed by arrays of ribosomal tetramers made up of two dimers that are actually facing in opposite directions. The compartment functions as the main 'factory' for the production of cellular proteins. The model is consistent with the existing biochemical and genetic data. We also consider the functional connections of such a compartment with cellular transcription and ribosomal biogenesis.
Collapse
|
47
|
Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation. Proc Natl Acad Sci U S A 2018; 115:10774-10779. [PMID: 30275301 DOI: 10.1073/pnas.1812940115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In prokaryotes, the synthesis of RNA and protein occurs simultaneously in the cytoplasm. A number of studies indicate that translation can strongly impact transcription, a phenomenon often attributed to physical coupling between RNA polymerase (RNAP) and the lead ribosome on the nascent mRNA. Whether there generally exists a mechanism to ensure or promote RNAP-ribosome coupling remains unclear. Here, we used an efficient hammerhead ribozyme and developed a reporter system to measure single- versus multiple-round translation in Escherichia coli Six pairs of cotranscribed and differentially translated genes were analyzed. For five of them, the stoichiometry of the two protein products came no closer to unity (1:1) when the rounds of translation were severely reduced in wild-type cells. Introduction of mutation rpoB(I572N), which slows RNAP elongation, could promote coupling, as indicated by stoichiometric SspA and SspB products in the single-round assay. These data are consistent with models of stochastic coupling in which the probability of coupling depends on the relative rates of transcription and translation and suggest that RNAP often transcribes without a linked ribosome.
Collapse
|
48
|
Artsimovitch I. Rebuilding the bridge between transcription and translation. Mol Microbiol 2018; 108:467-472. [PMID: 29608805 DOI: 10.1111/mmi.13964] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2018] [Indexed: 12/21/2022]
Abstract
In Bacteria, ribosomes may bind to the nascent RNA emerging from the transcribing RNA polymerase and initiate translation. Transcription-translation coupling plays diverse roles in cellular physiology, including attenuation control, mRNA surveillance and maintenance of genome integrity. While the existence of coupling is broadly accepted, its mechanism and ubiquity are debated. Structural evidence supports mutually exclusive modes of RNA polymerase-ribosome contacts. In a model based on nuclear magnetic resonance data, NusG binds to a ribosomal protein S10 and acts as an adapter between RNA polymerase and the 30S subunit. Recent single-particle cryo electron microscopy analyses of RNA polymerase bound to 30S and 70S ribosomes revealed extensive, and very distinct, contacts which are incompatible with bridging by NusG. Saxena et al. provide the first evidence for NusG-mediated coupling in vivo. Their results demonstrate that Escherichia coli NusG interacts with the 70S ribosomes through a previously established interface and that these interactions are required for survival when translation elongation is hindered to weaken coupling. Future studies will address a likely possibility that distinct bridging mechanisms underpin context-dependent coupling in the cell.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, The Center for RNA Biology, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
49
|
Saxena S, Myka KK, Washburn R, Costantino N, Court DL, Gottesman ME. Escherichia coli transcription factor NusG binds to 70S ribosomes. Mol Microbiol 2018; 108:495-504. [PMID: 29575154 DOI: 10.1111/mmi.13953] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Transcription and translation are coupled processes in bacteria. A role of transcription elongation cofactor NusG in coupling has been suggested by in vitro structural studies. NMR revealed association of the NusG carboxy-terminal domain with S10 (NusE), implying a direct role for NusG as a bridge linking RNAP and the lead ribosome. Here we present the first in vitro and in vivo evidence of full-length NusG association with mature 70S ribosomes. Binding did not require accessory factors in vitro. Mutating the NusG:S10 binding interface at NusG F165 or NusE M88 and D97 residues weakened NusG:S10 association in vivo and completely abolished it in vitro, supporting the specificity of this interaction. Mutations in the binding interface increased sensitivity to chloramphenicol. This phenotype was suppressed by rpoB*35, an RNAP mutation that reduces replisome-RNAP clashes. We propose that weakened NusG:S10 interaction leads to uncoupling when translation is inhibited, with resulting RNAP backtracking, replication blocks and formation of lethal DNA double-strand breaks.
Collapse
Affiliation(s)
- Shivalika Saxena
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Kamila K Myka
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Robert Washburn
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Nina Costantino
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| |
Collapse
|
50
|
Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management. Curr Genet 2017; 64:753-760. [PMID: 29243175 PMCID: PMC6060826 DOI: 10.1007/s00294-017-0796-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022]
Abstract
In response to nutrient deprivation and environmental insults, bacteria conjoin two copies of non-translating 70S ribosomes that form the translationally inactive 100S dimer. This widespread phenomenon is believed to prevent ribosome turnover and serves as a reservoir that, when conditions become favorable, allows the hibernating ribosomes to be disassembled and recycled for translation. New structural studies have revealed two distinct mechanisms for dimerizing 70S ribosomes, but the molecular basis of the disassembly process is still in its infancy. Many details regarding the sequence of dimerization-dissociation events with respect to the binding and departure of the hibernation factor and its antagonizing disassembly factor remain unclear.
Collapse
|